Thickness and Temperature of Drifting Floes Johnston, M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wolf-Sightings on the Canadian Arctic Islands FRANK L
ARCTIC VOL. 48, NO.4 (DECEMBER 1995) P. 313–323 Wolf-Sightings on the Canadian Arctic Islands FRANK L. MILLER1 and FRANCES D. REINTJES1 (Received 6 April 1994; accepted in revised form 13 March 1995) ABSTRACT. A wolf-sighting questionnaire was sent to 201 arctic field researchers from many disciplines to solicit information on observations of wolves (Canis lupus spp.) made by field parties on Canadian Arctic Islands. Useable responses were obtained for 24 of the 25 years between 1967 and 1991. Respondents reported 373 observations, involving 1203 wolf-sightings. Of these, 688 wolves in 234 observations were judged to be different individuals; the remaining 515 wolf-sightings in 139 observations were believed to be repeated observations of 167 of those 688 wolves. The reported wolf-sightings were obtained from 1953 field-weeks spent on 18 of 36 Arctic Islands reported on: no wolves were seen on the other 18 islands during an additional 186 field-weeks. Airborne observers made 24% of all wolf-sightings, 266 wolves in 48 packs and 28 single wolves. Respondents reported seeing 572 different wolves in 118 separate packs and 116 single wolves. Pack sizes averaged 4.8 ± 0.28 SE and ranged from 2 to 15 wolves. Sixty-three wolf pups were seen in 16 packs, with a mean of 3.9 ± 2.24 SD and a range of 1–10 pups per pack. Most (81%) of the different wolves were seen on the Queen Elizabeth Islands. Respondents annually averaged 10.9 observations of wolves ·100 field-weeks-1 and saw on average 32.2 wolves·100 field-weeks-1· yr -1 between 1967 and 1991. -
Transits of the Northwest Passage to End of the 2020 Navigation Season Atlantic Ocean ↔ Arctic Ocean ↔ Pacific Ocean
TRANSITS OF THE NORTHWEST PASSAGE TO END OF THE 2020 NAVIGATION SEASON ATLANTIC OCEAN ↔ ARCTIC OCEAN ↔ PACIFIC OCEAN R. K. Headland and colleagues 7 April 2021 Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER. <[email protected]> The earliest traverse of the Northwest Passage was completed in 1853 starting in the Pacific Ocean to reach the Atlantic Oceam, but used sledges over the sea ice of the central part of Parry Channel. Subsequently the following 319 complete maritime transits of the Northwest Passage have been made to the end of the 2020 navigation season, before winter began and the passage froze. These transits proceed to or from the Atlantic Ocean (Labrador Sea) in or out of the eastern approaches to the Canadian Arctic archipelago (Lancaster Sound or Foxe Basin) then the western approaches (McClure Strait or Amundsen Gulf), across the Beaufort Sea and Chukchi Sea of the Arctic Ocean, through the Bering Strait, from or to the Bering Sea of the Pacific Ocean. The Arctic Circle is crossed near the beginning and the end of all transits except those to or from the central or northern coast of west Greenland. The routes and directions are indicated. Details of submarine transits are not included because only two have been reported (1960 USS Sea Dragon, Capt. George Peabody Steele, westbound on route 1 and 1962 USS Skate, Capt. Joseph Lawrence Skoog, eastbound on route 1). Seven routes have been used for transits of the Northwest Passage with some minor variations (for example through Pond Inlet and Navy Board Inlet) and two composite courses in summers when ice was minimal (marked ‘cp’). -
Thermodynamic and Dynamic Ice Thickness Contributions in the Canadian Arctic Archipelago in NEMO-LIM2 Numerical Simulations
The Cryosphere, 12, 1233–1247, 2018 https://doi.org/10.5194/tc-12-1233-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Thermodynamic and dynamic ice thickness contributions in the Canadian Arctic Archipelago in NEMO-LIM2 numerical simulations Xianmin Hu1,a, Jingfan Sun1,b, Ting On Chan1,c, and Paul G. Myers1 1Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Canada anow at: Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada bnow at: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA cnow at: Skytech Solutions Ltd., Canada Correspondence: Xianmin Hu ([email protected]) Received: 6 September 2017 – Discussion started: 10 October 2017 Revised: 16 March 2018 – Accepted: 19 March 2018 – Published: 10 April 2018 Abstract. Sea ice thickness evolution within the Canadian is found in the northern CAA and Baffin Bay while a de- Arctic Archipelago (CAA) is of great interest to science, as cline (r2 ≈ 0:6, p < 0:01) is simulated in Parry Channel re- well as local communities and their economy. In this study, gion. The two main contributors (thermodynamic growth and based on the NEMO numerical framework including the lateral transport) have high interannual variabilities which LIM2 sea ice module, simulations at both 1=4 and 1=12◦ hor- largely balance each other, so that maximum ice volume can izontal resolution were conducted from 2002 to 2016. The vary interannually by ±12 % in the northern CAA, ±15 % in model captures well the general spatial distribution of ice Parry Channel, and ±9 % in Baffin Bay. -
Canada's Sovereignty Over the Northwest Passage
Michigan Journal of International Law Volume 10 Issue 2 1989 Canada's Sovereignty Over the Northwest Passage Donat Pharand University of Ottawa Follow this and additional works at: https://repository.law.umich.edu/mjil Part of the International Law Commons, and the Law of the Sea Commons Recommended Citation Donat Pharand, Canada's Sovereignty Over the Northwest Passage, 10 MICH. J. INT'L L. 653 (1989). Available at: https://repository.law.umich.edu/mjil/vol10/iss2/10 This Article is brought to you for free and open access by the Michigan Journal of International Law at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Journal of International Law by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. CANADA'S SOVEREIGNTY OVER THE NORTHWEST PASSAGE Donat Pharand* In 1968, when this writer published "Innocent Passage in the Arc- tic,"' Canada had yet to assert its sovereignty over the Northwest Pas- sage. It has since done so by establishing, in 1985, straight baselines around the whole of its Arctic Archipelago. In August of that year, the U. S. Coast Guard vessel PolarSea made a transit of the North- west Passage on its voyage from Thule, Greenland, to the Chukchi Sea (see Route 1 on Figure 1). Having been notified of the impending transit, Canada informed the United States that it considered all the waters of the Canadian Arctic Archipelago as historic internal waters and that a request for authorization to transit the Northwest Passage would be necessary. -
Who Discovered the Northwest Passage? Janice Cavell1
ARCTIC VOL. 71, NO.3 (SEPTEMBER 2018) P.292 – 308 https://doi.org/10.14430/arctic4733 Who Discovered the Northwest Passage? Janice Cavell1 (Received 31 January 2018; accepted in revised form 1 May 2018) ABSTRACT. In 1855 a parliamentary committee concluded that Robert McClure deserved to be rewarded as the discoverer of a Northwest Passage. Since then, various writers have put forward rival claims on behalf of Sir John Franklin, John Rae, and Roald Amundsen. This article examines the process of 19th-century European exploration in the Arctic Archipelago, the definition of discovering a passage that prevailed at the time, and the arguments for and against the various contenders. It concludes that while no one explorer was “the” discoverer, McClure’s achievement deserves reconsideration. Key words: Northwest Passage; John Franklin; Robert McClure; John Rae; Roald Amundsen RÉSUMÉ. En 1855, un comité parlementaire a conclu que Robert McClure méritait de recevoir le titre de découvreur d’un passage du Nord-Ouest. Depuis lors, diverses personnes ont avancé des prétentions rivales à l’endroit de Sir John Franklin, de John Rae et de Roald Amundsen. Cet article se penche sur l’exploration européenne de l’archipel Arctique au XIXe siècle, sur la définition de la découverte d’un passage en vigueur à l’époque, de même que sur les arguments pour et contre les divers prétendants au titre. Nous concluons en affirmant que même si aucun des explorateurs n’a été « le » découvreur, les réalisations de Robert McClure méritent d’être considérées de nouveau. Mots clés : passage du Nord-Ouest; John Franklin; Robert McClure; John Rae; Roald Amundsen Traduit pour la revue Arctic par Nicole Giguère. -
Canadian Arctic Tide Measurement Techniques and Results
International Hydrographie Review, Monaco, LXIII (2), July 1986 CANADIAN ARCTIC TIDE MEASUREMENT TECHNIQUES AND RESULTS by B.J. TAIT, S.T. GRANT, D. St.-JACQUES and F. STEPHENSON (*) ABSTRACT About 10 years ago the Canadian Hydrographic Service recognized the need for a planned approach to completing tide and current surveys of the Canadian Arctic Archipelago in order to meet the requirements of marine shipping and construction industries as well as the needs of environmental studies related to resource development. Therefore, a program of tidal surveys was begun which has resulted in a data base of tidal records covering most of the Archipelago. In this paper the problems faced by tidal surveyors and others working in the harsh Arctic environment are described and the variety of equipment and techniques developed for short, medium and long-term deployments are reported. The tidal characteris tics throughout the Archipelago, determined primarily from these surveys, are briefly summarized. It was also recognized that there would be a need for real time tidal data by engineers, surveyors and mariners. Since the existing permanent tide gauges in the Arctic do not have this capability, a project was started in the early 1980’s to develop and construct a new permanent gauging system. The first of these gauges was constructed during the summer of 1985 and is described. INTRODUCTION The Canadian Arctic Archipelago shown in Figure 1 is a large group of islands north of the mainland of Canada bounded on the west by the Beaufort Sea, on the north by the Arctic Ocean and on the east by Davis Strait, Baffin Bay and Greenland and split through the middle by Parry Channel which constitutes most of the famous North West Passage. -
The Quest for the Northwest Passage, by James P. Delgado
REVIEWS • 323 learn the identity of what they have been reading up to that BRAY, E.F. de. 1992. A Frenchman in search of Franklin: De point. The document identified as HBCA E.37/3, which Bray’s Arctic journal, 1852–1854. Edited by William Barr. Barr, following Anderson, refers to as a full journal Toronto and Buffalo: University of Toronto Press. (p. 166, n.1), turns out to be what I would call Anderson’s PELLY, D. 1981. Expedition: An Arctic journey through history on field notes, written daily during the expedition. In con- George Back’s River. Toronto: Betelgeuse. trast, the document that Barr has referred to in footnotes as the “fair copy of Anderson’s journal” (HBCA B.200/a/ I.S. MacLaren 31), although based on those field notes, was written after Canadian Studies Program the expedition: it shows signs of revision and narrative Department of Political Science polish. Barr’s use of the term journal to refer to both University of Alberta documents is misleading, as it blurs that important distinc- Edmonton, Alberta, Canada tion. Furthermore, justification for subordinating Stewart’s T6G 2H4 journal (Provincial Archives of Alberta 74.1/137) to Anderson’s is rendered only implicitly: Stewart’s is “gen- erally less detailed than” Anderson’s (p. 166–167). One is ACROSS THE TOP OF THE WORLD: THE QUEST FOR left to infer that the editing accords with the chain of THE NORTHWEST PASSAGE. By JAMES P. DELGADO. command, Stewart being Anderson’s junior. None of these Vancouver and Toronto: Douglas & McIntyre, 1999. -
(Ebsas) in the Eastern Arctic Biogeographic Region of the Canadian Arctic
Canadian Science Advisory Secretariat (CSAS) Proceedings Series 2015/042 Central and Arctic Region Proceedings of the regional peer review of the re-evaluation of Ecologically and Biologically Significant Areas (EBSAs) in the Eastern Arctic Biogeographic Region of the Canadian Arctic January 27-29, 2015 Winnipeg, MB Chairperson: Kathleen Martin Editor: Vanessa Grandmaison and Kathleen Martin Fisheries and Oceans Canada 501 University Crescent Winnipeg, MB R3T 2N6 December 2015 Foreword The purpose of these Proceedings is to document the activities and key discussions of the meeting. The Proceedings may include research recommendations, uncertainties, and the rationale for decisions made during the meeting. Proceedings may also document when data, analyses or interpretations were reviewed and rejected on scientific grounds, including the reason(s) for rejection. As such, interpretations and opinions presented in this report individually may be factually incorrect or misleading, but are included to record as faithfully as possible what was considered at the meeting. No statements are to be taken as reflecting the conclusions of the meeting unless they are clearly identified as such. Moreover, further review may result in a change of conclusions where additional information was identified as relevant to the topics being considered, but not available in the timeframe of the meeting. In the rare case when there are formal dissenting views, these are also archived as Annexes to the Proceedings. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2015 ISSN 1701-1280 Correct citation for this publication: DFO. -
LNG Transport in Parry Channel: Possible Environmental Hazards Brian D
LNG Transport in Parry Channel: Possible environmental hazards Brian D. Smiley and Allen R. Milne Institute of Ocean Sciences, Patricia Bay Sidney, B.C. ": t 005562 LNG TRANSPORT IN PARRY CHANNEL: POSSIBLE ENVIRONMENTAL HAZARDS By ". .' Brian D. Smiley and Allen R. Milne Institute of Ocean Sciences, Patricia Bay Sidney, B.C. 1979 This is a manuscript which ha~ received only limited circulation. On citing this report in a 1;:libliography, tl;1e title should be followed 1;:ly the words "UNPUELISHED MANUSCRIPT" which is in accordance with accepted bib liographic custom. (i) TABLE OF CONTENTS Page Table of Contents (i) Li s t of Fi gures (i i) List of Tables (i i i) Map of Parry Channel (i v) Acknowl edgments ( i v) l. SUMMARY 2. I NTRODUCTI ON 3 3. ARCTIC PILOT PROJECT 7 3.1 Components 7 3.2 Gas Delivery Rate 7 3.3 Energy Efficiency 7 3.4 Properties of LNG 8 3.5 Carrier Characteristics 8 3.6 Carrier Operation 8 3.7: The Future 9 4. ACCIDENTS . 10 5. ICE AND LNG ICEBREAKERS IN PARRY CHANNEL 12 5.1 Ice Drift and Surface Circulation 12 5.2 Wi nter Ice Cover 13 5.3 The Icebreaker's Wake in Ice 15 5.4 Routing through Ice 18 6. CLIMATE AND LNG ICEBREAKERS IN PARRY CHANNEL 20 6.1 Long-term Climate Trends 21 7. ECOLOGICAL SIGNIFICANCE OF PARRY CHANNEL 22 8. WILDLIFE AND LNG ICEBREAKERS IN PARRY CHANNEL 26 8.1 Seabirds 26 8.2 Ringed Seals 29 8.3 Bearded Seals 33 8.4 Polar Bears 33 8.5 Whales 36 8.6 Harp Seals 37 8.7 Wal ruses 38 8.8 Caribou 38 9. -
Synopsis of the Polaris Zn-Pb District, Canadian Arctic
SYNOPSIS OF THE POLARIS ZN-P B DISTRICT , C ANADIAN ARCTIC ISLANDS , N UNAVUT KEITH DEWING 1, R OBERT J. S HARP 2 , AND ELIZABETH TURNER 3 1. Geological Survey of Canada, 3303-33rd Street NW, Calgary, Alberta T2L 2A7 2. Trans Polar Geological, 60 Hawkmount Heights NW, Calgar,y Alberta T3G 3S5 3. Department of Earth Science, Laurentian University, Sudbury, Ontario, P3E 2C6 Corresponding author’s email: [email protected] Abstract The Polaris Mine was a Mississippi Valley-type (MVT) deposit hosted in dolomitized Middle Ordovician lime - stone. Total production was 20.1 Mt at 13.4% Zn and 3.6% Pb. There are about 80 showings in the district, which stretches from Somerset Island to the Grinnell Peninsula. There are two deposit types in the Polaris District: 1) struc - turally controlled, carbonate-hosted Zn-Pb-Fe deposits typical of MVT deposits, and 2) structurally and stratigraphi - cally controlled, carbonate-hosted Cu deposits enriched by later supergene removal of Fe and S. Mineralization is paragenetically simple, with sphalerite and galena as the ore minerals, and with dolomite and mar - casite as the main gangue minerals. The deposits formed from brines at about 90 to 100°C. The age of the mineraliza - tion is constrained to post-Late Devonian folding and may be associated with the last stages of the Ellesmerian Orogeny or the opening of the Sverdrup Basin. Copper-rich mineralization is known from four showings, is associated with zinc- lead mineralization and is confined to a single interval in the Silurian. The metallogenic model for Polaris invokes a source of metal ions within the stratigraphic column since strontium shows no indication of basement involvement. -
The Use of Dog Sledges During the British Search for the Missing Franklin Expedition in the North American Arctic Islands, 1848–59 WILLIAM BARR1
ARCTIC VOL. 62, NO. 3 (SEPTEMBER 2009) P. 257–272 The Use of Dog Sledges during the British Search for the Missing Franklin Expedition in the North American Arctic Islands, 1848–59 WILLIAM BARR1 (Received 4 September 2008; accepted in revised form 17 October 2008) ABSTRACT. While the bulk of the searching parties sent out from the British ships deployed on the search for the missing Franklin expedition in the North American Arctic Islands over the period 1848–59 employed man-hauled sledges, dog sledges were also used quite extensively. The dog sledges were especially (but not exclusively) used as “couriers,” that is, for communi- cation between the various wintering ships, where speed was the primary requirement. The total distance covered by dog sledges (excluding short hauls in the vicinity of the wintering ships) was, at a minimum, 11 576 km; this distance compares with the minimum 41 555 km covered by man-hauled sledges. Key words: dog sledges, Franklin search expeditions, North American Arctic Islands RÉSUMÉ. Bien que la plupart des équipes de recherche déployées par les navires britanniques à la recherche de l’expédition de Franklin disparue dans l’archipel Arctique nord-américain pendant la période de 1848–1859 se soient servi de traîneaux tirés par des humains, elles ont également employé des traîneaux à chiens à maintes reprises. Les traîneaux à chiens servaient plus particulièrement (mais non pas exclusivement) de « messagers » en ce sens qu’ils établissaient les liens de communication entre les divers navires en hivernage, la rapidité de transmission étant essentielle. La distance totale à avoir été parcourue par les traîneaux à chiens (ce qui ne comprend pas les courtes distances dans la région des navires en hivernage) s’est chiffrée, au minimum, à 11 576 kilomètres, comparativement à la distance minimale de 41 555 kilomètres parcourue par les traîneaux tirés par des humains. -
High Arctic PEMT Layers
High Arctic PEMT Layers Table of Contents General Sensitivity Notes .............................................................................................................................. 3 Sensitivity Layers ........................................................................................................................................... 3 Grid Cell Sensitivity Rating ............................................................................................................................ 3 Polar Bear ...................................................................................................................................................... 3 Rationale for Selection .............................................................................................................................. 3 Key habitat ................................................................................................................................................ 4 Sustainability Factors ................................................................................................................................ 4 Susceptibility to Oil and Gas Activities ...................................................................................................... 5 Potential Effects of Climate Change ......................................................................................................... 5 Sensitivity Ranking ...................................................................................................................................