Phylogeny of the Mayfly Family Leptohyphidae (Insecta: Ephemeroptera) in South America

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of the Mayfly Family Leptohyphidae (Insecta: Ephemeroptera) in South America PHYLOGENY AND BIOGEOGRAPHY OF THE MAYFLY FAMILY LEPTOHYPHIDAE (INSECTA: EPHEMEROPTERA) WITH A TAXONOMIC REVISION OF SELECTED GENERA A Dissertation by DAVID EUGENE BAUMGARDNER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2008 Major Subject: Entomology PHYLOGENY AND BIOGEOGRAPHY OF THE MAYFLY FAMILY LEPTOHYPHIDAE (INSECTA: EPHEMEROPTERA) WITH A TAXONOMIC REVISION OF SELECTED GENERA A Dissertation by DAVID EUGENE BAUMGARDNER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, John D. Oswald Committee Members, Jimmy K. Olson Merrill H. Sweet James B. Woolley Head of Department, Kevin M. Heinz August 2008 Major Subject: Entomology iii ABSTRACT Phylogeny and Biogeography of the Mayfly Family Leptohyphidae (Insecta: Ephemeroptera) with a Taxonomic Revision of Selected Genera. (August 2008) David Eugene Baumgardner, B.S., Baylor University; M.S., University of North Texas Chair of Advisory Committee: Dr. John D. Oswald A cladistic analysis of the world genera of the mayfly family Leptohyphidae is presented. Analyses of a matrix of 58 ingroup and 9 outgroup species and 119 morphological characters strongly supports the monophyly of Leptohyphidae and its sister-group relationship with Coryphoridae. Larval and adult taxonomic keys are provided to the 11 recognized extant genera. A synonymical listing, differential diagnosis, list of proposed synapomorphies, diagnostic illustrations, and notes on distribution and included species are given for each genus. The following new synonyms of genus Tricorythodes are proposed: Ableptemetes n. syn., Cabecar n. syn., Epiphrades n. syn., Homoleptohyphes n. syn., Macunahyphes n. syn., Tricoryhyphes n. syn. The former genus Asioplax is newly regarded as a subgenus of Tricorythodes. A species-level revision of North and Central American Leptohyphes is presented. A key to the 15 Leptohyphes species known as larvae is provided. In addition, detailed descriptions, diagnosis, and geographic distributions are given for all species of Leptohyphes known from North and Central America. Biogeographic analysis suggests that the family Leptohyphidae originated in South America, and that its North American iv species are the descendants of one or more ancestral species that crossed northward over the Panamanian land bridge. The results of this research clearly show that the mayfly family Leptohyphidae is a strongly supported monophyletic clade supported by five unique synapomorphies. Currently recognized genera are also strongly supported; however, little support was found for subfamilies. The sister family is clearly Coryphoridae, which is supported by three unique synapomorphies. Biogeographic analysis indicates that Leptohyphidae originated in South American, with at least five independent invasions from South America to North and Central America during the evolution of Leptohyphidae. v DEDICATION This work is dedicated to two eminent ephemeropteran systematists who passed away during the course of this research, Dr. George F. Edmunds, Jr. and Dr. William L. Peters. Both will be greatly missed by their many friends, associates, and students. They were not only leaders in their field but were outstanding individuals who contributed much to our knowledge of the world around us. Dr. George F. Edmunds, Jr. (April 28, 1920 – March 04, 2006), whose career spanned more than 50 years, is generally considered the Father of North American ephemeropterology research. Dr. Edmunds completed his Ph.D. at the University of Massachusetts, under the guidance of Dr. Jay Traver. Dr. Edmunds began his teaching and research career at the University of Utah and retired from that university in 1989 as a professor of Biology. During his years in Utah, he was associated with research programs throughout the world, and was regarded by many mayfly specialists as the most influential ephemeropterist of his generation. Dr. William L. Peters (27 June 1939 – 03 June 2000) was a student of Dr. Edmunds who had a long and successful career at Florida A&M University, Gainesville, where he made major contributions to the study of the Ephemeroptera. His scientific research focused on the cosmopolitan mayfly family Leptophlebiidae. Dr. Peters published more than 100 scientific papers and monographs, and established more than 60 new genera, subgenera, and species (Hubbard, 2003). He also encouraged, guided, and collaborated with many mayfly researchers throughout the world. vi ACKNOWLEDGMENTS Most systematists recognize the substantial sacrifices and contributions that their families make in support of their research. While we travel throughout the world in search of our critters and spend hours upon hours in the laboratory, our loved ones wait patiently. First, I would like to thank my wife, Abigail, for the many hours, days, weeks, months and years that she has endured my study and research. Her support, whether in the field, laboratory, or at home is always appreciated. Her patience has no bounds. And to my son Kirk, for all his support, understanding, and assistance on more than one field trip. No graduate student would be able to complete their research without the constant oversight, support, and harassment of their committee. Drs. John D. Oswald, James B. Woolley, Jimmy K. Olson, and Merrill H. Sweet constantly supported and pushed me to be the best systematist possible. Their patience and understanding was greatly appreciated, especially during the 15 months that I was absent from the university in support of Operation Iraqi Freedom I. Numerous friends and fellow scientists made substantial contributions to the completion of this research through their advice, time, and support. In particular, Mrs. Jan Peters and Dr. Wills Flowers (Florida A&M University) were a tremendous resource for discussing various aspects of ephemeropteran systematics, loaning specimens, and hosting me during visits to Florida A&M University. Dr. Carlos Molineri (Universidad Nacional de Tucumán, Tucumán, Argentina) provided a substantial number of South vii American leptohyphid specimens, which increased the depth and breadth of the study. Dr. Pat McCafferty (Purdue University) was of great assistance in discussing various aspects of ephemeropteran systematics. Drs. Jack Schuster (Universidad del Valle, Guatemala City, Guatemala) and Jean-Michel Maes (Museo Entomologico, Leon, Nicaragua) were of tremendous assistance during collecting trips to Guatemala and Nicaragua, respectively, where they arranged for permits, lodging, and guidance. The administrative assistance and support of the Instituto Nacional de Biodiversidad (Santo Domingo de Heredia, Costa Rica) while working in Costa Rica is also much appreciated. The donations of Cuban leptohyphid mayflies by Dr. Nikita Kluge (St. Petersburg State University, St. Petersburg, Russia) was greatly appreciated. Loans from the California Academy of Sciences and Academy of Natural Sciences of Philadelphia were particularly significant for providing many type specimens and much additional study material. The tremendous curatorial support provided by Mr. Edward Riley (Texas A&M University) is greatly appreciated. And finally, the financial support of the Texas A&M University Entomology Graduate Student Organization, the L.T. Jordan Institute for International Awareness, and the Ernst Mayr Travel Grants in Animal Systematics from the Museum of Comparative Zoology, Harvard University, is gratefully acknowledged. viii TABLE OF CONTENTS Page ABSTRACT .............................................................................................................. iii DEDICATION ........................................................................................................... v ACKNOWLEDGMENTS ........................................................................................ vi TABLE OF CONTENTS .......................................................................................... viii CHAPTER I INTRODUCTION: BIOGEOGRAPHY ........................................... 1 Biogeography and the Panamanian Land Bridge ................... 1 Study Group ........................................................................... 5 Morphological Overview ....................................................... 6 II CLADISTIC ANALYSIS ................................................................... 11 Methods and Data .................................................................. 11 Characters .............................................................................. 15 Cladistic Results .................................................................... 70 Discussion ............................................................................. 73 III TAXONOMIC REVISION ................................................................ 81 Field Studies .......................................................................... 81 Museum and Laboratory Studies ........................................... 81 Taxonomic History and Early Classification ........................ 82 Family Leptohyphidae Landa and Soldán, 1985 ................... 85 Taxonomy .............................................................................. 86 Generic Treatments ............................................................... 89 Genus Leptohyphodes Ulmer, 1920 .......................................
Recommended publications
  • 1.- Heptageniidae, Ephemerellidae, Leptophlebiidae & Palingeniidae
    PRIVATE UBRARV OF WILLIAM L. PETERS Revue suisse Zool. I Tome 99 Fasc. 4 p. 835-858 I Geneve, decembre 1992 Mayflies from Israel (lnsecta; Ephemeroptera) 1.- Heptageniidae, Ephemerellidae, Leptophlebiidae & Palingeniidae * by Michel SARTORI 1 With 45 figures ABSTRACT This paper is the first part of a work dealing with the mayfly fauna of Israel. Eleven species are reported here. The most diversified family is the Heptageniidae with six species belonging to six different genera: Rhithrogena znojkoi (Tshemova), Epeorus zaitzevi Tshemova, Ecdyonurus asiaeminoris Demoulin, Electrogena galileae (Demoulin) (comb. nov.), Afronurus kugleri Demoulin and Heptagenia samochai (Demoulin) (comb. nov.). E. zaitzevi is new for the fauna of Israel. The male of H. samochai is described for the first time and the synonymy with H. lutea Kluge (syn. nov.) is proposed. Eggs of the six species are described and illustrated. Keys are provided for nymphs and adults. Ephemerellidae are represented by a single species, Ephemerella mesoleuca (Brauer). Leptophlebiid species are: Paraleptophlebia submarginata (Stephens), Choroterpes (Ch.) picteti Eaton and Choroterpes (Euthraulus) ortali nov. sp. described at all stages. New features to distinguish the nymphs of the Mediterranean Euthraulus species are provided. One species of Palingeniidae has been found in the collections of Bet Gordon Museum in Deganya: Palingenia orientalis Chopra. The female of this species is described for the first time. P. orientalis disappeared from the investigated area in the early fifties. Some geographical data are given on the distribution of the species inside and outside the investigated area, as well as some ecological observations. For instance, underwater emergence is reported for the first time in the genus Afronurus.
    [Show full text]
  • Variation in Mayfly Size at Metamorphosis As a Developmental Response to Risk of Predation
    Ecology, 82(3), 2001, pp. 740±757 q 2001 by the Ecological Society of America VARIATION IN MAYFLY SIZE AT METAMORPHOSIS AS A DEVELOPMENTAL RESPONSE TO RISK OF PREDATION BARBARA L. PECKARSKY,1,3,5 BRAD W. T AYLOR,1,3 ANGUS R. MCINTOSH,2,3 MARK A. MCPEEK,4 AND DAVID A. LYTLE1 1Department of Entomology, Cornell University, Ithaca, New York 14853 USA 2Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand 3Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado 81224 USA 4Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA Abstract. Animals with complex life cycles often show large variation in the size and timing of metamorphosis in response to environmental variability. If fecundity increases with body size and large individuals are more vulnerable to predation, then organisms may not be able to optimize simultaneously size and timing of metamorphosis. The goals of this study were to measure and explain large-scale spatial and temporal patterns of phe- notypic variation in size at metamorphosis of the may¯y, Baetis bicaudatus (Baetidae), from habitats with variable levels of predation risk. Within a single high-elevation watershed in western Colorado, USA, from 1994 to 1996 we measured dry masses of mature larvae of the overwintering and summer generations of Baetis at 28 site-years in streams with and without predatory ®sh (trout). We also estimated larval growth rates and development times at 16 site-years. Patterns of spatial variation in may¯y size could not be explained by resource (algae) standing stock, competitor densities, or physical±chemical variables.
    [Show full text]
  • Gill Mobility in the Baetidae (Ephemeroptera): Results of a Short Study in Africa
    GILL MOBILITY IN THE BAETIDAE (EPHEMEROPTERA): RESULTS OF A SHORT STUDY IN AFRICA MICHAEL T. GJLLIES Whitfeld, Hamsey, Lewes, Sussex, BN8 STD, England Afroptilum was the only genus of Baetidae observed with mobile gills in African streams. Other members of the Cloeon group of genera from fast-running water, including Dicentroptilum, Rhithrocloeon, Afrobaetodes, Centroptiloides and Platycloeon had rigid gills. No gill movements were observed in any species of Baetis s.l. No structural features of the gills appeard to be correlated with this behaviour. Gill movement is seen as an adaptation by Afroptilum to lower current speeds. Mobility of the gills is thought to be the plesiomorphic state. INTRODUCTION the vicinity of the research station of Amani. It lies at an altitude of 600-900 m and is fed by a number of streams draining the forested slopes of the surrounding hills. It had KLuGE et al. (1984) were the first to note that in the advantage that intermittent studies of the mayfly fauna the family Baetidae gill vibration is confined to have been made in the past so that the identity of most taxa the subfamily Cloeninae (referred to here as the could be firmly established. The availability of laboratory Cloeon-group of genera). They concluded it had facilities was also a great help. The study was limited to a tree-week period during the months of November and been lost in the subfamily Baetinae (Baetis­ December, 1993. group of genera). In a later paper, NovrKovA & The essential observations were made at the riverside. I KLUGE ( 1987) remarked that Baetis was sharply collected nymphs with a sweep net and transferred them differentiated from all members of the Cloeon­ directly from the holding pan into individual dishes for group genera in which gills are developed as a study under a portable stereomicroscope at a magnification of 20 diameters.
    [Show full text]
  • Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Reply to Sun Et Al
    Utah Valley University From the SelectedWorks of T. Heath Ogden 2008 Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) are not monophyletic based on 18S rDNA sequences: A Reply to Sun et al. (2006) T. Heath Ogden, Utah Valley University Available at: https://works.bepress.com/heath_ogden/9/ LETTERS TO THE EDITOR Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S rDNA Sequences: A Response to Sun et al. (2006) 1 2 3 T. HEATH OGDEN, MICHEL SARTORI, AND MICHAEL F. WHITING Sun et al. (2006) recently published an analysis of able on GenBank October 2003. However, they chose phylogenetic relationships of the major lineages of not to include 34 other mayßy 18S rDNA sequences mayßies (Ephemeroptera). Their study used partial that were available 18 mo before submission of their 18S rDNA sequences (Ϸ583 nucleotides), which were manuscript (sequences available October 2003; their analyzed via parsimony to obtain a molecular phylo- manuscript was submitted 1 March 2005). If the au- genetic hypothesis. Their study included 23 mayßy thors had included these additional taxa, they would species, representing 20 families. They aligned the have increased their generic and familial level sam- DNA sequences via default settings in Clustal and pling to include lineages such as Leptohyphidae, Pota- reconstructed a tree by using parsimony in PAUP*. manthidae, Behningiidae, Neoephemeridae, Epheme- However, this tree was not presented in the article, rellidae, and Euthyplociidae. Additionally, there were nor have they made the topology or alignment avail- 194 sequences available (as of 1 March 2005) for other able despite multiple requests. This molecular tree molecular markers, aside from 18S, that could have was compared with previous hypotheses based on been used to investigate higher level relationships.
    [Show full text]
  • “Two-Tailed” Baetidae of Ohio January 2013
    Ohio EPA Larval Key for the “two-tailed” Baetidae of Ohio January 2013 Larval Key for the “two-tailed” Baetidae of Ohio For additional keys and descriptions see: Ide (1937), Provonsha and McCafferty (1982), McCafferty and Waltz (1990), Lugo-Ortiz and McCafferty (1998), McCafferty and Waltz (1998), Wiersema (2000), McCafferty et al. (2005) and McCafferty et al. (2009). 1. Forecoxae with filamentous gill (may be very small), gills usually with dark clouding, cerci without dark band near middle, claws with a smaller second row of teeth. .............................. ............................................................................................................... Heterocloeon (H.) sp. (Two species, H. curiosum (McDunnough) and H. frivolum (McDunnough), are reported from Ohio, however, the larger hind wing pads used by Morihara and McCafferty (1979) to distinguish H. frivolum have not been verified by OEPA.) Figures from Ide, 1937. Figures from Müller-Liebenau, 1974. 1'. Forecoxae without filamentous gill, other characters variable. .............................................. 2 2. Cerci with alternating pale and dark bands down its entire length, body dorsoventrally flattened, gills with a dark clouded area, hind wing pads greatly reduced. ............................... ......................................................................................... Acentrella parvula (McDunnough) Figure from Ide, 1937. Figure from Wiersema, 2000. 2'. Cerci without alternating pale and dark bands, other characters variable. ............................
    [Show full text]
  • Notes on Italian Heptageniidae (Ephemeroptera). Rhithrogena Fiorii Grandi, 1953 and R
    Aquatic Insects, Vol. 5 (1983), No. 2, pp. 69-76. Notes on Italian Heptageniidae (Ephemeroptera). Rhithrogena fiorii Grandi, 1953 and R. adrianae sp. n. by Carlo BELFIORE (Roma) ABSTRACT Rhithrogena adrianae, a new species related to R. diaphana Nav., is described from nymphs and male imagines collected in Central Italy. Taxonomic characters of nymphs and males of R. fiorii Grandi, whose nymphal stage was previously unknown, are also described and figured. Lectotype is designated for R. fiorii. The taxonomic status of Rhithrogena fiorii Grandi, 1953, described from winged stages only, was till now very uncertain. The type locality, near Bologna, is now altered by buildings and factories: R. fiorii has probably disappeared from that site. I have examined in Grandi's collection the specimens referred by her to R. fiorii, labelled: "Bologna, S. Luca, 16.III.1952 (l >, l < subim.), 20.III.1954 (l <, l > subim, l < subim.), 20.11.1955 (1 > subim.), 17.III.1955 (l <), .IV. 1955 (l >).I designate lectotype the male imago collected on 16.III. 1952. None of the spe- cimens is in a good state of preservation. Titillators are not truncate (Grandi, 1960: fig. 21,6 and pag. 91), but with few pointed lobes at the apex. During the first months of 1980 and 1981, in the river Mignone, near Rome, I collected and reared a hundred nymphs of Rhithrogena, from which I obtained some subimagines and two male imagines, easily referable to R. fiorii. I describe herein the taxonomic features of nymphs and males of this species. I also describe the male imago and nymph of a new species of Rhithrogena which lives in the same localities as R.
    [Show full text]
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 37, 2019
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Nemoura cinerea (Retzius, 1783) (Nemouridae): Slovenia, near Planina, cave entrance to Ucina River, 15 June 2008. Photograph by Bill P. Stark PERLA NO. 37, 2019 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Zoología Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 1 TABLE OF CONTENTS Subscription policy... ............................................................................................................ 3 The XVth International Conference on Ephemeroptera and XIXth International Symposium on Plecoptera .............................................................................................................................
    [Show full text]
  • The Effects of Environmental Integrity on the Diversity of Mayflies, Leptophlebiidae \(Ephemeroptera\), in Tropical Streams of T
    Ann. Limnol. - Int. J. Lim. 50 (2014) 325–334 Available online at: Ó EDP Sciences, 2014 www.limnology-journal.org DOI: 10.1051/limn/2014026 The effects of environmental integrity on the diversity of mayflies, Leptophlebiidae (Ephemeroptera), in tropical streams of the Brazilian Cerrado Leandro S. Brasil1*, Leandro Juen2 and Helena S. R. Cabette1 1 Programa de Po´s Graduac¸a˜ o em Ecologia e Conservac¸a˜ o – Universidade do Estado de Mato Grosso (UNEMAT) – Br 158, Km 655 – Cep. 78690-000 Caixa postal 08, Nova Xavantina, MT, USA 2 Laborato´rio de Ecologia e Conservac¸a˜ o, Instituto de Cieˆ ncias Biolo´gicas – Universidade Federal do Para´(UFPA) – Rua Augusto Correia, no 1, Bairro Guama´, Cep 66075-110, Bele´m, PA, USA Received 9 July 2014; Accepted 9 October 2014 Abstract – Aquatic insects are widely distributed, and are especially diverse and abundant in tropical streams, where they play an important role in the food chain due to their diversity of feeding strategies, and the potential for the transfer of energy between aquatic and terrestrial environments. The intimate relation- ship found between these insects and environmental variables means that they are often used as bioindicatorss in environmental studies. We tested the hypothesis that the loss of environmental integrity in tropical streams will lead to a loss of species and a decline in the abundance of mayflies (Leptophlebiidae), in addition to a change in species composition, and the dynamics of population. Collect immature leptophlebiids in 18 streams representing different degrees of conservation, in the Brazilian Cerrado. The environmental integrity of the sites was assessed using a Habitat Integrity Index (HII), which generates values of zero (degraded) to one (preserved), based on soil use, the extension and conservation of riparian forest, as well as morphological features of the stream.
    [Show full text]
  • A Reclassification of Siphlonuroidea (Ephemeroptera)
    MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIETE ENTOMOLOGIQUE SUISSE 68, 103 - 132, 1995 A reclassification of Siphlonuroidea (Ephemeroptera) N. J. KLUGE1, D. STUDEMANN2*, P. LANDOLT2* & T. GONSER3 'Department of Entomology, St. Petersburg State University, St. Petersburg 199034, Ru ssia 2Department of Entomology, Institute of Zoology, Perolles, CH-1700 Fribourg, Switzerland 3Limnological Research Center, EA WAG, CH-6047 Kastani enbaum, Switzerland The superfamily Siphonuroidea is proposed, its phylogenetic position discussed and definitive char­ acteristics are presented for all the families contained. New characters of the thorax, the female gen­ italia, and the egg chorion are used. The Siphlonuroidea consist of a Northern Hemisphere group of families (Siphlonuridae s. str., Dipteromimidae, Ameletidae, Metretopodidae, Acanthametropodidae and Ametropodidae) and a Southern Hemisphere group of families (Oniscigastridae, Nesameletidae, Rallidentidae, and Ameletopsidae). The family Dipteromimidae and the subfamily Parameletinae are established. The synonymy of lsonychia polita and Acanthametropus nikolskyi is documented. Fossil Siphlonuroidea of uncertain family status are included. The rel ation ships between the families are di s­ cussed. Key words: eggs. Ephemeroptera, morphology, phylogeny, Siphlonuridae, Siphlonuroidea, systematics. INTRODUCTION The taxonomy and the phylogeny of Siphlonuroidea or Siphlonuridae sensu Lato are subject to different opinions. The authors that have worked on the rank and composition of this taxon (EDMUNDS, 1972; MCCAFFERTY & EDMUNDS, 1979; LANDA & SOLDAN, 1985; M CCAFFERTY, 1991; TOMKA & ELPERS, 1991; KLUGE, in press, and others) have used the taxon Siphlonuridae in different senses. These dif­ ferences are based on (1) the importance attached to adult versus larval characters, (2) the interpretation of characters as being synapomorphic or symplesiomorphic, (3) the paraphyletic nature of the group, and ( 4) inadequate diagnoses of many tax a.
    [Show full text]
  • The Imaginal Characters of Neoephemera Projecta Showing Its Plesiomorphic Position and a New Genus Status in the Family (Ephemeroptera: Neoephemeridae)
    insects Article The Imaginal Characters of Neoephemera projecta Showing Its Plesiomorphic Position and a New Genus Status in the Family (Ephemeroptera: Neoephemeridae) Zhenxing Ma and Changfa Zhou * College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; [email protected] * Correspondence: [email protected]; Tel.: +86-139-5174-7595 Simple Summary: The phylogenetically problematic Neoephemeridae is a small family of the order Ephemeroptera, including four genera reported previously. They are genera Neoephemera (in Nearctic region), Ochernova (Central Asia), Leucorhoenanthus (West Palearctic) and Potamanthellus (East Palearctic and Oriental regions), which were geographically isolated until the Neoephemera projecta Zhou and Zheng, a species reported in 2001 from Southwestern China, connected them together. In this work, the imaginal stage and biology of Neoephemera projecta are first observed and described. Furthermore, a series of autapomorphies and plesiomorphies of it are recognized and discussed. Morphologically and biologically, this species is significantly different from other genera and deserves a new plesiomorphic position in the Family Neoephemeridae. Therefore, a new genus Pulchephemera gen. n. is established to reflect its primitive position and intermediate characters of two clades of the family. In addition, some shared characters of this new genus and the family Ephemeridae provide a new perspective or possibility on the phylogeny of Neoephemeridae within Citation: Ma, Z.; Zhou, C. The the order Ephemeroptera. Imaginal Characters of Neoephemera projecta Showing Its Plesiomorphic Abstract: The newly collected imaginal materials of the species Neoephemera projecta Zhou and Zheng, Position and a New Genus Status in the Family (Ephemeroptera: 2001 from Southwestern China, which is linking the other genera of the family Neoephemeridae, Neoephemeridae).
    [Show full text]
  • The Mayfly Newsletter: Vol
    Volume 20 | Issue 2 Article 1 1-9-2018 The aM yfly Newsletter Donna J. Giberson The Permanent Committee of the International Conferences on Ephemeroptera, [email protected] Follow this and additional works at: https://dc.swosu.edu/mayfly Part of the Biology Commons, Entomology Commons, Systems Biology Commons, and the Zoology Commons Recommended Citation Giberson, Donna J. (2018) "The aM yfly eN wsletter," The Mayfly Newsletter: Vol. 20 : Iss. 2 , Article 1. Available at: https://dc.swosu.edu/mayfly/vol20/iss2/1 This Article is brought to you for free and open access by the Newsletters at SWOSU Digital Commons. It has been accepted for inclusion in The Mayfly eN wsletter by an authorized editor of SWOSU Digital Commons. An ADA compliant document is available upon request. For more information, please contact [email protected]. The Mayfly Newsletter Vol. 20(2) Winter 2017 The Mayfly Newsletter is the official newsletter of the Permanent Committee of the International Conferences on Ephemeroptera In this issue Project Updates: Development of new phylo- Project Updates genetic markers..................1 A new study of Ephemeroptera Development of new phylogenetic markers to uncover island in North West Algeria...........3 colonization histories by mayflies Sereina Rutschmann1, Harald Detering1 & Michael T. Monaghan2,3 Quest for a western mayfly to culture...............................4 1Department of Biochemistry, Genetics and Immunology, University of Vigo, Spain 2Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany 3 Joint International Conf. Berlin Center for Genomics in Biodiversity Research, Berlin, Germany Items for the silent auction at Email: [email protected]; [email protected]; [email protected] the Aracruz meeting (to sup- port the scholarship fund).....6 The diversification of evolutionary young species (<20 million years) is often poorly under- stood because standard molecular markers may not accurately reconstruct their evolutionary How to donate to the histories.
    [Show full text]
  • Phylogeny of the Mayfly Family Leptohyphidae (Insecta: Ephemeroptera) in South America
    Systematic Entomology (2006), 31, 711–728 DOI: 10.1111/j.1365-3113.2006.00357.x Phylogeny of the mayfly family Leptohyphidae (Insecta: Ephemeroptera) in South America CARLOS MOLINERI INSUE-CONICET, Facultad de Ciencias Naturales e IML, M. Lillo 205, San Miguel de Tucuma´n, 4000 Tucuma´n, Argentina Abstract. A cladistic analysis of the South American members of the Ephemer- opteran family Leptohyphidae is presented. A matrix of 73 taxa and 124 morphological characters was analysed under two distinct weighting criteria (implied weighting, which weights characters as a whole, and self-weighted optimization, which differentially weights character state transformations). To assess the monophyly of the Leptohyphidae, representatives of Ephemerellidae, Ephemerythidae, Machadorythidae, Teloganodidae, Tricorythidae, Coryphoridae and Melanemerellidae were also included. Trees were rooted in Ephemerellidae. Conspicuous differences in consensus topology occur when transformation costs among character states are weighted (including asymmetries). The differences in the assessments of character reliability in the two weighting criteria used are discussed. In many cases, self-weighting, in allowing for asymmetries in trans- formation costs, considered many of the character state transformations as more reliable (¼ informative) than implied weights (which needlessly down-weighted the whole character). The results confirm the monophyly of Leptohyphidae and support its sister-group relationship with Coryphoridae. The shortest trees do not support the recently proposed division of Leptohyphidae into two subfamilies. Ephemerelloidea higher classification is discussed briefly. Introduction 12 genera: Allenhyphes Hofmann and Sartori, Amanahyphes Salles & Molineri, Haplohyphes Allen, Leptohyphes Eaton, Mayflies (Ephemeroptera) are considered one of the oldest Leptohyphodes Ulmer, Lumahyphes Molineri, Macunahy- insect orders, with the earliest fossils coming from the Upper phes Dias, Salles & Molineri, Traverhyphes Molineri, Tricor- Carboniferous (Hubbard, 1990).
    [Show full text]