The Triassic Paleontology of Ghost Ranch Edwin H

Total Page:16

File Type:pdf, Size:1020Kb

The Triassic Paleontology of Ghost Ranch Edwin H New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/25 The Triassic paleontology of Ghost Ranch Edwin H. Colbert, 1974, pp. 175-178 in: Ghost Ranch, Siemers, C. T.; Woodward, L. A.; Callender, J. F.; [eds.], New Mexico Geological Society 25th Annual Fall Field Conference Guidebook, 404 p. This is one of many related papers that were included in the 1974 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications. One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission. This page is intentionally left blank to maintain order of facing pages. New Mexico Geol. Soc. Guidebook, 25th Field Conf., Ghost Ranch (Central-Northern N.M.), 1974 175 THE TRIASSIC PALEONTOLOGY OF GHOST RANCH by EDWIN H. COLBERT* INTRODUCTION STRATIGRAPHIC RELATIONSHIPS Triassic fossils were scientifically recognized in northern The Triassic in northern New Mexico, especially as it is New Mexico just a century ago when Edward Drinker Cope, exposed at Ghost Ranch and along the Rio Chama to the west, the famous paleontologist and zoologist from Philadelphia, is composed of the Chinle Formation. The Chinle has been passed through this region in 1874 on a journey from Santa Fe subdivided into several members, as follows: to Tierra Amarilla. On this trip Cope picked up a few fossil Petrified Forest Member reptilian bones in the vicinity of Gallina, where Upper Triassic Chinle Poleo Sandstone Member sediments are exposed at the base of Cerro Blanco. In the Formation Salitral Shale Tongue hundred years since Cope's chance discovery various paleontol- Agua Zarca Sandstone Member ogists have collected and studied Triassic fossils from northern New Mexico, to reveal a tetrapod assemblage of true signifi- These sediments, with a total thickness of 700 to 800 feet, cance for students dedicated to the study of organic evolution are of continental origin. The Agua Zarca, up to 100 feet in and the succession of vertebrate faunas during Mesozoic time. thickness, consists of conglomeratic sandstones and siltstones. Much has been learned as a result of work during the past The Salitral, which also may be 100 feet thick, is a variegated century on the Triassic vertebrates of the Southwest in gen- shale with limestone concretions. The Poleo sandstone, a rel- eral, and of New Mexico in particular. Much remains to be atively thin member, no more than 60 feet in thickness, is learned. nonetheless very resistant and topographically prominent. Three areas in northern New Mexico have yielded Triassic Most of the thickness of the Chinle Formation in this region is fossils: namely the slopes at the base of Cerro Blanco (already composed of the Petrified Forest Member, consisting of color- mentioned) a hogback immediately to the west of Capulin ful red, brown and purple clays, siltstones and sandstones. Mesa, as well as around the Mesa; the badlands at Ghost These beds are made up, to a large degree, of intricately inter- Ranch, and particularly the basal portions of the colorful cliffs tonguing lenses. (See also O'Sullivan, this issue, for a discus- which rise in spectacular splendor behind the ranch; and sion of Triassic stratigraphy in the Ghost Ranch area.) exposures in the vicinity of Lamy, to the south of Santa Fe. Our interest is in the first two of the areas listed, and especial- THE FOSSILS ly in the sediments at Ghost Ranch. Although fossils are known from the Agua Zarca, Poleo and COLLECTORS IN THE TRIASSIC Petrified Forest members, it is only in the last of these hori- zons that there is comprehensive paleontological evidence Cope's preliminary discoveries of 1874 have been men- bearing upon the Late Triassic life of New Mexico. Fossil leaves tioned. In 1881 David Baldwin, a professional collector, and wood are locally common in the Agua Zarca, Poleo and explored the Triassic beds around Capulin Mesa and at Ghost Petrified Forest beds, with the ancient conifer, Araucarioxylon Ranch. At the time he was working for Cope (he had pre- being perhaps the most characteristic plant. This is the tree so viously collected for Othniel Charles Marsh, Cope's bitter abundantly preserved in the Petrified Forest of Arizona, the rival). And as a result of his efforts he obtained bones of a type region for the Petrified Forest Member. Araucarioxylon is small Triassic dinosaur, described by Cope as Coelophysis. related to the modern arancarias, so typical of the Southern Some 30 years later, in 1911, this region was explored Hemisphere. The Poleo has yielded cycadeoids such as jointly by Samuel Wendell Williston and Paul Miller of the Otozamites and Zamites, and the cordaitalean, Yuccites, repre- University of Chicago, Ermin C. Case of the University of sented by strap-like leaves some two feet in length. Michigan and Frederick von Huene of Tübingen University. However, the bulk of the fossils in the Chinle Formation are However, the party was more concerned with the Permian found in the Petrified Forest Member. Besides plants there are vertebrates, to be found in the area near Coyote, than with fossil unionids—fresh-water clams—and fishes, amphibians and Triassic fossils. reptiles. The vertebrates are of particular significance, and to In the nineteen thirties the Triassic beds at Ghost Ranch them we will now turn our attention. were worked extensively by Charles Camp and Samuel Welles and their assistants, from the University of California at THE CHINLE VERTEBRATES Berkeley. A fine series of phytosaurs was collected. During this time Llewellyn Price and Theodore White collected the The vertebrates of the Petrified Forest beds in northern armored thecodont reptile, Typothorax, for Harvard. New Mexico may be listed as follows. After the second world war E. H. Colbert and his associates Fishes—Ceratodus, a lungfish opened a large quarry at Ghost Ranch, and excavated numer- Amphibians—Metoposaurus, a large labyrinthodont ous articulated skeletons of the dinosaur, Coelophysis. This Reptiles—Typothorax, a large, armored thecodont quarry has been subsequently worked. Rutiodon, a large crocodile-like thecodont *Curator of Vertebrate Paleontology, The Museum of Northern Coelophysis, a saurischian dinosaur Arizona; Curator Emeritus, The American Museum of Natural History, New York; Professor Emeritus, Columbia University, New York. Other fishes and reptiles are known from the Chinle Forma- 1 76 COLBERT tion in Arizona and Utah and from the related Dockum beds respects representing the climax of reptilian evolution. The in Texas and the Newark series in eastern North America, thus ancestral archosaurs were the thecodonts, essentially confined broadening our knowledge of Late Triassic life in North to the Triassic period. From the thecodonts there arose the America. But our immediate concern is with the Upper two orders of dinosaurs, the Saurischia and Ornithischia, the Triassic vertebrates of northern New Mexico. flying reptiles or pterosaurs, and the crocodilians. The birds also had their origins from the thecodont reptiles, or perhaps from some of the dinosaurs. Fishes The archosaurs anatomically were and are advanced reptiles, The lungfish, Ceratodus, is represented by its very character- active and frequently aggressive. The skeleton generally shows istic tooth-plates, which look something like combs with adaptations for rapid and well-controlled movements; the skull radiating ridges. These tooth plates show that the Triassic lung- commonly is lightly constructed, but very strong. The fish Ceratodus was closely related to the modern Australian archosaurs were the rulers of Mesozoic continents, and the lungfish, Epiceratodus. The Australian lungfish lives in rivers surviving crocodilians may be considered as very successful and lakes in Queensland. When the water inhabited by these reptiles, giving way only in recent years to the
Recommended publications
  • An Evaluation of the Phylogenetic Relationships of the Pterosaurs Among Archosauromorph Reptiles
    Journal of Systematic Palaeontology 5 (4): 465–469 Issued 19 November 2007 doi:10.1017/S1477201907002064 Printed in the United Kingdom C The Natural History Museum An evaluation of the phylogenetic relationships of the pterosaurs among archosauromorph reptiles David W. E. Hone∗ Department of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK Michael J. Benton Department of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK SYNOPSIS The phylogenetic position of pterosaurs among the diapsids has long been a contentious issue. Some recent phylogenetic analyses have deepened the controversy by drawing the pterosaurs down the diapsid tree from their generally recognised position as the sister group of the dinosaur- omorphs, to lie close to the base of Archosauria or to be the sister group of the protorosaurs. Critical evaluation of the analyses that produced these results suggests that the orthodox position retains far greater support and no close link can be established between pterosaurs and protorosaurs. KEY WORDS Pterosauria, Prolacertiformes, Archosauria, Archosauromorpha, Ornithodira Contents Introduction 465 Methods and Results 466 Discussion 467 Re-analysis of Bennett (1996) 467 Re-analysis of Peters (2000) 467 Conclusions 469 Acknowledgements 469 References 469 Introduction tained). Muller¨ (2003, 2004) also suggested that the prolacer- tiforms were not a valid clade, with Trilophosaurus splitting The basal archosaurs and their phylogenetic positions relative his two prolacertiform taxa (Prolacerta and Tanystropheus). to one another within the larger clade Archosauromorpha The analysis performed by Senter (2004) also found the pro- have been a source of controversy among palaeontologists lacertiforms to be paraphyletic, although here he removed the for decades.
    [Show full text]
  • A New Coelurosaurian Dinosaur from the Forest Sandstone of Rhodesia. Arnoldia, 4(28
    -'- .ARNOLDIA (RHODESIA) SERIES OF MISCELLANEOUS PUBLICATIONS NATIONAL MUSEUMS OF RHODESIA No. 28 Volume 4 14th October, 1969 A NEW COELUROSAURIAN DINOSAUR FROM THE FOREST SANDSTONE OF RHODESIA by M. A. RAATH Queen Victoria Museum, Salisbury INTRODUCTION During 1963, a group of boys from North1ea School, Bulawayo, under the direction of their teacher, Mr. Ian K. Stewart, came across a partially exposed fossil in Forest Sandstone on Southcote Farm in the Nyamandhlovu district of Rhodesia. When the author joined the staff of the school in 1964, the fossil was pointed out to him and was later excavated over a protracted period, during weekends and school holidays. On development, the fossil proved to consist of most of the postcranial skeleton of-a small Coelurosaurian dinosaur in a very remarkable state of preservation and articu­ lation. The animal was preserved lying on its left side, which was largely complete, while the right side had been exposed and weathered to some extent. The specimen was found in the sandstone bank of a small stream, the Kwengula River, on Southcote farm, which lies 20 miles N.W. of Bulawayo (19058' S; 28°24' 35" E). Other dinosaur remains have been recovered from the rather limited exposures in the Southcote stream in the past (see e.g. Bond, 1955; Attridge, 1963), and on the basis of its fossil fauna Bond (op. cit.) has correlated the Forest Sandstone with the Upper part of the South African Red Beds. The deposits are thus Upper Karroo (Upper Triassic) in age. In order to preserve the articulated state of some of the bones, development has not yet been completed.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • The Early Evolution of Rhynchosaurs Butler, Richard; Montefeltro, Felipe; Ezcurra, Martin
    University of Birmingham The early evolution of Rhynchosaurs Butler, Richard; Montefeltro, Felipe; Ezcurra, Martin DOI: 10.3389/fevo.2015.00142 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Butler, R, Montefeltro, F & Ezcurra, M 2016, 'The early evolution of Rhynchosaurs', Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2015.00142 Link to publication on Research at Birmingham portal Publisher Rights Statement: Frontiers is fully compliant with open access mandates, by publishing its articles under the Creative Commons Attribution licence (CC-BY). Funder mandates such as those by the Wellcome Trust (UK), National Institutes of Health (USA) and the Australian Research Council (Australia) are fully compatible with publishing in Frontiers. Authors retain copyright of their work and can deposit their publication in any repository. The work can be freely shared and adapted provided that appropriate credit is given and any changes specified. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Live Birth in an Archosauromorph Reptile
    ARTICLE Received 8 Sep 2016 | Accepted 30 Dec 2016 | Published 14 Feb 2017 DOI: 10.1038/ncomms14445 OPEN Live birth in an archosauromorph reptile Jun Liu1,2,3, Chris L. Organ4, Michael J. Benton5, Matthew C. Brandley6 & Jonathan C. Aitchison7 Live birth has evolved many times independently in vertebrates, such as mammals and diverse groups of lizards and snakes. However, live birth is unknown in the major clade Archosauromorpha, a group that first evolved some 260 million years ago and is represented today by birds and crocodilians. Here we report the discovery of a pregnant long-necked marine reptile (Dinocephalosaurus) from the Middle Triassic (B245 million years ago) of southwest China showing live birth in archosauromorphs. Our discovery pushes back evidence of reproductive biology in the clade by roughly 50 million years, and shows that there is no fundamental reason that archosauromorphs could not achieve live birth. Our phylogenetic models indicate that Dinocephalosaurus determined the sex of their offspring by sex chromosomes rather than by environmental temperature like crocodilians. Our results provide crucial evidence for genotypic sex determination facilitating land-water transitions in amniotes. 1 School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China. 2 Chengdu Center, China Geological Survey, Chengdu 610081, China. 3 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China. 4 Department of Earth Sciences, Montana State University, Bozeman, Montana 59717, USA. 5 School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. 6 School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.
    [Show full text]
  • Gastroliths in an Ornithopod Dinosaur
    Brief report Acta Palaeontologica Polonica 53 (2): 351–355, 2008 Gastroliths in an ornithopod dinosaur IGNACIO A. CERDA Gastroliths (stomach stones) are known from many extant Institutional abbreviations.—MCSPv, Vertebrate paleontology and extinct vertebrates, including dinosaurs. Reported here collection of the Museo de Cinco Saltos, Río Negro Province, is the first unambiguous record of gastroliths in an ornitho− Argentina; MUCPv, Vertebrate paleontology collection of the pod dinosaur. Clusters of small stones found in the abdomi− Museo de la Universidad Nacional del Comahue, Neuquén nal region of three articulated skeletons of Gasparinisaura Province, Argentina. cincosaltensis were identified as gastroliths on the basis of taphonomic and sedimentologic evidence. The large number Material and geologic setting of stones found in each individual, their size, and the fact that Gasparinisaura cincosaltensis was herbivorous, all sug− Three specimens of Gasparinisaura cincosaltensis, MUCPv 213, gest that they were ingested as a result of lithophagy rather MCSPv 111, and MCSPv 112, were collected near the city of than accidental swallowing. Cinco Saltos (Río Negro Province, Patagonia, Argentina) (Fig. 1), in mudstones and sandstones of the early Campanian Anacleto Introduction Formation, in the uppermost portion of the Neuquén Group (Ramos 1981; Dingus et al. 2000). MUCPv 213 (Fig. 2A) consists Gastroliths or geo−gastroliths sensu Wings (2007) are known in of a partial skeleton that includes cranial and postcranial elements many taxa of extant and fossil vertebrates (Whittle and Everhart (see Salgado et al. 1997 for a detailed anatomical description). A 2000). Gastroliths have been occasionally reported in non−avian portion of the preserved elements (both incomplete humeri articu− dinosaurs (Wings 2004) but only few cases can withstand rigorous lated with both radii and ulnae, several posterior dorsal ribs from testing.
    [Show full text]
  • Sauropod Dinosaur Remains from a New Early Jurassic Locality in the Central High Atlas of Morocco
    Sauropod dinosaur remains from a new Early Jurassic locality in the Central High Atlas of Morocco CECILY S.C. NICHOLL, PHILIP D. MANNION, and PAUL M. BARRETT Nicholl, C.S.C., Mannion, P.D., and Barrett, P.M. 2018. Sauropod dinosaur remains from a new Early Jurassic locality in the Central High Atlas of Morocco. Acta Palaeontologica Polonica 63 (1): 147–157. Despite being globally widespread and abundant throughout much of the Mesozoic, the early record of sauropod dinosaur evolution is extremely poor. As such, any new remains can provide significant additions to our understand- ing of this important radiation. Here, we describe two sauropod middle cervical vertebrae from a new Early Jurassic locality in the Haute Moulouya Basin, Central High Atlas of Morocco. The possession of opisthocoelous centra, a well-developed system of centrodiapophyseal laminae, and the higher elevation of the postzygapophyses relative to the prezygapophyses, all provide strong support for a placement within Sauropoda. Absence of pneumaticity indicates non-neosauropod affinities, and several other features, including a tubercle on the dorsal margin of the prezygapophyses and an anteriorly slanting neural spine, suggest close relationships with various basal eusauropods, such as the Middle Jurassic taxa Jobaria tiguidensis and Patagosaurus fariasi. Phylogenetic analyses also support a position close to the base of Eusauropoda. The vertebrae differ from the only other Early Jurassic African sauropod dinosaurs preserving overlapping remains (the Moroccan Tazoudasaurus naimi and South African Pulanesaura eocollum), as well as strati- graphically younger taxa, although we refrain from erecting a new taxon due to the limited nature of the material.
    [Show full text]
  • A Juvenile Coelophysoid Skull from the Early Jurassic of Zimbabwe, and the Synonymy of Coelophysis and Syntarsus
    A juvenile coelophysoid skull from the Early Jurassic of Zimbabwe, and the synonymy of Coelophysis and Syntarsus Anthea Bristowe* & Michael A. Raath Bernard Price Institute for Palaeontological Research, School of Geosciences, University of the Witwatersrand, Private Bag 3, WITS, 2050 South Africa Received 23 September 2004. Accepted 5 December 2004 Several authors have drawn attention to the close similarities between the neotheropod dinosaurs Coelophysis and Syntarsus. Recon- struction and analysis of a skull from a juvenile specimen of Syntarsus (collected from the Forest Sandstone Formation of Zimbabwe) show that cranial characters previously used to distinguish these taxa and justify their generic separation (namely the presence of a ‘nasal fenestra’ in Syntarsus and the length of its antorbital fenestra), were based on erroneous reconstructions of disassociated cranial elements. On the basis of this reinterpretation we conclude that Syntarsus is a junior synonym of Coelophysis. Variations are noted in three cranial characters – the length of the maxillary tooth row, the width of the base of the lachrymal and the shape of the antorbital maxillary fossa – that taken together with the chronological and geographical separation of the two taxa justify separation at species level. Keywords: Dinosaurs, Neotheropoda, Coelophysoid, taxonomy, Triassic, Jurassic. INTRODUCTION Following the work of Gauthier (1986), these taxa were Ever since the theropod Syntarsus rhodesiensis was first suggested to belong to a monophyletic clade known as described (Raath 1969), a succession of authors have Ceratosauria. However, more recent works by a number commented on the close morphological similarity be- of authors (Sereno 1997, 1999; Holtz 2000; Wilson et al. tween it and Coelophysis bauri (Raath 1969, 1977; Paul 1988, 2003; Rauhut 2003) have re-evaluated theropod interrela- 1993; Colbert 1989; Rowe 1989; Tykoski 1998; Downs tionships.
    [Show full text]
  • Project Report on Visit to Zambia to Rapidly Assess Groundwater Development Issues in the Sia Vonga Region (October 1999)
    British Geological Survey DFID Overseas Geology Series PROJECT REPORT ON VISIT TO ZAMBIA TO RAPIDLY ASSESS GROUNDWATER DEVELOPMENT ISSUES IN THE SIA VONGA REGION (OCTOBER 1999) J Davies and B 6 Dochanaigh Briti sh Geological Survey, Hydrogeology Group InlemalionaI Di" i'i<m Rritish Geologl<al Sw".y K.}'wooh Nouingh.m UnilCd Kingd<lm NGI! 5GG DFID Bri tish Geological Survey Overseas Geology Series PROJECT REPORT ON VISIT TO ZAMBIA TO RAPIDLY ASSESS GROUNDWATER DEVELOPMENT ISSUES IN THE SIA VONGA REGION (OCTOBER 1999) J Davi es and B 6 Dochanaigh Thi s document is an output from a project funded by the Department for International D<:vclopment (DAD) for the benefit of developing countries The views e ~ pressed are not necessarily those of the OFlD. Df'1n cI""lfv:atw"_ Subsecto<: Pmj«! Title; Grwnd"'''<r from 10'" porm<>bility rock< in Af~" ProJ<d ",f<reDC<: RJ3~3 IJ.b!w8'"f'1t;c ~J''''''-'' .. Dui.., J ~ Dd lJocb . rtai~b . R () 1'199. PmJ<d "'po<! on ",H to ZarM,. to 'If'LdJ y .,,,,,,, groundW2lOr de><iop"""' ' ..LIeS In .he S, ..' ""!!. R<J!,ion © NERC 1999 Keywonh, Nottingham. British GeQlogical Survey. 1999 Contents I. Introduction 2. Summary 3 Background Information on Siavonga Distrid 3 4. Groundwater Availability 13 5. Current Practice - Methods and Approaches " 6. Available Information alld Data Collection 18 7. I'roject Actions IS •• Funher (non-project) !J;,ues References 20 Acknowlcdgcmems 20 Annex A Introduction 10 the project 21 Anne~ B Iti nerary 23 Annex C People met and OI!Jt:r contacts Annex D Simplified ground water development map and summary table for the OjulObi area, Nigeria Annex E Maps and report collected during visit 29 Anne~ F Geology maps and memoirs he ld al 8GS library.
    [Show full text]
  • Uranium Deposits in Africa: Geology and Exploration
    Uranium Deposits in Africa: Geology and Exploration PROCEEDINGS OF A REGIONAL ADVISORY GROUP MEETING LUSAKA, 14-18 NOVEMBER 1977 tm INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1979 The cover picture shows the uranium deposits and major occurrences in Africa. URANIUM DEPOSITS IN AFRICA: GEOLOGY AND EXPLORATION The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna.
    [Show full text]
  • A Review of the Stormberg Group and Drakensberg Volcanics in Southern Africa
    5 Palaeont. afr., 25, 5-27 (1984) A REVIEW OF THE STORMBERG GROUP AND DRAKENSBERG VOLCANICS IN SOUTHERN AFRICA by J .N .] . VISSER Department of Geology, University of the Orange Free State, Bloemfontein ABSTRACT The Molteno Sandstone, Red Beds and Cave Sandstone comprising the Stormberg Group (siliciclastics) in South Africa and their correlatives, based on lithology, depositio­ nal environments and tectonic cycles, in Zimbabwe, Botswana and Namibia are described. The Drakensberg Volcanics with radiometric ages of 114 My to 194 My cap the sedimen­ tary sequence. A major unconformity separates the Stormberg sedimentary rocks from the lower Karoo strata. Four Late Triassic depositional basins which were tectonically controlled are recogni­ sed. The Molteno Sandstone and Red Beds filling these basins represent braided and meandering stream deposits respectively. The Cave Sandstone covering the fluvial deposits formed as desert sand sheets reworked by westerly winds. Deposition was ended by the outpouring of the Drakensberg Valcanics. CONTENTS Page INTRODUCTION . 5 STRATIGRAPHIC NOMENCLATURE . 6 STRATIGRAPHY AND LITHOLOGY . 6 CORRELATION AND AGE . 1 7 DEPOSITIONAL HISTORY. 19 SEDIMENTATIONAL MODEL FOR THE UPPER TRIASSIC . 24 ACKNOWLEDGEMENTS ................ - ...... · .... · · · · · · · · · · · · · · · · · · · · · · · 26 REFERENCES . ..................... · .. · · · · · · · · · · · · · · · · · · · · · · 26 INTRODUCTION The presence of coal in the northeastern Cape Molteno Sandstone after Haughton's (1924) review Province was the incentive for the first geological was undertaken by Rust (1962) and this was subse­ investigations of beds belonging to the Stormberg quently followed in later years by a number of the­ Group. Wyley (1859) was probably the first to use ses and papers on the coal, the general stratigraphy the name "Stormberg Beds", but the real pioneer of each unit, as well as the sedimentation.
    [Show full text]