Preventing and Treating Distress in Brick Veneer Cavity Walls

Total Page:16

File Type:pdf, Size:1020Kb

Load more

I S S U E 1/2016 VOLUME 33 NUMBER 1 Journal of architectural technology published by Hoffmann Architects, Inc., specialists in the rehabilitation of building exteriors. Preventing and Treating Distress in Brick Veneer Cavity Walls Erin L. Kesegi, AIA and Robert A. Marsoli, Jr. M asonry construction is one of – clay brick – is actually a composite the oldest methods of creating built wall system, with materials ranging structures. However, the brick wall has from steel and concrete to flexible changed considerably since the first flashings and sealant, in addition to fired clay bricks were laid nearly 8,000 traditional brick-and-mortar elements. years ago. To address problems and How and where these materials come considerations with modern brick ma- together, and why they behave the sonry, it’s important to understand the way they do, is of critical importance components of the wall assembly, how to the weather protection, integrity, they behave, and what can go wrong. and longevity of the wall assembly. Today’s complex brick cavity walls As modern masonry construction has share little in common with the solid grown increasingly complex, so too masonry construction of Romanesque has the design, detailing, and installa- church towers or early load-bearing tion of brick cavity walls become more high-rises, with their thick, stout walls. demanding. Where once a skilled With multiple layers, or wythes, of mason was all it took to achieve a brick bonded together, these historic durable exterior wall, proper con- masonry walls relied on the unified struction now demands the efforts of structural capacity of the wall thick- multiple tradespeople working in col- ness to withstand horizontal and laboration with the design professional vertical forces and to provide weather to achieve a water-tight, structurally protection. stable, aesthetically appealing masonry In contrast, modern brick veneer exterior. Prevention of water infiltra- cavity walls anchor a single wythe of tion, structural failure, and other woes face brick across an air space, typically by means of appropriate design and two to four inches wide, to a back- meticulous workmanship is the ideal, Long, vertical cracks at building corners up material. Part of a drainage system but for existing buildings, the mission may indicate underlying structural distress. that includes flashings, drip edges, and becomes timely and accurate identi- weep holes, the air space creates a fication of emerging problems, with pathway for moisture to exit the wall repair strategies that provide lasting assembly, while a steel, concrete, or solutions. masonry back-up provides structural support. Design Basics What may seem on the outside to be As reinforced concrete and steel a wall composed of a single material framing have eliminated the need for Erin L. Kesegi, AIA, Project Architect, applies her expertise in building envelope remediation to addressing underlying causes of brick masonry distress. Project Manager Robert A. Marsoli, Jr. provides engineering services to resolve structural concerns for a range of building types, including brick masonry construction. JOURNAL load-bearing masonry, building design the brick veneer and the back-up, such flexible plastics, fabric, and composite in the twentieth and twenty-first cen- as at shelf angles, lintels, and the base metals. Given the projected lifespan turies has evolved new approaches to of the wall, flashing, a flexible, imper- of a modern wall assembly, it’s best to waterproofing protection. Early brick meable material, is used to collect wa- avoid materials that degrade quickly, walls relied on the mass and depth of ter and drain it to the exterior. Serving such as polyvinylchloride (PVC), which the masonry to absorb rainwater and both to direct water and protect the may last as few as five years. ambient moisture and to release it brick masonry from moisture dam- Water collected by the flashings is back into the atmosphere. Given the age, the flashing is in turn protected by drained to the exterior by means of nominal thickness of modern brick counter-flashings, which are attached weeps. While open head joints in the veneers, the mass of masonry is insuf- to or directly laid into the back-up. brick course above the flashings pro- ficient to absorb and release envi- At the face of the wall, drip edges, or vide a simple, effective weep system, ronmental moisture without allowing downward bends in rigid flashings, en- vents, screens, and other inserts may water penetration into the building courage water to form droplets that be used to disguise the open joints interior. Therefore, cavity wall design fall away from the wall surface, rather and prevent insect ingress. provides for a space between the back than travel back up under the flashing of the brick veneer and the face of the and into the wall assembly. Lateral Support back-up material, so that water that breaches the brick exterior can drain Copper, lead-coated copper, and stain- Masonry anchors secure the wall as- out of the wall system without reach- less steel are the traditional materials sembly to the building structure, while ing the building interior. for flashings, and they remain the most masonry ties connect multiple wythes durable and reliable options. However, of masonry together or join a mason- Flashing System and Waterproofing these materials are expensive, so flash- ry veneer to a back-up wall composed Where transitions must exist between ing now tends to be composed of of another material, such as concrete Typical Masonry Cavity Wall Wall tie Rigid insulation Air space Vertical reinforcing bar Brick Grout Mortar joint Moisture/air/vapor barrier membrane Concrete masonry unit Termination bar Horizontal joint reinforcement Mortar joint Flexible flashing membrane Cavity drainage net Weep vent / weep hole Metal drip edge Sealant bed Concrete foundation Illustration: David S. Obrizzo (adapted from the International Masonry Institute Masonry Detailing Series) 2 VOLUME 33 NUMBER 1 masonry units (CMU) or metal studs and shelf angles, along with adjustable walls is characterized by the type with sheathing. All of the metal acces- veneer anchors that allow the two and dimensions of the brick units, the sories for a masonry cavity wall should materials to move differentially within mortar type and tooling profile of be stainless steel and spaced at ap- their planes, while still providing an- the joints, and the coursing, or pattern, propriate intervals, as determined by chorage to resist out-of-plane forces, of the brick layout. In contemporary building codes, industry standards, and including wind and seismic pressures. brick cavity walls, the brick veneer is secured with metal wall ties to the the design professional. To accommodate vertical movement, back-up material. However, facade To control shrinkage cracks in ma- steel shelf angles (also known as reliev- designs may incorporate false headers sonry, as well as to tie multiple wythes ing angles) may be installed at intervals in the veneer to simulate traditional of masonry together and to anchor along the wall elevation, typically at coursing patterns. masonry veneers, horizontal joint re- each floor, to support the masonry inforcement is incorporated into the above a horizontal expansion joint, Brick size is standardized according to exterior wall system. Two or more allowing for vertical expansion of the “nominal dimensions,” which account longitudinal wires with perpendicular brickwork. Use of shelf angles depends not only for the size of the brick unit (ladder type) or angled (truss type) upon the type of structure, height itself, but for the completed assembly cross wires are laid in the mortar joint, of the building, size and location of in the wall system, including mortar with the longitudinal wires parallel to windows, type of masonry anchorage, joints. Bear in mind that openings, cor- the face of the wall. and a variety of other factors, including ners, and wall heights must take into building code requirements. account the dimensions and cours- Provisions for Movement ing using brick module, or increments Along with shelf angles, vertical and Building materials expand or contract based on the size of the brick. horizontal expansion joints are used to when exposed to external stresses, separate the masonry wall into seg- Mortar Joints such as changes in temperature (ther- ments and thereby prevent cracking. mal movement), moisture/humidity Regardless of the type of masonry As dissimilar materials in the assembly (moisture movement), dead and live construction, all brick units are held change in response to temperature, loads and external lateral forces (elas- together using mortar, a mixture of ce- moisture expansion, elastic deforma- tic deformation/creep). As brick draws ment, aggregate, and water that is but- tion, settlement, and creep, each will in moisture from its environment, it tered, or spread, between bricks during move according to its own tenden- will increase in size over an extended stacking. There is no single best mortar cies. Horizontal expansion joints are period of time. Most of the expansion type for all structures and situations, particularly important for masonry typically occurs in the first few months but a good maxim is to select the veneers attached to a reinforced con- after the brick is fired but continues at weakest mortar that will do the job. crete frame, as the concrete back-up a lower rate over the following years. Mortar that is too hard does not per- tends to shrink while the brick tends mit movement of adjacent brick and Another main contributor to move- to expand, a phenomenon known as can cause cracks and spalls, in which ment of brick is thermal expansion frame shortening. Composed of flexible pieces of the brick face are forced off. and contraction. Because both thermal materials, expansion joints can close Different joint types provide different and moisture volume changes are and stretch as building components weathering capabilities, with concave, related to the height of the wall as- shrink or expand.
Recommended publications
  • BRICK MASONRY CAVITY WALLS August 1998

    BRICK MASONRY CAVITY WALLS August 1998

    Technical Notes 21 - BRICK MASONRY CAVITY WALLS August 1998 Abstract: This Technical Notes covers brick masonry cavity walls. Description of the properties of cavity walls, including structural properties, water penetration resistance, fire resistance, and thermal and sound transmission properties are included. Theories for structural design are introduced. Recommendations for cavities, flashing, expansion joints, ties and other related subjects are covered. Key Words: brick, cavity wall, design, expansion joints, fire resistance, flashing, structural, thermal resistance, ties, veneer. INTRODUCTION Brick masonry cavity walls consist of two wythes of masonry separated by an air space connected by corrosion-resistant metal ties (see Fig.1). The exterior masonry wythe can be solid or hollow brick, while the interior masonry wythe can be solid brick, hollow brick, structural clay tile, or hollow or solid concrete masonry units. The selection for each wythe depends on the required wall properties and features. A cavity of 2 to 4 1/2 in. (50 to 114 mm) between the two wythes may be either insulated or left as an air space. The interior surface of the cavity wall may be left exposed or finished in conventional ways. Typical Cavity Wall FIG. 1 Cavity walls, long common in Europe, were first built in the United States as early as 1850. However, it was not until 1937 that this type of construction gained official acceptance by any building code or construction agency in the U.S. Since then, interest in and use of cavity walls in this country has increased rapidly. Extensive testing and research and empirical evidence of existing cavity wall construction has been used to determine cavity wall properties and performance.
  • Cavitycomplete Wall System Brochure

    Cavitycomplete Wall System Brochure

    CavityComplete.com 844-CAV-COMP Specify and Install with Confi dence With CavityComplete® Wall Systems, you can reduce liability and effi ciently specify and detail quality assemblies with components that are tested as a system and are completely compatible*, code compliant and warrantied** to perform together. Effi ciency and Reduced Liability: With the introduction of CavityComplete® Wall Systems, you can easily specify and detail high performance assemblies with components that are tested, proven and fully documented to produce wall systems you can have confi dence in. This helps save time and minimizes the risk for errors and omissions. Quality: The CavityComplete® Wall Systems feature components that were tested together to produce systemized codes and standards compliance data. Each component is great on its own, and when combined, they produce wall systems that provide thermal effi ciency, continuous insulation, fi re resistance, air and water management, vapor resistance and veneer anchoring systems, plus design options that are engineered to maximize performance by climatic region. Recognized and trusted: The easily available, category-leading product components of CavityComplete® Wall Systems are recognized by architects, Consultants, contractors and building inspectors for delivering long-term performance. The trusted brands behind CavityComplete® Wall Systems deliver added peace of mind for those creating, owning and occupying the building. With thousands of products to choose from when designing a masonry cavity wall system for your upcoming project, the CavityComplete® Wall Systems team has designed complete systems that take the guesswork out of specifi cation. CavityComplete® eliminates the headaches of having to make literally thousands of decisions when designing a wall, which increases design effi ciency, and allows the you to spend more time designing a unique building and less time worrying about the nuts and bolts of the wall.
  • Ventilated Masonry Cavity Walls

    Ventilated Masonry Cavity Walls

    s designers and building own­ moisture-storage capacity. Additionally, the and associated framing. All these factors ers place increased demands drying efficiency of uninsulated mass-ma­ make rapid drainage and drying of exterior on exterior walls to isolate the sonry walls is aided by the passage of inte­ wall systems even more vital. outside climate from the inte­ rior energy out through the mass (Figure 1). rior controlled environment, Today, thick mass masonry walls have CAVITY WALL TYPES exterior walls’ capability to been replaced with thin, energy-efficient Today there are three main types of cav­ Aprovide long-term assured performance and economical masonry cavity wall con­ ity wall design: must grow. As building enclosure design struction with internal water and air bar­ • Unventilated evolves, it is becoming more evident that riers, continuous insulation, and air space • Pressure-equalized important attributes of durable exterior cav­ between the structural support wall and the • Ventilated ity walls, in wet climates, must include the exterior veneer (Figure 2). This modern wall ability of the exterior wall to drain and dry assembly has isolated the veneer to expe­ UNVENTILATED CAVITY WALLS quickly to protect the wall assembly from rience more thermal and material move­ The roots of modern cavity wall design moisture-related issues. ment, moisture-related stresses, and stain­ can be traced back to the late 1800s, when ing potential than massive masonry walls. wall systems started to become less massive, CAVITY WALL EVOLUTION Adding to the challenge of designing dura­ due to better material strength, improved Historically, exterior masonry walls ble exterior wall managed water by utilizing an abundance systems, structural Figure 2 – Modern masonry cavity wall of mass to absorb moisture from the envi­ masonry support detail from International Masonry Institute’s ronment and then release it back slowly by walls are some­ Masonry Detailing series, www.imiweb.org.
  • Cavity Wall Insulation Inspection

    Cavity Wall Insulation Inspection

    Northern Ireland Housing Executive Cavity Wall Insulation Inspection Final Report – March 2014 Roles and Acknowledgements Within SERC, the project was led by John Ross MSc (Research Lecturer) who carried out the data analysis and authored this report. Assistance during the preparation and research stages was provided by Stewart Nelson (Lecturer). The Geographical Information Systems (GIS) maps were created by Kathryn McNair (GIS Consultant). Overseeing the project delivery within SERC was Janice Cooke (Project Manager, Business Services). The excellent surveying work, sometimes in extremely demanding circumstances, was carried out by Jim Stewart and Mark Hunter from approved subcontractor, Energy Store. The bespoke surveying software package and advice was provided by Gareth McCullough and his team at G3S Software. Thanks to the staff at NIHE for their support, in particular Joe Frey (Head of Research) and Shauna Mulgrew (Project Manager, Research Department) and her staff. This report has been commissioned by and prepared by SERC for the NIHE in accordance with the Terms of Reference between the parties, and no other purpose. SERC does not accept or assume any responsibility, liability or duty of care for any other purpose or to any other person to whom this report is shown or into whose hands it may come, except expressly agreed by SERC in writing. 2 Northern Ireland Housing Executive Cavity Wall Insulation Inspection Final Report – March 2014 Contents 1.0 EXECUTIVE SUMMARY................................................................................
  • Brick Masonry Rain Screen Walls

    Brick Masonry Rain Screen Walls

    27 Technical Notes REVISED August on Brick Construction 1994 Brick Industry Association 11490 Commerce Park Drive, Reston, Virginia 20191 BRICK MASONRY RAIN SCREEN WALLS Abstract: Pressure equalization across the exterior wythe of brick veneer and cavity walls allows the rain screen principle to minimize the infiltration of rain into exterior walls. This Technical Notes focuses on the design and wall components that contribute to the pressure equalized rain screen wall. A compartmented air cavity behind the exterior brick wythe, a rigid air barrier system and adequate venting area of the exterior cladding in relation to the leakage area of the air barrier are necessary elements. Key Words: air barrier, air retarder, brick veneer, cavity wall, drainage wall, exterior cladding, pressure equalization, rain screen, wind loads. INTRODUCTION HISTORY Rain penetration through walls can damage the build- The rain screen principle has been used intuitively for ing envelope. Corrosion of metal accessories in the exteri- many years. One of the first references to it was made in or cladding, efflorescence of the masonry and damage to 1946 by C. H. Johansson entitled, "The Influence of interior finishes and staining are just a few examples of Moisture on the Heat Conductance for Brick". It was not problems related to moisture penetration. Water penetra- until sixteen years later that researchers began to under- tion affects the appearance and function of a variety of stand how to apply the fundamental laws of physics to the brick masonry wall systems. development of the rain screen principle for practical use. Over the years, many methods have been used to In 1962, Birkeland of the Norwegian Building Institute prevent moisture penetration of walls, some more suc- wrote Curtain Walls in which he stated: cessfully than others.
  • Cavity Wall Construction Cavity Wall

    Cavity Wall Construction Cavity Wall

    CavityCavityCavity WallWallWall ConstructionConstructionConstruction By Robert G. Wilkin, P.E. Cavity wall masonry construction has come into its own in the last 40 years.© CopyrightPrior to that time masonry walls generally consisted of various types of solid masonry in multiple wythes. Robert G. Wilkin, P.E., C.E. is an Associate with The cavity wall, as it has come to be designed, consists of a masonry veneer, CBI Consulting, Inc., Boston, MA. usually brick but can be stone or solid concrete block, separated from a support Mr. Wilkin has specialized for structure by a cavity generally 1” to 2” deep. The support structure began as over 30 years in the evaluation, concrete block masonry, but has evolved into steel stud wall construction with testing and design of building envelope construction and repairs. a wallboard type of sheathing. The key to a good cavity wall design is to recognize that masonry is neither water resistant nor stable. Even new, freshly pointed brick masonry is porous to water. Masonry moves with moisture changes, temperature cycling, and chemical attack, in addition to wind and seismic forces. Water Leakage Mitigation The original masonry wall systems relied on In cavity wall construction, the key to water STRUCTUREthe mass of the masonry to absorb water leakage control is a properly designed and penetrating the exterior of the wall. The high constructed drainage system between the backup lime content mortars were more absorbent than wall and the masonry veneer. This system must magazinehigher strength mortars containing Portland include a water resistant membrane on the cement. This generally stopped the leakage before backup wall, a properly installed flashing it reached the interior of the relatively thick walls.
  • 6-1B R Values of Multi-Wythe CM Walls

    6-1B R Values of Multi-Wythe CM Walls

    NCMA TEK National Concrete Masonry Association an information series from the national authority on concrete masonry technology R-VALUES OF MULTI-WYTHE TEK 6-1B CONCRETE MASONRY WALLS Energy & IAQ (2009) Keywords: cavity wall, insulation, multi-wythe wall, board, foamed-in-place, or batt insulation placed between studs thermal properties, R-values, U-factors or furrings. In addition, multi-wythe construction lends itself to placing insulation between two wythes of masonry when the wythes are separated to form a cavity. INTRODUCTION Placing insulation between two wythes of masonry offers maximum protection for the insulation. The means to meet or Thermal resistance values (R-values) are numerical esti- exceed model building code requirements are easily obtain- mates of a building material’s or element’s ability to resist heat able, since the cavity installation allows a continuous layer fl ow under steady-state conditions. Historically, R-values alone of insulation to envelop the masonry. Thus, this continuous have been used in simple hand calculations to estimate building insulation layer can also reduce heat loss due to air infi ltration. energy consumption. Today, the R-value, and more commonly Cavity walls are also sometimes built with interior insulation U-factor (coeffi cient of thermal transmission) are used with only, leaving the entire cavity open for drainage. other factors such as building orientation, thermal mass, and Cavity walls, as well as single wythe masonry with core climate to more accurately represent the building envelope's insulation, also provide hard, durable surfaces on both sides thermal performance for a given building occupancy. of the wall, effi ciently utilizing the inherent impact resistance R-values of building materials are determined in the labo- and low maintenance needs of concrete masonry.
  • RAINSCREEN and BACK-VENTILATED DRAINED CAVITY WALL SYSTEMS: PRACTICAL APPLICATIONS for HIGH PERFORMANCE BUILDINGS

    RAINSCREEN and BACK-VENTILATED DRAINED CAVITY WALL SYSTEMS: PRACTICAL APPLICATIONS for HIGH PERFORMANCE BUILDINGS

    RAINSCREEN and BACK-VENTILATED DRAINED CAVITY WALL SYSTEMS: PRACTICAL APPLICATIONS for HIGH PERFORMANCE BUILDINGS David Altenhofen, The Facade Group INTRODUCTION: High performance buildings must have exterior wall assemblies that provide a superior level of control and performance. Unfortunately, there is little quantifiable data to establish the performance of the enclosure. This paper provides recommendations for high performance exterior wall assemblies that are capable of providing the expected performance within current understandings of building science and practical application. It is the intent of the paper to assist Architects to understand the underlying building science and the practical application of that science to the design and detailing of exterior walls to deliver high performance. Proven, redundant, watertight, air tight, highly reliable, energy efficient walls are targeted. While many other wall assemblies may provide completely acceptable performance under normal expectations, this paper is intended to address the elevated expectations for high performance buildings. The concepts and features included apply to all building types, but the article is focused primarily on commercial construction. The wall assemblies included herein are generally more expensive than lower performing assemblies and the value decisions for performance versus cost must be made by project teams. The recommendations in this paper are based on the experience and knowledge of the members of the AIA Technical Design for Building Performance Knowledge Community. This article uses “The Rain Screen Principle” by Mike Lough, also published by the TDBP for a foundational description of the principles for how these wall assemblies resist the passage of air and water. It is recommended to read “The Rain Screen Principle” before this article.
  • Designing and Building Resilient Wall Systems with Engineered Rainscreen Products

    Designing and Building Resilient Wall Systems With Engineered Rainscreen Products Laverne Dalgleish and Keith Lolley Building Enclosure Moisture Management Institute 41-250 McDermot Ave., Winnipeg, MB R3B 0S5 Phone: 866-272-0000 • fax: 866-956-5819 • e-mail: [email protected] 3 1 S T R C I I N T E R N A T I O N A L C O N V E N T I O N A N D T R A D E S H O W • M A R C H 1 0 -1 5 , 2 0 1 6 D A L G L E I S H • 1 Abstract Moisture management is the single most critical function in designing and construct­ ing a building. Today owners want buildings that are resilient, efficient, and durable. This presentation covers the key benefits and requirements to building a resilient wall assembly and explores the use of engineered rainscreen technology to do so. The presentation will cover how an engineered rainscreen functions and how this technology can be used to build a resilient wall assembly. The new standard, ASTM E2925 – 14, Standard Specification for Manufactured Polymeric Drainage and Ventilation Materials Used to Provide a Rainscreen Function, will be introduced and explained. The paper will show how a rainscreen wall can improve upon traditional construction methods and how it can be designed and constructed to produce a resilient wall assembly. Speaker Laverne Dalgleish — Building Enclosure Moisture Management Institute LAVERNE DALGLEISH is an internationally recognized speaker. He travels all over North America to give presentations on the benefits of using rainscreen products to build resil­ ient wall assemblies.
  • The Importance of Space in Rainscreen Technology START

    The Importance of Space in Rainscreen Technology START

    About the Instructor About the Sponsor Ask an Expert This Online Learning Seminar is available through a professional courtesy provided by: Advanced Building Products Inc. 95 Cyro Dr. Sanford, ME 04073 Tel: 1-800-252-2306 Fax:1-207-490-2998 Email: [email protected] Web: https://www.advancedbuildingproducts.com/ The Importance of Space in Rainscreen Technology START ©2019 Advanced Building Products Inc. The material contained in this course was researched, assembled, and produced by Advanced Building Products Inc. and remains its property. Questions or concerns about the content of this course should be directed to the program instructor. This powered by multimedia product is the copyright of AEC Daily. ©2019 ∙ Table of Contents < Slide 1 of 83 > About the Instructor About the Sponsor Ask an Expert The Importance of Space in Rainscreen Technology To ensure the current status of this course, including relevant association approvals, please view the course details here. The American Institute of Architects Course No. AEC1235 This program qualifies for 1.0 LU/HSW Hour Course Expiry Date: 05/13/2022 AEC Daily Corporation is a registered provider of AIA-approved continuing education under Provider Number J624. All registered AIA CES Providers must comply with the AIA Standards for Continuing Education Programs. Any questions or concerns about this provider or this learning program may be sent to AIA CES ([email protected] or (800) AIA 3837, Option 3). This learning program is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.
  • Building Shell and Thermal Insulation

    Building Shell and Thermal Insulation

    © IEA ETSAP - Technology Brief R01 – June 2012 - www.etsap.org Building Shell and Thermal Insulation HIGHLIGHTS PROCESS AND TECHNOLOGY STATUS – The building shell and thermal insulation have a significant effect on heating and cooling loads. Incorporating high levels of thermal insulation and increasing air tightness in buildings can reduce energy demand in both cold and warm climates. In almost all OECD countries, Building Codes require new buildings to include some level of thermal insulation; in general, colder climates have stricter requirements although the standards vary significantly between countries and regions. Older building stock typically has lower levels of insulation, as Building Codes have become stricter over time and many properties are specified to meet the minimum standards in force at the time of construction. Many developing countries also have Building Codes; however, ensuring compliance has been a problem in the past. The most popular building thermal insulation materials include expanded polystyrene, extruded polystyrene, polyisocyanurates, polyurethane, mineral wool, cellulose (recycled newspapers) and fibreglass. The traditional market leader in the US is fibreglass and in Europe it is mineral wool. Both types are used primarily in the residential market. Demand for foamed plastic insulation (used mainly in non-residential market) is increasing due to the higher performance levels required by stricter Building Codes. Penetration of double-glazed windows is high in most European countries, and triple-glazed units are common in Scandinavian countries. Heat losses due to air infiltration may be reduced by using air tight construction and sheltering exposed walls. Some Building Codes have provisions for air tightness, but this is less common than for thermal insulation.
  • Brick Veneer/Concrete Masonry Walls

    Brick Veneer/Concrete Masonry Walls

    TECHNICAL NOTES on Brick Construction 28D 12007 Sunrise Valley Drive, Suite 430, Reston, Virginia 20191 | www.gobrick.com | 703-620-0010 June 2018 Brick Veneer/Concrete Masonry Walls Abstract: This Technical Note presents design, material and construction information for anchored brick veneer on concrete masonry backing. Description of properties, theories of structural design and proper detailing are presented. Refer to Technical Notes 28 and 28B for specific information related to drained wall assemblies with non-masonry backing. Key Words: anchored, brick, concrete masonry, design, expansion joints, flashing, thermal resistance, ties, veneer. SUMMARY OF RECOMMENDATIONS: Drainage/Air Space • For an air space wider than 4⅝ in. (177 mm) and not • 2 in. (51 mm) minimum air space recommended; 1 in. exceeding 6⅝ in. (168 mm), provide at least one tie (25.4 mm) minimum air space* required conforming to the requirements of Table 1 per 2.67 sq ft • For brick veneer, do not exceed 6⅝ in. (168 mm) (0.25 m²) of wall area between back of veneer and face of inner wythe unless • For an air space exceeding 6⅝ in. (168 mm), design ties are designed (see Ties) ties using TMS Code “Alternative design of anchored • For non-composite multi-wythe walls, do not exceed masonry veneer” provisions 4½ in. (114 mm) maximum between back of outer wythe • Provide additional ties within 12 in. (305 mm) of openings and face of inner wythe larger than 16 in. (406 mm) at a maximum spacing of 3 ft • Completely fill air space below wall base flashing with (0.91 m) o.c.