Genetic Variability of the Stable Fly, Stomoxys Calcitrans (L.) (Diptera: Muscidae) Assessed on a Global Scale Using Amplified Fragment Length Polymorphism

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Variability of the Stable Fly, Stomoxys Calcitrans (L.) (Diptera: Muscidae) Assessed on a Global Scale Using Amplified Fragment Length Polymorphism University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of Summer 7-28-2011 Genetic variability of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae) assessed on a global scale using Amplified Fragment Length Polymorphism Kathleen M. Kneeland University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Kneeland, Kathleen M., "Genetic variability of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae) assessed on a global scale using Amplified rF agment Length Polymorphism" (2011). Dissertations and Student Research in Entomology. 11. https://digitalcommons.unl.edu/entomologydiss/11 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Genetic variability of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae) assessed on a global scale using Amplified Fragment Length Polymorphism By Kathleen M. Kneeland A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Entomology Under the Supervision of Professors Steven R. Skoda and John E. Foster Lincoln, Nebraska August, 2011 ii Genetic variability of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae) assessed on a global scale using Amplified Fragment Length Polymorphism Kathleen M. Kneeland, Ph.D. University of Nebraska, 2011 Advisors: Steven R. Skoda and John E. Foster The stable fly, Stomoxys calcitrans, is a cosmopolitan pest of livestock and humans. It is a major pest in livestock facilities, where exist excellent breeding sites such as spilled feed mixed with manure. The pestiferous nature and painful bite cause stress to cattle and other animals. Cattle perform avoidance behaviors such as bunching together, standing in water, tail swishing, ear flicking and leg stamping. The stress and avoidance behaviors result in reductions in weight gain or milk production, with an estimated annual economic loss of > $1billion. Therefore, the development of more efficient control methods would benefit the global economy, as well as the animals. Studying the population genetics of stable flies could provide information on their population dynamics, origins of outbreaks, and geographical patterns of insecticide resistance. Many studies have been conducted on a local scale, most reporting a high level of gene flow between locations. To date, few studies have been conducted on a global scale. Here I report a study of samples acquired from 4 biogeographical regions: Nearctic, Neotropical, Palearctic and Australian. No samples were acquired from the Oriental region. The results indicate a high level of gene flow on a global scale. FST and GST values are low, and Nm values very high. The tests of neutrality suggest population expansion, and tests for genetic differentiation simply reported “no differentiation”. AMOVA results show the majority of genetic diversity is within groups, and very little among groups. These results suggest that stable flies have a panmictic population, with no isolation by distance or across geographical barriers. iv DEDICATION This dissertation is dedicated to loved ones lost along this journey. To my dad, Earl Richard Kneeland, who taught me that common sense was as important as „book learning‟, and truth, honesty and loyalty more treasured than gold. To my mom, Gloria Ann Kneeland, a little lady with a huge heart, who taught me to go for what I want. I couldn‟t have chosen better parents, and I will love you always. To Clayton Blaine Bomber, my free-spirited cousin. May you play your guitar for a choir of angels. And to all my family and friends who are gone but remain in my heart. I miss you all very much, and I am a better person for having known and loved you. v ACKNOWLEDGMENTS A simple “thank you” cannot begin to express the deep gratitude, admiration and respect I have for my co-advisors, Dr. Steven R. Skoda and Dr. John E. Foster. Dr. Skoda has supported me every step of the way, offering advice but making me solve my own problems. He has been a shoulder to lean on, an ear to bend, and he was always available to listen, even from Panama. He is dedicated to his family and his career, and cares deeply about the success of his students. Dr. Foster takes mentoring far above and beyond the call of duty, being available for counseling, advising or simply chatting over coffee on a daily basis, giving his time to help me through the best and worst times of the last 4 years. Dr. Skoda and Dr. Foster are a team, and I am most fortunate to have them as mentors and friends. I would also like to thank my committee members, Dr. Dennis Berkebile, Dr. David Carter, and Dr. Rodger Johnson from Animal Sciences. Dr. Berkebile, for keeping me supplied with stable flies. Dr. Carter, you got me off to a running start during your forensic science class. I have based my subsequent work on the quality you expected from me. Dr. Johnson, I want to thank you for recognizing my persistence, if not my mastery of statistics. I owe a debt of gratitude to my colleagues around the world who supplied the stable flies for my research. Henrik Skovgaard: Denmark; Gerard Duvallet: France, Morocco, Gabon and La Reunion Island; Geoff Brown: Queensland, Australia; Steve Skoda: Panama and Texas; Steve Mihok: Ontario, Canada; Kevin Floate: Alberta, Canada; Dennis Berkebile and Dave Boxler: Nebraska; Holly vi Ferguson: Washington; Tanja McKay: Arkansas; Greg Johnson and Kristina Hale: Montana; Stephen Young: Idaho; Ralph Williams: Indiana; Wes Watson: North Carolina; and Ludek Zurek: Kansas. Without their help this project would not have been possible. The faculty, staff and students of the Entomology department have been a joy to work with and I have made some special friends. I especially want to thank my lab partners, Drs. Difabachew Belay, Bamphitli “Banks” Tiroesele and Erica Lindroth, for helping me get past the same problems they encountered in their research, and for their friendship. I would never have made it this far if not for my family. My parents were so very proud of me, and I know that if it‟s possible, they are watching my progress. Others have done their best to be there for me in my parents‟ place, especially Aunt Loy. You have been my rock. Audrey, Ray and Sherry, Wayne and Sherry, Mary and Phil, Dot, Lee, Dennis and Richard, I would not have made it through the frustration and loneliness without having you at the other end of my phone. Also my brother, Larry, who was left to take care of my animals when I took off for Nebraska, and my sons, Aaron and Cliff Bortoletto, who have backed me all the way. And I give special thanks for my granddaughter Abby, who has inherited my love of insects. Some special friends also helped me reach my goals and I am forever grateful. Mary Jane, you are the best sister anyone could have. John and Kay, thanks for listening when I needed a shoulder to cry on. And I especially want to vii thank Mary Lou Peltier, my undergrad mentor, who knew I could do it even when I didn‟t. Lastly, thank you, Gil, for your support. You were there in the beginning, through most of the journey, and although you didn‟t stay until the end, your confidence in me sometimes kept me going. Most of all, I thank God for giving me the stubbornness and determination to keep going through good times and bad, and for giving me the circle of support I needed to make it. viii TABLE OF CONTENTS ABSTRACT……………………………………………………………….ii DEDICATION…………………………………………………………….iv ACKNOWLEDGMENTS………………………………………………...v TABLE OF CONTENTS………………………………………………..viii LIST OF TABLES………………………………………………………..xii LIST OF FIGURES……………………………………………………...xiii CHAPTER 1: Literature review Introduction 2 Life history and biology 4 Distribution and climatic variables 8 Stable fly parasitism of livestock 10 Control methods 11 Stable flies and disease 14 Stable fly genetics 15 Genetic analysis techniques 20 Protein electrophoresis 21 RFLP and PCR-RFLP 21 RAPDs 22 AFLP 23 DNA sequencing 24 Other techniques 24 Conclusions 24 ix Significance of research 27 Research objectives 27 Biological questions 28 Dissertation hypotheses 28 CHAPTER 2: An Ethanol Preservation Technique Suitable for Shipping Stable Flies Long Distance While Maintaining the Quantity of DNA 30 Introduction 31 Materials and Methods 33 Experimental design 33 DNA Extraction 34 Data Collection 35 Statistical Analysis 36 Results 36 Discussion 38 CHAPTER 3: Genetic variability of the stable fly Stomoxys calcitrans (L) (Diptera: Muscidae) within North America and on a global scale, using Amplified Fragment Length Polymorphism 40 Introduction 41 Materials and methods 44 Samples 44 DNA Extraction 49 x AFLP-PCR 50 Gel Electrophoresis 55 Data Analysis 56 Results 57 Arlequin Analyses 58 AMOVA 59 Tests of Neutrality 60 Mismatch Distribution 61 Mantel Test 63 Popgene 65 Nei‟s Genetic Diversity 65 Dendrograms 66 Discussion 67 LITERATURE CITED 77 APPENDICES 104 I. DNA extraction protocol 104 II. Reagent and buffer preparation 107 III. AFLP PCR protocol: Lab version 110 IV. Optimized AFLP protocol 119 V. Gel Preparation, Loading and Scanning 124 VI. Scoring Gels 128 VII. Stable fly gels 131 VIII. Dendrograms 153 xi IX. Data Analysis 157 X. Lab supply list 176 XI Troubleshooting 180 xii LIST OF TABLES Table 1. Experimental design 34 Table 2. Type 3 test of fixed effects 36 Table 3. Differences of LSMeans 38 Table 4. Collection sites of stable fly samples 47 Table 5. Coordinates and elevation of collection sites 48 Table 6.
Recommended publications
  • Salivarian Trypanosomosis: a Review of Parasites Involved, Their Global Distribution and Their Interaction with the Innate and Adaptive Mammalian Host Immune System
    REVIEW published: 02 October 2018 doi: 10.3389/fimmu.2018.02253 Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System Magdalena Radwanska 1, Nick Vereecke 1,2, Violette Deleeuw 2, Joar Pinto 2 and Stefan Magez 1,2* 1 Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea, 2 Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium Salivarian trypanosomes are single cell extracellular parasites that cause infections in a wide range of hosts. Most pathogenic infections worldwide are caused by one of four major species of trypanosomes including (i) Trypanosoma brucei and the human Edited by: infective subspecies T. b. gambiense and T. b. rhodesiense, (ii) Trypanosoma evansi and Xun Suo, T. equiperdum Trypanosoma congolense Trypanosoma vivax China Agricultural University, China , (iii) and (iv) . Infections with Reviewed by: these parasites are marked by excessive immune dysfunction and immunopathology, Debora Decote-Ricardo, both related to prolonged inflammatory host immune responses. Here we review the Universidade Federal Rural do Rio de classification and global distribution of these parasites, highlight the adaptation of human Janeiro, Brazil Dolores Correa, infective trypanosomes that allow them to survive innate defense molecules unique Instituto Nacional de Pediatria, Mexico to man, gorilla, and baboon serum and refer to the discovery of sexual reproduction Xin Zhao, Institute of Microbiology (CAS), China of trypanosomes in the tsetse vector. With respect to the immunology of mammalian *Correspondence: host-parasite interactions, the review highlights recent findings with respect to the B cell Stefan Magez destruction capacity of trypanosomes and the role of T cells in the governance of infection [email protected] control.
    [Show full text]
  • Suppression of Stable Flies on Cattle Jeffery K
    E-212 7/04 Suppression of Stable Flies on Cattle Jeffery K. Tomberlin Assistant Professor and Extension Specialist The Texas A&M University System ecause of its painful bite, The stable fly also resembles the stable fly is a consider- the deer fly and horse fly. able pest of livestock and However, stable flies primarily Bpeople. Populations of attack the legs of livestock; these more than 20 flies per cow can other flies do not. significantly lower income for live- stock producers. Infestations of 50 Biology and habitat flies per cow on beef cattle have The stable fly has a complete reduced weight gain by 25 percent life cycle with egg, larval, pupal and, in dairy cattle, have and adult stages (Fig. 2). decreased milk production by 40 Populations can grow quickly: A to 60 percent. Figure 1. Adult stable fly (Photo female stable fly lives for about 3 To suppress stable flies effec- courtesy of Bart Drees, Texas to 4 weeks and lays about 500 to Cooperative Extension). tively and economically, it is 600 eggs during its lifetime. important to: Under optimal conditions, an egg can develop into an adult in 3 to 4 weeks; • Be able to identify them properly; therefore, several generations can develop • Understand the insect’s life cycle to be each year. able to interrupt it; and • Use a combination of control strategies. The eggs are typically laid in wet straw, such as around hay bales (Fig. 3) or in other Identification decomposing vegetation mixed with the urine The stable fly, Stomoxys calcitrans, (Fig. 1) and feces produced by the confined animals.
    [Show full text]
  • Infectivity of Housefly, Musca Domestica
    b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 7 (2 0 1 6) 807–816 ht tp://www.bjmicrobiol.com.br/ Environmental Microbiology Infectivity of housefly, Musca domestica (Diptera: Muscidae) to different entomopathogenic fungi ∗ Muzammil Farooq, Shoaib Freed Bahauddin Zakariya University, Faculty of Agricultural Sciences and Technology, Laboratory of Insect Microbiology and Biotechnology, Multan, Punjab, Pakistan a r t i c l e i n f o a b s t r a c t Article history: The housefly Musca domestica is a worldwide insect pest that acts as a vector for many Received 26 February 2014 pathogenic diseases in both people and animals. The present study was conducted to eval- Accepted 4 March 2016 uate the virulence of different local isolates of Beauveria bassiana, Metarhizium anisopliae and Available online 4 July 2016 Isaria fumosorosea on M. domestica using two bioassay techniques: (1) adult immersion and Associate Editor: Carlos Pelleschi (2) a bait method applied to both larvae and adults. The results showed evidence of a broad Taborda range of responses by both stages (larvae and adults) to the tested isolates of B. bassiana, M. anisopliae and I. fumosorosea. These responses were concentration-dependent, with mor- Keywords: tality percentages ranging from 53.00% to 96.00%. Because it resulted in lower LC50 values and a shorter lethal time, B. bassiana (Bb-01) proved to be the most virulent isolate against Entomopathogenic fungi Fecundity both housefly larvae and adults.
    [Show full text]
  • Insecta Diptera) in Freshwater (Excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel
    Entomology Publications Entomology 2008 Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel Miroslav Barták Czech University of Agriculture Art Borkent Salmon Arm Gregory W. Courtney Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs BoudewPart ofijn the GoBddeeiodivrisersity Commons, Biology Commons, Entomology Commons, and the TRoyerarle Bestrlgiialan a Indnstit Aquaute of Nticat uErcaol Scienlogyce Cs ommons TheSee nex tompc page forle addte bitioniblaiol agruthorapshic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/41. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Abstract Today’s knowledge of worldwide species diversity of 19 families of aquatic Diptera in Continental Waters is presented. Nevertheless, we have to face for certain in most groups a restricted knowledge about distribution, ecology and systematic,
    [Show full text]
  • Patterns and Potential Mechanisms of Thermal Preference in E. Muscae-Infected Drosophila Melanogaster
    Western Washington University Western CEDAR WWU Honors Program Senior Projects WWU Graduate and Undergraduate Scholarship Spring 2020 Patterns and potential mechanisms of thermal preference in E. muscae-infected Drosophila melanogaster Aundrea Koger Western Washington University Carolyn Elya Ph.D. Harvard University Jamilla Akhund-Zade Ph.D. Harvard University Benjamin de Bivort Ph.D. Harvard University Follow this and additional works at: https://cedar.wwu.edu/wwu_honors Recommended Citation Koger, Aundrea; Elya, Carolyn Ph.D.; Akhund-Zade, Jamilla Ph.D.; and de Bivort, Benjamin Ph.D., "Patterns and potential mechanisms of thermal preference in E. muscae-infected Drosophila melanogaster" (2020). WWU Honors Program Senior Projects. 406. https://cedar.wwu.edu/wwu_honors/406 This Project is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Honors Program Senior Projects by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Patterns and potential mechanisms of thermal preference in Entomophthora ​ muscae-infected Drosophila melanogaster ​ ​ 1 2 2 Aundrea Koger ,​ Carolyn Elya, Ph.D. ,​ Jamilla Akhund-Zade, Ph.D. ,​ and Benjamin de Bivort, ​ ​ ​ Ph.D.2 ​ 1 2 Honors​ Program, Western Washington University, Department​ of Organismic and ​ Evolutionary Biology, Harvard University Abstract Animals use various strategies to defend against pathogens. Behavioral fever, or fighting infection by moving to warm locations, is seen in many ectotherms. The behavior-manipulating fungal pathogen Entomophthora muscae infects numerous dipterans, including fruit flies and ​ ​ ​ ​ house flies, Musca domestica. House flies have been shown to exhibit robust behavioral fever ​ ​ early after exposure to E.
    [Show full text]
  • And Diurnal Activity of Stomoxys Calcitrans in Thailand
    Geographic Distribution of Stomoxyine Flies (Diptera: Muscidae) and Diurnal Activity of Stomoxys calcitrans in Thailand Author(s): Vithee Muenworn, Gerard Duvallet, Krajana Thainchum, Siripun Tuntakom, Somchai Tanasilchayakul, Atchariya Prabaripai, Pongthep Akratanakul, Suprada Sukonthabhirom, and Theeraphap Chareonviriyaphap Source: Journal of Medical Entomology, 47(5):791-797. 2010. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1603/ME10001 URL: http://www.bioone.org/doi/full/10.1603/ME10001 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. BEHAVIOR,CHEMICAL ECOLOGY Geographic Distribution of Stomoxyine Flies (Diptera: Muscidae) and Diurnal Activity of Stomoxys calcitrans in Thailand VITHEE MUENWORN,1 GERARD DUVALLET,2 KRAJANA THAINCHUM,1 SIRIPUN TUNTAKOM,3 SOMCHAI TANASILCHAYAKUL,3 ATCHARIYA PRABARIPAI,4 PONGTHEP AKRATANAKUL,1,5 6 1,7 SUPRADA SUKONTHABHIROM, AND THEERAPHAP CHAREONVIRIYAPHAP J. Med. Entomol. 47(5): 791Ð797 (2010); DOI: 10.1603/ME10001 ABSTRACT Stomoxyine ßies (Stomoxys spp.) were collected in 10 localities of Thailand using the Vavoua traps.
    [Show full text]
  • Fanniidae, Anthomyiidae, Muscidae) Described by P
    Muscoidea (Fanniidae, Anthomyiidae, Muscidae) described by P. J. M. Macquart (Insecta, Diptera) Adrian C. PONT Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW (United Kingdom) and Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom) [email protected] Pont A. C. 2012. – Muscoidea (Fanniidae, Anthomyiidae, Muscidae) described by P. J. M. Macquart (Insecta, Diptera). Zoosystema 34 (1): 39-111. DOI : http://dx.doi.org/10.5252/z2012n1a3 ABSTRACT This paper deals with the 185 new species-group taxa that P. J. M. Macquart described in the dipteran families Fanniidae, Anthomyiidae and Muscidae, together with a further 5 species-group taxa that belong to other families, 9 replacement names that he proposed, and 1 nomen nudum. Notes are provided on the Diptera collections on which Macquart worked. In the Fanniidae, there are 8 species (and 1 replacement name), in Anthomyiidae, 33 species (and 4 replacement names), and in Muscidae, 144 species (and 4 replacement names). 85 lectotypes are newly designated in order to fix the identity of the names. The following new synonyms are proposed: in Anthomyiidae: Chortophila angusta Macquart, 1835 = Botanophila striolata (Fallén, 1824); Pegomyia basilaris Macquart, 1835 = Pegomya solennis (Meigen, 1826); Anthomyia brunnipennis Macquart, 1835, and Anthomyia fuscipennis Macquart, 1835 = Pegoplata aestiva (Meigen, 1826); Hylemyia caesia Macquart, 1835 = Anthomyia liturata (Robineau-Desvoidy, 1830); Chortophila caesia Macquart,
    [Show full text]
  • Diptera, Conopidae) from Madagascar and South Africa 361 Diptera Hosts of Stylogaster Macquart (Diptera, Conopidae) from Madagascar and South Africa
    Diptera hosts of Stylogaster Macquart (Diptera, Conopidae) from Madagascar and South Africa 361 Diptera hosts of Stylogaster Macquart (Diptera, Conopidae) from Madagascar and South Africa Márcia Souto Couri1,2 & Gabriel Pinto da Silva Barros1,3 1 Department of Entomology, Museu Nacional, Quinta da Boa Vista, 20940-040 Rio de Janeiro-RJ, Brazil. [email protected] 2CNPq fellow. 3CNPq/UFRJ scholarship. ABSTRACT. Diptera hosts of Stylogaster Macquart (Diptera, Conopidae) from Madagascar and South Africa. The genus Stylogaster Macquart (Diptera, Conopidae) is represented by 14 species in the Afrotropical region, five of them endemic to Madagascar and two recorded from South Africa, one of them endemic. Fifteen specimens of Muscidae, 14 from Madagascar and one from South Africa, belonging to 10 species, impaled with Stylogaster eggs were examined. Among them, three new muscid host species were found. The dissected eggs were all similar, suggesting the presence of the same species in both localities, what is not recorded until now. The available data on the dipteran Stylogaster eggs hosts in Africa is summarized. Color photos of the material examined are presented. KEYWORDS. Afrotropical region; dart-eggs; host; Muscidae; Stylogaster. RESUMO. Dípteros hospedeiros de Stylogaster Macquart (Diptera, Conopidae) de Madagascar e África do Sul. O gênero Stylogaster Macquart (Diptera, Conopidae) é representado por 14 espécies na região Afrotropical, cinco delas endêmicas para Madagascar e duas assinaladas na África do Sul, uma delas endêmica. Quinze exemplares de Muscidae, 14 de Madagascar e um da África do Sul, pertencentes a 10 espécies, empalados com ovos de Stylogaster foram examinados. Entre eles, três novas espécies hospedeiras de muscidae foram encontradas.
    [Show full text]
  • Lancs & Ches Muscidae & Fanniidae
    The Diptera of Lancashire and Cheshire: Muscoidea, Part I by Phil Brighton 32, Wadeson Way, Croft, Warrington WA3 7JS [email protected] Version 1.0 21 December 2020 Summary This report provides a new regional checklist for the Diptera families Muscidae and Fannidae. Together with the families Anthomyiidae and Scathophagidae these constitute the superfamily Muscoidea. Overall statistics on recording activity are given by decade and hectad. Checklists are presented for each of the three Watsonian vice-counties 58, 59, and 60 detailing for each species the number of occurrences and the year of earliest and most recent record. A combined checklist showing distribution by the three vice-counties is also included, covering a total of 241 species, amounting to 68% of the current British checklist. Biodiversity metrics have been used to compare the pre-1970 and post-1970 data both in terms of the overall number of species and significant declines or increases in individual species. The Appendix reviews the national and regional conservation status of species is also discussed. Introduction manageable group for this latest regional review. Fonseca (1968) still provides the main This report is the fifth in a series of reviews of the identification resource for the British Fanniidae, diptera records for Lancashire and Cheshire. but for the Muscidae most species are covered by Previous reviews have covered craneflies and the keys and species descriptions in Gregor et al winter gnats (Brighton, 2017a), soldierflies and (2002). There have been many taxonomic changes allies (Brighton, 2017b), the family Sepsidae in the Muscidae which have rendered many of the (Brighton, 2017c) and most recently that part of names used by Fonseca obsolete, and in some the superfamily Empidoidea formerly regarded as cases erroneous.
    [Show full text]
  • The Repellency of Lemongrass Oil Against Stable Flies, Tested Using
    The repellency of lemongrass oil against stable flies, tested using video tracking system Frédéric Baldacchino, Coline Tramut, Ali Salem, Emmanuel Liénard, Emilie Delétré, Michel Franc, Thibaud Martin, Gérard Duvallet, Pierre Jay-Robert To cite this version: Frédéric Baldacchino, Coline Tramut, Ali Salem, Emmanuel Liénard, Emilie Delétré, et al.. The repellency of lemongrass oil against stable flies, tested using video tracking system. Parasite, EDP Sciences, 2013, 20, pp.1-7. 10.1051/parasite/2013021. hal-03063620 HAL Id: hal-03063620 https://hal.archives-ouvertes.fr/hal-03063620 Submitted on 8 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Parasite 2013, 20,21 Ó F. Baldacchino et al., published by EDP Sciences, 2013 DOI: 10.1051/parasite/2013021 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS The repellency of lemongrass oil against stable flies, tested using video tracking Fre´de´ric Baldacchino1,*, Coline Tramut1, Ali Salem2, Emmanuel
    [Show full text]
  • The Genome of the Stable Fly, Stomoxys Calcitrans, Reveals Potential Mechanisms Underlying Reproduction, Host Interactions, and Novel Targets for Pest Control Pia U
    Olafson et al. BMC Biology (2021) 19:41 https://doi.org/10.1186/s12915-021-00975-9 RESEARCH ARTICLE Open Access The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control Pia U. Olafson1* , Serap Aksoy2, Geoffrey M. Attardo3, Greta Buckmeier1, Xiaoting Chen4, Craig J. Coates5, Megan Davis1, Justin Dykema6, Scott J. Emrich7, Markus Friedrich6, Christopher J. Holmes8, Panagiotis Ioannidis9, Evan N. Jansen8, Emily C. Jennings8, Daniel Lawson10, Ellen O. Martinson11, Gareth L. Maslen10, Richard P. Meisel12, Terence D. Murphy13, Dana Nayduch14, David R. Nelson15, Kennan J. Oyen8, Tyler J. Raszick5, José M. C. Ribeiro16, Hugh M. Robertson17, Andrew J. Rosendale18, Timothy B. Sackton19, Perot Saelao1, Sonja L. Swiger20, Sing-Hoi Sze21, Aaron M. Tarone5, David B. Taylor22, Wesley C. Warren23, Robert M. Waterhouse24, Matthew T. Weirauch25,26, John H. Werren27, Richard K. Wilson28,29, Evgeny M. Zdobnov9 and Joshua B. Benoit8* Abstract Background: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control.
    [Show full text]
  • Diptera: Fanniidae) from Carrion Succession Experiment and Case Report
    insects Article DNA Barcoding Identifies Unknown Females and Larvae of Fannia R.-D. (Diptera: Fanniidae) from Carrion Succession Experiment and Case Report Andrzej Grzywacz 1,* , Mateusz Jarmusz 2, Kinga Walczak 1, Rafał Skowronek 3 , Nikolas P. Johnston 1 and Krzysztof Szpila 1 1 Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toru´n,87-100 Toru´n,Poland; [email protected] (K.W.); [email protected] (N.P.J.); [email protected] (K.S.) 2 Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Pozna´n, 61-712 Pozna´n,Poland; [email protected] 3 Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; [email protected] * Correspondence: [email protected] Simple Summary: Insects are frequently attracted to animal and human cadavers, usually in large numbers. The practice of forensic entomology can utilize information regarding the identity and characteristics of insect assemblages on dead organisms to determine the time elapsed since death occurred. However, for insects to be used for forensic applications it is essential that species are Citation: Grzywacz, A.; Jarmusz, M.; identified correctly. Imprecise identification not only affects the forensic utility of insects but also Walczak, K.; Skowronek, R.; Johnston, N.P.; Szpila, K. DNA results in an incomplete image of necrophagous entomofauna in general. The present state of Barcoding Identifies Unknown knowledge on morphological diversity and taxonomy of necrophagous insects is still incomplete Females and Larvae of Fannia R.-D.
    [Show full text]