The Origin and Evolution of Planetary Nebulae

Total Page:16

File Type:pdf, Size:1020Kb

The Origin and Evolution of Planetary Nebulae P1: MRM/SPH P2: MRM/UKS QC: MRM/UKS T1: MRM CB211-FM CB211/Kwok October 30, 1999 1:26 Char Count= 0 THE ORIGIN AND EVOLUTION OF PLANETARY NEBULAE SUN KWOK University of Calgary, Canada iii P1: MRM/SPH P2: MRM/UKS QC: MRM/UKS T1: MRM CB211-FM CB211/Kwok October 30, 1999 1:26 Char Count= 0 PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain c Cambridge University Press 2000 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2000 Printed in the United States of America Typeface Times Roman 10.5/12.5 pt. and Gill Sans System LATEX2ε [TB] A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication Data Kwok, S. (Sun) The origin and evolution of planetary nebulae / Sun Kwok. p. cm. – (Cambridge astrophysics series : 33) ISBN 0-521-62313-8 (hc.) 1. Planetary nebulae. I. Title. II. Series. QB855.5.K96 1999 523.10135 – dc21 99-21392 CIP ISBN 0 521 62313 8 hardback iv P1: MRM/SPH P2: MRM/UKS QC: MRM/UKS T1: MRM CB211-FM CB211/Kwok October 30, 1999 1:26 Char Count= 0 Contents Preface page xiii 1 History and overview 1 1.1 Planetary nebulae as a phase of stellar evolution 2 1.2 Discovery and identification 3 1.3 Confusion with other galactic objects 4 1.4 Plantary nebulae as a physics laboratory 7 2 Ionization structure of planetary nebulae 9 2.1 Photoionization 9 2.2 Recombination 13 2.3 Ionization structure of a static nebula 16 2.4 Ionization of complex atoms 17 2.5 Dielectric recombination 18 2.6 Charge-exchange reactions 19 3 Nebular line radiation 20 3.1 Permitted and forbidden transitions 20 3.2 Absorption and emission 24 3.3 Thermodynamic equilibrium versus steady state 27 3.4 Recombination lines 28 3.5 Collisionally excited lines 32 3.6 Determination of nebular density and temperature by diagnostic diagrams 36 3.7 Resonance fluorescence for OIII 37 3.8 Forbidden lines of less-abundant elements 37 3.9 Determination of the rest wavelengths of forbidden lines 38 3.10 Optical spectroscopic surveys of PN 39 4 Nebular continuum radiation 40 4.1 Free-bound continuum radiation 40 4.2 Two-photon radiation 41 4.3 Free-free continuum emission 44 vii P1: MRM/SPH P2: MRM/UKS QC: MRM/UKS T1: MRM CB211-FM CB211/Kwok October 30, 1999 1:26 Char Count= 0 viii Contents 4.4 Radio observations of planetary nebulae 47 4.5 Determination of the nebular mass 50 5 The neutral gas component 53 5.1 Physics of diatomic molecules 53 5.2 Rotational transitions 54 5.3 Molecular line profile in an expanding envelope 57 5.4 CO in planetary nebulae 60 5.5 Molecular gas distribution in PN 60 5.6 OH in planetary nebulae 60 5.7 Molecular hydrogen emission 61 5.8 Emission from neutral atoms 64 5.9 Circumstellar chemistry 65 6 The dust component 67 6.1 Dust absorption and emission 67 6.2 Dust continuum emission from planetary nebulae 70 6.3 Dust features 70 6.4 Radiative coupling between the ionized, dust, and neutral gas components 72 6.5 Summary 74 7 Observations of the central star of planetary nebulae 75 7.1 Determination of the temperature of the central star 75 7.2 Spectral classification of the central stars 79 7.3 PG 1159 stars 82 7.4 Model atmospheres 82 7.5 Winds from the central star 83 7.6 Extreme UV and X-ray emission from CSPN 86 7.7 PN with binary central stars 86 7.8 Summary 87 8 Morphologies of planetary nebulae 89 8.1 Morphological classifications 89 8.2 Relationship between nebular morphology and central-star evolution 91 8.3 Optical imaging techniques 92 8.4 Halos around planetary nebulae 94 8.5 Microstructures 94 8.6 Origin of PN morphology 96 9 Problems and questions 101 10 Asymptotic giant branch stars – progenitors of planetary nebulae 103 10.1 Structure of AGB stars 104 10.2 Photospheric composition of AGB stars 105 P1: MRM/SPH P2: MRM/UKS QC: MRM/UKS T1: MRM CB211-FM CB211/Kwok October 30, 1999 1:26 Char Count= 0 Contents ix 10.3 Pulsation on the AGB 106 10.4 Mass loss on the AGB 106 10.5 Mechanisms of mass loss on the AGB 110 10.6 AGB evolution with mass loss 112 10.7 Initial mass–final mass relationship 113 10.8 Summary 115 11 Evolution of the central stars 116 11.1 The modern era 117 11.2 Evolutionary models with mass loss and thermal pulses 118 11.3 On the existence of PN 120 11.4 Helium-burning central stars 121 11.5 Discrepancy between the dynamical and evolutionary ages 122 11.6 Summary 123 12 Formation of planetary nebulae 124 12.1 Effects of AGB mass loss on the formation of planetary nebulae 125 12.2 The interacting stellar winds model 125 12.3 Transition from the momentum-conserving case to the energy-conserving case 130 12.4 Observational confirmations of the ISW model 131 12.5 Summary 131 13 Dynamical evolution of planetary nebulae 134 13.1 Variability of the central-star wind 135 13.2 Nebular acceleration 137 13.3 Time-dependent ionization structure 137 13.4 Heating and cooling 139 13.5 Expansion velocity of PN 140 13.6 The three-wind model 140 13.7 Derivation of nebular properties from dynamical models 141 13.8 Evolution of the dust component 144 13.9 Shaping of planetary nebulae 145 13.10 Asymmetric ionization structure of PN 148 13.11 Summary 149 14 Protoplanetary nebulae – the transition objects 151 14.1 Early PPN candidates 152 14.2 The Search for PPN 153 14.3 Optical properties of PPN 157 14.4 Infrared properties of PPN 158 14.5 Circumstellar molecular emissions 163 14.6 The beginning of photoionization 164 14.7 Morphologies of PPN 165 14.8 Summary 165 P1: MRM/SPH P2: MRM/UKS QC: MRM/UKS T1: MRM CB211-FM CB211/Kwok October 30, 1999 1:26 Char Count= 0 x Contents 15 Evolution to the white dwarf stage 167 15.1 Structure of white dwarfs 168 15.2 Cooling of white dwarfs 170 15.3 Envelope chemical composition 171 15.4 Subluminous O stars 171 15.5 Transition objects between PN central stars and WDs 171 15.6 Luminosity function of white dwarfs 172 15.7 Mass distribution 173 15.8 White dwarfs in external galaxies 173 15.9 White dwarfs as contributors to dark matter 175 15.10 Birth rate of white dwarfs 175 15.11 Summary 176 16 Distances to planetary nebulae 177 16.1 Statistical distances 177 16.2 Other methods of distance determination 181 16.3 Summary 184 17 Comparison between evolutionary models and observations 185 17.1 Are PN ionization bounded? 185 17.2 PN with reliable distances 186 17.3 Test of PN evolutionary models by distance-independent parameters 186 17.4 Mass distribution of CSPN 188 17.5 Asteroseismology of CSPN 188 17.6 Summary 189 18 PN in the galactic context 190 18.1 Formation rate of PN in the Galaxy 191 18.2 The death rate of main-sequence stars 191 18.3 Effects of metallicity on the formation of planetary nebulae 193 18.4 Nearby PN 194 18.5 PN in the galactic bulge 194 18.6 PN in the galactic halo 195 18.7 Galactic distribution of PN with different core masses 195 18.8 Mass returned to the Galaxy 196 18.9 Contribution by post-AGB stars to the ultraviolet excess in galaxies 196 18.10 Summary 198 19 Chemical abundances 199 19.1 Chemical abundances in planetary nebulae 199 19.2 Isotopic abundances 200 19.3 PN abundances in different galactic systems 201 19.4 The relation between chemical abundances and core masses 204 19.5 Chemical abundances in post-AGB stars 206 19.6 Summary 207 P1: MRM/SPH P2: MRM/UKS QC: MRM/UKS T1: MRM CB211-FM CB211/Kwok October 30, 1999 1:26 Char Count= 0 Contents xi 20 Planetary nebulae in other galaxies 208 20.1 Planetary nebulae in the Magellanic Clouds 208 20.2 Galactic evolution 209 20.3 Planetary nebulae as distance indicators 209 20.4 Planetary nebulae as tracers of dark matter 216 21 Concluding remarks 221 References 223 Appendix 1 List of symbols and abbreviations 237 Appendix 2 Subject index 241 P1: MRM/SPH P2: MRM/UKS QC: MRM/UKS T1: MRM CB211-01 October 6, 1999 21:34 Char Count= 0 1 History and overview The first planetary nebula was observed by Charles Messier in 1764 and was given the number 27 in his catalog of nebulous objects. The final version of the Messier catalog of 1784 included four planetary nebulae (PN) together with other nonstarlike objects such as galaxies and star clusters. The name planetary nebulae was given by William Herschel, who found that their appearances resembled the greenish disk of a planet.
Recommended publications
  • Experiencing Hubble
    PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster.
    [Show full text]
  • President's Message
    Journal of the Northern Sydney Astronomical Society Inc. February 2019 In this issue President’s Message Page 1: President’s message Editorial i everyone. Object of the Month as it had been an idea Page 2: Results of the Photo HWhat a magnificent summer! waiting for someone to bring it to life for Competition It seems ages since the lovely summer days some time. Page 5: Results of the Article have landed on our holiday period in such This past two months’ contributions have Competition a comprehensive way. It has been a great been interesting and seen some wonderful Page 7: The Jupiter/Venus Conjunction holiday period for me and I hope you have images come to life. all had such a great time as I have had. It showcases the skills that some of our The last month’s images and videos I am equally pleased to see the Reflections members have and a big congratulation to of Wirtanen 46P comet, along with magazine has had a resurgence and I Kym Haines, the winner for this month, this month’s incredible photo of M42 encourage everyone to take an interest in Phil Angilley and Daniel Patos, the runner- exemplify the talents that can be found it. ups, for their excellent work. amongst our club members. We are expanding the source of A quick shout out to some upcoming contributions for the magazine with the Kym’s M42 photo as seen on page 2 is events. inclusion of the Object of the Month and magnificent and the colours and framing In April we will be running our New other items of interest to our community.
    [Show full text]
  • The Discovery of Oxygen in the Universe
    ! ! ! The discovery of oxygen in the Universe The discovery of oxygen! ! Carl Scheele (1742-1786) ! is the first (1773;1777)! to isolate oxygen! Georg Ernst Stahl ! by heating HgO he found ! (1659-1734)! that it released a gas ! the father of the ! which enhanced combustion. ! phlogiston theory. ! ! phlogiston is the fire! Joseph Priestley (1733-1804)! that escapes from matter ! was the first (1774)! when it burns! to publish this result! (which he interpreted within ! the phlogiston theory)! Antoine de Lavoisier (1743-1794) ! discovered that air contains about 20 % oxygen ! and that when any substance burns,! it actually combines chemically with oxygen (1775) ! he gave oxygen its present name (oxy-gen = acid-forming)! he stated the law of the conservation of matter! ! Before the “discovery” of oxygen! Leonardo da Vinci (1452-1519) ! •" air is a mixture of gases! •" breathing ~ combustion! "Where flame cannot live no animal that draw breath can live." ! Michael Sendivogius (1566-1636) ! (Micha" S#dziwój) ! produced a gas he called ! “food of life” ! by heating saltpeter (KNO3) ! ! Cornelius Drebbel (1572-1633)! constructed in 1621 the first submarine . ! To “refresh” the air inside it, he generated oxygen by heating saltpeter as Sendivogius had tought him! “chemistry” before Lavoisier! ! Anaxagoras of Clazomenes (500 BC - 428 BC)! had already expressed “the law of Lavoisier”: ! “Rien ne se perd, rien ne se crée, tout se transforme“! ! ! ! ! Robert Boyle (1627- 1691)! •" noted that it was impossible to combine ! the four Greek elements to form
    [Show full text]
  • THE ORION NEBULA and ITS ASSOCIATED POPULATION C. R. O'dell
    27 Jul 2001 11:9 AR AR137B-04.tex AR137B-04.SGM ARv2(2001/05/10) P1: FRK Annu. Rev. Astron. Astrophys. 2001. 39:99–136 Copyright c 2001 by Annual Reviews. All rights reserved THE ORION NEBULA AND ITS ASSOCIATED POPULATION C. R. O’Dell Department of Physics and Astronomy, Box 1807-B, Vanderbilt University, Nashville, Tennessee 37235; e-mail: [email protected] Key Words gaseous nebulae, star formation, stellar evolution, protoplanetary disks ■ Abstract The Orion Nebula (M 42) is one of the best studied objects in the sky. The advent of multi-wavelength investigations and quantitative high resolution imaging has produced a rapid improvement in our knowledge of what is widely considered the prototype H II region and young galactic cluster. Perhaps uniquely among this class of object, we have a good three dimensional picture of the nebula, which is a thin blister of ionized gas on the front of a giant molecular cloud, and the extremely dense associated cluster. The same processes that produce the nebula also render visible the circumstellar material surrounding many of the pre–main sequence low mass stars, while other circumstellar clouds are seen in silhouette against the nebula. The process of photoevaporation of ionized gas not only determines the structure of the nebula that we see, but is also destroying the circumstellar clouds, presenting a fundamental conundrum about why these clouds still exist. 1. INTRODUCTION Although M 42 is not the largest, most luminous, nor highest surface brightness H II region, it is the H II region that we know the most about.
    [Show full text]
  • Atomic Processes and the Interstellar Medium Some Typical Condi{Ons
    22/04/2016 Astrophysics seminars Usually Monday aernoons, Atomic Processes and the 2pm: Interstellar Medium Today: Dr. S.-J. Paardekooper, Queen Mary Extrac<ng quan<tave measurements University of London Migraon of Rocks, Planets from astronomical observaons and Hurricanes in Patrick Roche Protoplanetary Discs But note that the Hintze Lecture is on Tuesday May 10 and the Halley Lecture on Wednesday June 8 at 5pm Synopsis • Astronomical spectroscopy, lines in different spectral regions, recap of Some typical condi<ons atomic physics and selec<on rules, forbidden and allowed transi<ons, cosmic abundances • The two level atom, A, B and C coefficients and their useful regimes, • 90% H atoms, ~9% He, ~1% everything else (by number) thermal populaons, IR fine structure lines, cri<cal density, mass • Stellar surface temperatures 2000 <T< 40000 K es<mates Densi<es ~ few gram/m3 for main sequence stars • Recombinaon and ionizaon processes, the Stromgren sphere, • Ionized nebulae e.g. HII regions, planetary nebulae ionizaon balance, effec<ve temperature es<mates. – T(electron) ~ 10000K, • The 3 level atom: diagnos<cs of electron temperature and electron 6 12 -3 density. – n(electron)~ N(proton) 10 - 10 m • Absorp<on lines, equivalent width and the curve of growth. Column – T(dust) ~ 50K densi<es and abundances • Cold and denser molecular clouds (T<< 100 K) • The interstellar medium. Atomic and ionic absorp<on lines, abundance • Hot and lower-density plasmas - e.g. shock heated gas, of gas, molecules and dust. Hyperfine transi<ons: 21cm line of H, T~106K, n<100 Galac<c structure • 4 • Interstellar ex<nc<on, dust components, thermal emission, equilibrium Veloci<es: cold ISM 1km/s - SN ouhlows 10 km/s and stochas<c processes • Overall density of the Universe is ~ 10 orders of magnitude lower • The sun.
    [Show full text]
  • Quantum Field Theory and the Helium Atom: 101 Years Later
    QUANTUM FIELD THEORY AND THE HELIUM ATOM: 101 YEARS LATER ∗ J. SUCHER Department of Physics, University of Maryland College Park, MD 20742, U.S.A. October 6, 2018 Abstract Helium was first isolated on Earth in 1895, by Sir William Ramsey. One hundred and one years later, it seems like a good time to review our current theoretical understanding of the helium atom. Helium has played an important role both in the development of quantum mechanics and in quantum field theory. The early history of helium is sketched. Various aspects of the modern theory are described in some detail, including (1) the computation of fine structure to order α2Ry and α3Ry, (2) the decay of metastable states, and (3) Rydberg states and long-range forces. A brief survey is made of some of the recent arXiv:hep-ph/9612330v1 11 Dec 1996 work on the quantum field theory of He and He-like ions. ∗Invited talk: “Quantum Systems: New Trends and Methods”, Minsk, June 3-7, 1996 1 1 Introduction The title of my talk is inspired by that of a famous novel by Gabriel Garcia Marqu´ez: “100 years of solitude.” Helium, whose existence was not even suspected till the middle of the 19th century, has experienced exactly 101 years of attention since its terrestrial discovery in 1895. It has played a major role in the development of atomic, nuclear, and condensed matter physics. The helium atom, and its cousins, the He-like ions, continue to be a subject of active study. It has played an important role, second only to hydrogen, both in the development of quantum mechanics and that of quantum field theory (QFT).
    [Show full text]
  • Physics and Chemistry of Gas in Planetary Nebulae
    RIJKSUNIVERSITEIT GRONINGEN Physics and Chemistry of Gas in Planetary Nebulae PROEFSCHRIFT ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op dinsdag 30 september 2003 om 13.15 uur door Jeronimo´ Bernard Salas geboren op 4 september 1975 te Cordoba,´ Spanje Promotor: Prof. dr. A.G.G.M. Tielens Co-promotor: Dr. P.R. Wesselius Beoordelingscommissie: Prof. dr. M.J. Barlow Prof. dr. L.B.F.M. Waters Prof. dr. J.M. van der Hulst ISBN-nummer: 90-367-1896-1 To my parents Cover Image: Planetary Nebula M 57, also known as the Ring Nebula. Image credit: Hubble Heritage Team (AURA/STScI/NASA). Back-cover Image: Planetary Nebula MyCn18, an Hourglass Nebula. Image credit: Raghven- dra Sahai and John Truger (JPL), the WFPC2 science team and NASA. Contents 1 Introduction 1 1.1 Evolution of low and intermediate mass stars : : : : : : : : : : : : : : : : 2 1.1.1 From the cradle to the grave : : : : : : : : : : : : : : : : : : : : : 2 1.1.2 Nucleosynthesis : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.1.3 Mixing episodes during the evolution : : : : : : : : : : : : : : : : 3 1.2 Planetary Nebulae : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.2.1 PNe and the chemical enrichment of the ISM : : : : : : : : : : : : 4 1.2.2 Importance of PNe : : : : : : : : : : : : : : : : : : : : : : : : : 5 1.2.3 Neutral material around PNe : : : : : : : : : : : : : : : : : : : : 5 1.2.4 PNe in a general context
    [Show full text]
  • The Dark Secrets of Gaseous Nebulae--Highlights from Deep
    The dark secrets of gaseous nebulae { highlights from deep spectroscopy Xiaowei Liu Professor of Astronomy Kavli Institute for Astronomy and Astrophysics, Peking University September 9, 2021 arXiv:1001.3715v2 [astro-ph.GA] 23 Feb 2010 Chapter 1 The dark secrets of gaseous nebulae 1.1 Emission line nebulae The existence and distribution of the chemical elements and their isotopes is a consequence of nuclear processes that have taken place in the past in the Big Bang and subsequently in stars and in the interstellar medium (ISM) where they are still ongoing (Pagel, 1997). A large body of our knowledge of the distribution and production of elements in the universe rests on observations and analyses of photoionized gaseous nebulae. Ionized and heated by strong ultraviolet (UV) radiation fields, photoionized gaseous nebulae glow by emitting strong emission lines (Osterbrock and Ferland, 2005). They are therefore also commonly named emission line nebulae. Examples of emission line nebulae include H ii regions, planetary nebulae (PNe) and the broad and narrow emission line regions found in active galactic nuclei (Fig. 1.1). H ii regions are diffuse nebulae found around newly formed young, massive stars and trace the current status of the ISM. Giant extragalactic H ii regions, sign posts of massive star formation activities, are amongst the most prominent features seen in a gas-rich, star-forming galaxy. In some galaxies, the star forming activities are so intense that the whole galaxy becomes a giant H ii region. Such galaxies are called H ii or starburst galaxies and are observable to 1 2 CHAPTER 1.
    [Show full text]
  • Astrophysics 3, Semester 1, 2011–12
    N I V E R U S E I T H Y T O H F G E R D I N B U Astrophysics 3, Semester 1, 2011–12 Physics of Nebulae (1): The ISM and HII regions Philip Best Room C21, Royal Observatory; [email protected] www.roe.ac.uk/∼pnb/teaching.html 1 An overview of the interstellar medium The interstellar medium (ISM) is a component of great significance in astronomy. It is: (1) the birthplace of stars (2) the stellar graveyard – leading to ‘metal’ enrichment (Nebulae) (3) the dynamic arena of stars: HII regions, winds, supernova remnants (4) a significant part of Galaxy: Mgas ≃ 0.05MGalaxy Its major components are as follows (you’ll study these much more in Semester 2): 1. Neutral Hydrogen (H0 or HI regions). This is revealed by 21cm radiation. Neutral hydro- > 6 −3 gen constitutes ∼ 90% of total mass of ISM. It typically has T ≃ 80 K with nH ≃ 3×10 m , although denser clouds are colder (T ≃ 30 K). It is concentrated along the spiral arms of Galaxy. 2. Molecular Hydrogen (H2). H2 forms in the densest regions of HI clouds, where T ≃ 30 K 9 12 −3 and n(Htot) reaches 10 – 10 m . 3. HII Regions (H+). These are located around hot, blue stars (O & B). In these regions, 8 10 −3 5 −3 typical densities are ne ≃ 10 – 10 m near O stars, and ne ≃ 3 × 10 m near B stars and planetary nebulae. Temperatures are typically T ≃ 8000 K. HII regions contribute about 10% of the total mass of the ISM, and are concentrated along the Galaxy’s spiral arms.
    [Show full text]
  • Radiative Processes MT 2018 Lecture 2
    M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics Professor Garret Cotter [email protected] Office 756 in the DWB & Exeter College Radiative Processes • The EM spectrum in astrophysics; temperature and radiation brightness. • Radiative transfer, spectroscopy, forbidden and allowed transitions. • Two-level atom, A, B and C coefficients and their useful regimes, thermal populations, IR fine structure, critical density, mass estimates • Recombination and ionization, Stromgren sphere, ionization balance, effective temperature estimates. • Three-level atom: electron temperature and density. • Absorption lines, equivalent width, curve of growth, column densities. • The interstellar medium. Atomic and ionic absorption lines, abundance of gas, molecules and dust. Hyperfine transitions: 21cm line of HI • Interstellar extinction, dust, equilibrium and stochastic processes • The sun. Ionization and sources of opacity, radiative transfer, the Gray atmosphere, limb darkening, absorption line formation. Brightness and temperature Thought experiment: take two cavities of different size and shape, but both filled with black-body radiation at the same temperature T . Suppose there is an aper- ture between the cavities and that in this aperture there is a filter which transmits only through some narrow range of frequencies. T T Filter Recap from lecture 1: Brightness and temperature We know from the Zeroth Law that there is no heat transfer between box 1 and = box 2Brightness so I⌫,1 (specificI⌫,2 i.e. intensity) for black-body and tempe radiationrature areI⌫intimatelycan onlylin beked. a function The of T and ⌫. brightness of a black- body as a function of frequency is given by the Planck So brightnessfunction.
    [Show full text]
  • The Physics and Dynamics of Planetary Nebulae
    Grigor A. Gurzadyan The Physics and Dynamics of Planetary Nebulae With 125 Figures, 14 Plates and 93 Tables Springer Contents 1. Global Concepts 1 1.1 The Shapes of Planetary Nebulae 1 1.2 The Structure of Nebulae 2 1.3 Luminosity and the Nuclei 5 1.4 The Optical Spectrum 6 1.5 The Spectrum of Nuclei 10 1.6 Stratification of Radiation: Observations 12 1.7 Excitation Class 13 1.8 Classification of the Shapes 16 1.9 Expansion of Nebulae 19 1.10 The Apparent Distribution of Planetary Nebulae 21 1.11 Planetary Nebulae in Other Galaxies 23 1.12 Designations, Catalogues, Surveys 25 2. The Origin of Emission Lines 27 2.1 The Nature of Nebular Emission 27 2.2 Rosseland's Theorem 29 2.3 Fluorescence: Zanstra's Theory 30; 2.4 Excitation of Forbidden Lines 32 2.5 Accumulation of Atoms in Metastable Levels 37 2.6 The Role of Electron Collisions 40 2.7 The Deactivation Effect 42 2.8 Stratification of Radiation: The Phenomenon 43 2.9 Emission Lines of Neutral Atoms 44 2.10 The Chemical Composition of Planetary Nebulae 45 2.11 Continuous Absorption and Recombination Coefficients .... 47 3. Emission Lines of Hydrogen and Helium 53 3.1 The Intensities of Balmer Lines of Hydrogen 53 3.2 The Role of Collisions 62 3.3 Comparison with Observations 63 3.4 The Balmer Decrement: Observations 64 3.5 The Decrement Diagram 67 3.6 Planetary Nebulae on the Decrement Diagram 69 X Contents 3.7 The Self-absorption Effect 70 3.8 Helium Emission Lines 71 3.9 Recombination Lines of Hell in the Ultraviolet 74 3.10 The Optical Depth of Nebulae at the Frequency of Helium Ionization 75 4.
    [Show full text]
  • Biography of Ira Sprague Bowen
    NATIONAL ACADEMY OF SCIENCES I RA SPRAGUE BO W EN 1898—1973 A Biographical Memoir by H O R A C E B A BCOCK Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1982 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. IRA SPRAGUE BOWEN December 21, 1898-February 6, 1973 BY HORACE W. BABCOCK RA SPRAGUE BOWEN was one of the outstanding physicists I and astronomers of the twentieth century. He was gifted with exceptional physical insight and with a compelling con- cern for fundamentals from which he seldom permitted him- self to be diverted. As a pioneer in ultraviolet spectroscopy he discovered, with R. A. Millikan, evidence that led to the con- cept of electron spin in the vector model of the atom. He solved the long-standing mystery of the "nebulium" lines in the spectra of gaseous nebulae, showing that they were "for- bidden" lines of ordinary elements. He was a master of ap- plied optics who was responsible for successful completion of the 200-inch Hale Telescope and for many ingenious devices or optical systems that contributed enormously to mankind's observations of the universe. Bowen was director of the Mount Wilson and Palomar Observatories for eighteen years. Here he took the lead in developing a major organization for research and education while at the same time closely supervising details of observa- tory operations. On a wider scale, he accomplished much to broaden the opportunities for astronomers generally and to increase the number and efficiency of astronomical facilities.
    [Show full text]