Lecture Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1512.08882V1 [Cond-Mat.Mes-Hall] 30 Dec 2015
Topological Phases: Classification of Topological Insulators and Superconductors of Non-Interacting Fermions, and Beyond Andreas W. W. Ludwig Department of Physics, University of California, Santa Barbara, CA 93106, USA After briefly recalling the quantum entanglement-based view of Topological Phases of Matter in order to outline the general context, we give an overview of different approaches to the classification problem of Topological Insulators and Superconductors of non-interacting Fermions. In particular, we review in some detail general symmetry aspects of the "Ten-Fold Way" which forms the foun- dation of the classification, and put different approaches to the classification in relationship with each other. We end by briefly mentioning some of the results obtained on the effect of interactions, mainly in three spatial dimensions. I. INTRODUCTION Based on the theoretical and, shortly thereafter, experimental discovery of the Z2 Topological Insulators in d = 2 and d = 3 spatial dimensions dominated by spin-orbit interactions (see [1,2] for a review), the field of Topological Insulators and Superconductors has grown in the last decade into what is arguably one of the most interesting and stimulating developments in Condensed Matter Physics. The field is now developing at an ever increasing pace in a number of directions. While the understanding of fully interacting phases is still evolving, our understanding of Topological Insulators and Superconductors of non-interacting Fermions is now very well established and complete, and it serves as a stepping stone for further developments. Here we will provide an overview of different approaches to the classification problem of non-interacting Fermionic Topological Insulators and Superconductors, and exhibit connections between these approaches which address the problem from very different angles. -
The Reality of Casimir Friction
Review The Reality of Casimir Friction Kimball A. Milton 1,*, Johan S. Høye 2 and Iver Brevik 3 1 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA 2 Department of Physics, Norwegian University of Science and Technology, Trondheim 7491, Norway; [email protected] 3 Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway; [email protected] * Correspondence: [email protected]; Tel.: +1-405-325-3961 x 36325 Academic Editor: Sergei D. Odintsov Received: 17 March 2016; Accepted: 21 April 2016; Published: date Abstract: For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum electromagnetic fluctuations, which break time-reversal symmetry. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Partly because of the lack of contact with observations, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here, we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics. Keywords: Casimir friction; dissipation; quantum fluctuations; fluctuation-dissipation theorem 1. Introduction The essence of quantum mechanics is fluctuations in sources (currents) and fields. This underlies the great successes of quantum electrodynamics such as explaining the Lamb shift [1] and the anomalous magnetic moment of the electron [2]. -
Second Quantization
Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0. -
Green-Kubo Formula for Open Systems
Green-Kubo formula for open systems Abhishek Dhar Anupam Kundu (CEA, Grenoble) Onuttom Narayan (UC, Santa Cruz) Keiji Saito (Tokyo University) Raman Research Institute SNBose, Kolkata, India November 2010 (RRI) July 2010 1 / 31 Outline Introduction to the problem. Green-Kubo formula for thermal conductivity. Anomalous heat conduction in low-dimensional systems. Conductance for open systems: Landauer formula, Fluctuation theorem. Exact linear response formula for conductance. Frequency dependent conductance. Summary. Classical treatment. (RRI) July 2010 2 / 31 Response to small temperature difference J T TL R For small ∆T = TL − TR and system size L : ∆T Fourier0s law implies : j ∼ κ L The thermal conductivity κ is expected to be an intrinsic material property. (RRI) July 2010 3 / 31 Computing κ j L κ = ∆T Computing κ is difficult since this is a nonequilibrium problem. In equilibrium we know that e−βH(x,v) Prob[x, v] = P (x, v) = 0 Z Hence we can find the expectation value of any physical observable, say A(x, v). Thus Z Z hAi = dx dv A(x, v) P0(x, v) . For a system with one end at T and the other end at T + ∆T , in general, one does not know Prob(x, v) even in the nonequilibrium steady state. Hence difficult to find j = hj(x, v)i. (RRI) July 2010 4 / 31 Green-Kubo linear response theory For small deviations from equilibrium caused by small changes of Hamiltonian, one can do perturbation theory. Start with equilibrium phase space distribution P0(x, v) corresponding to Hamiltonian H. In this case hJi = 0. -
Chapter 7 Second Quantization 7.1 Creation and Annihilation Operators
Chapter 7 Second Quantization Creation and annihilation operators. Occupation number. Anticommutation relations. Normal product. Wick's theorem. One-body operator in second quantization. Hartree- Fock potential. Two-particle Random Phase Approximation (RPA). Two-particle Tamm- Dankoff Approximation (TDA). 7.1 Creation and annihilation operators In Fig. 3 of the previous Chapter it is shown the single-particle levels generated by a double-magic core containing A nucleons. Below the Fermi level (FL) all states hi are occupied and one can not place a particle there. In other words, the A-particle state j0i, with all levels hi occupied, is the ground state of the inert (frozen) double magic core. Above the FL all states are empty and, therefore, a particle can be created in one of the levels denoted by pi in the Figure. In Second Quantization one introduces the y j i creation operator cpi such that the state pi in the nucleus containing A+1 nucleons can be written as, j i y j i pi = cpi 0 (7.1) this state has to be normalized, that is, h j i h j y j i h j j i pi pi = 0 cpi cpi 0 = 0 cpi pi = 1 (7.2) from where it follows that j0i = cpi jpii (7.3) and the operator cpi can be interpreted as the annihilation operator of a particle in the state jpii. This implies that the hole state hi in the (A-1)-nucleon system is jhii = chi j0i (7.4) Occupation number and anticommutation relations One notices that the number y nj = h0jcjcjj0i (7.5) is nj = 1 is j is a hole state and nj = 0 if j is a particle state. -
SECOND QUANTIZATION Lecture Notes with Course Quantum Theory
SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION x1. Introduction and history 3 x2. The N-boson system 4 x3. The many-boson system 5 x4. Identical spin-0 particles 8 x5. The N-fermion system 13 x6. The many-fermion system 14 1 x7. Identical spin- 2 particles 17 x8. Bose-Einstein and Fermi-Dirac distributions 19 Second Quantization 1. Introduction and history Second quantization is the standard formulation of quantum many-particle theory. It is important for use both in Quantum Field Theory (because a quantized field is a qm op- erator with many degrees of freedom) and in (Quantum) Condensed Matter Theory (since matter involves many particles). Identical (= indistinguishable) particles −! state of two particles must either be symmetric or anti-symmetric under exchange of the particles. 1 ja ⊗ biB = p (ja1 ⊗ b2i + ja2 ⊗ b1i) bosons; symmetric (1a) 2 1 ja ⊗ biF = p (ja1 ⊗ b2i − ja2 ⊗ b1i) fermions; anti − symmetric (1b) 2 Motivation: why do we need the \second quantization formalism"? (a) for practical reasons: computing matrix elements between N-particle symmetrized wave functions involves (N!)2 terms (integrals); see the symmetrized states below. (b) it will be extremely useful to have a formalism that can handle a non-fixed particle number N, as in the grand-canonical ensemble in Statistical Physics; especially if you want to describe processes in which particles are created and annihilated (as in typical high-energy physics accelerator experiments). So: both for Condensed Matter and High-Energy Physics this formalism is crucial! (c) To describe interactions the formalism to be introduced will be vastly superior to the wave-function- and Hilbert-space-descriptions. -
Quantum Noise and Quantum Measurement
Quantum noise and quantum measurement Aashish A. Clerk Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 1 Contents 1 Introduction 1 2 Quantum noise spectral densities: some essential features 2 2.1 Classical noise basics 2 2.2 Quantum noise spectral densities 3 2.3 Brief example: current noise of a quantum point contact 9 2.4 Heisenberg inequality on detector quantum noise 10 3 Quantum limit on QND qubit detection 16 3.1 Measurement rate and dephasing rate 16 3.2 Efficiency ratio 18 3.3 Example: QPC detector 20 3.4 Significance of the quantum limit on QND qubit detection 23 3.5 QND quantum limit beyond linear response 23 4 Quantum limit on linear amplification: the op-amp mode 24 4.1 Weak continuous position detection 24 4.2 A possible correlation-based loophole? 26 4.3 Power gain 27 4.4 Simplifications for a detector with ideal quantum noise and large power gain 30 4.5 Derivation of the quantum limit 30 4.6 Noise temperature 33 4.7 Quantum limit on an \op-amp" style voltage amplifier 33 5 Quantum limit on a linear-amplifier: scattering mode 38 5.1 Caves-Haus formulation of the scattering-mode quantum limit 38 5.2 Bosonic Scattering Description of a Two-Port Amplifier 41 References 50 1 Introduction The fact that quantum mechanics can place restrictions on our ability to make measurements is something we all encounter in our first quantum mechanics class. One is typically presented with the example of the Heisenberg microscope (Heisenberg, 1930), where the position of a particle is measured by scattering light off it. -
Second Quantization∗
Second Quantization∗ Jörg Schmalian May 19, 2016 1 The harmonic oscillator: raising and lowering operators Lets first reanalyze the harmonic oscillator with potential m!2 V (x) = x2 (1) 2 where ! is the frequency of the oscillator. One of the numerous approaches we use to solve this problem is based on the following representation of the momentum and position operators: r x = ~ ay + a b 2m! b b r m ! p = i ~ ay − a : (2) b 2 b b From the canonical commutation relation [x;b pb] = i~ (3) follows y ba; ba = 1 y y [ba; ba] = ba ; ba = 0: (4) Inverting the above expression yields rm! i ba = xb + pb 2~ m! r y m! i ba = xb − pb (5) 2~ m! ∗Copyright Jörg Schmalian, 2016 1 y demonstrating that ba is indeed the operator adjoined to ba. We also defined the operator y Nb = ba ba (6) which is Hermitian and thus represents a physical observable. It holds m! i i Nb = xb − pb xb + pb 2~ m! m! m! 2 1 2 i = xb + pb − [p;b xb] 2~ 2m~! 2~ 2 2 1 pb m! 2 1 = + xb − : (7) ~! 2m 2 2 We therefore obtain 1 Hb = ! Nb + : (8) ~ 2 1 Since the eigenvalues of Hb are given as En = ~! n + 2 we conclude that the eigenvalues of the operator Nb are the integers n that determine the eigenstates of the harmonic oscillator. Nb jni = n jni : (9) y Using the above commutation relation ba; ba = 1 we were able to show that p a jni = n jn − 1i b p y ba jni = n + 1 jn + 1i (10) y The operator ba and ba raise and lower the quantum number (i.e. -
Casimir-Polder Interaction in Second Quantization
Universitat¨ Potsdam Institut fur¨ Physik und Astronomie Casimir-Polder interaction in second quantization Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissen- schaftsdisziplin theoretische Physik. Eingereicht am 21. Marz¨ 2011 an der Mathematisch – Naturwissen- schaftlichen Fakultat¨ der Universitat¨ Potsdam von Jurgen¨ Schiefele Betreuer: PD Dr. Carsten Henkel This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2011/5417/ URN urn:nbn:de:kobv:517-opus-54171 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54171 Abstract The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predic- tions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. -
Notes on Green's Functions Theory for Quantum Many-Body Systems
Notes on Green's Functions Theory for Quantum Many-Body Systems Carlo Barbieri Department of Physics, University of Surrey, Guildford GU2 7XH, UK June 2015 Literature A modern and compresensive monography is • W. H. Dickhoff and D. Van Neck, Many-Body Theory Exposed!, 2nd ed. (World Scientific, Singapore, 2007). This book covers several applications of Green's functions done in recent years, including nuclear and electroncic systems. Most the material of these lectures can be found here. Two popular textbooks, that cover the almost complete formalism, are • A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Physics (McGraw-Hill, New York, 1971), • A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975). Other useful books on many-body Green's functions theory, include • R. D. Mattuck, A Guide to Feynmnan Diagrams in the Many-Body Problem, (McGraw-Hill, 1976) [reprinted by Dover, 1992], • J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge MA, 1986), • J. W. Negele and H. Orland, Quantum Many-Particle Systems (Ben- jamin, Redwood City CA, 1988). 2 Chapter 1 Preliminaries: Basic Formulae of Second Quantization and Pictures Many-body Green's functions (MBGF) are a set of techniques that originated in quantum field theory but have also found wide applications to the many- body problem. In this case, the focus are complex systems such as crystals, molecules, or atomic nuclei. However, many-body Green's functions still share the same language with elementary particles theory, and have several concepts in common. -
Second Quantization I Fermion
Second quantization for fermions Masatsugu Sei Suzuki Department of Physics SUNY at Binghamton (Date: April 20, 2017) Vladimir Aleksandrovich Fock (December 22, 1898 – December 27, 1974) was a Soviet physicist, who did foundational work on quantum mechanics and quantum electrodynamics. His primary scientific contribution lies in the development of quantum physics, although he also contributed significantly to the fields of mechanics, theoretical optics, theory of gravitation, physics of continuous media. In 1926 he derived the Klein– Gordon equation. He gave his name to Fock space, the Fock representation and Fock state, and developed the Hartree–Fock method in 1930. He made many subsequent scientific contributions, during the rest of his life. Fock developed the electromagnetic methods for geophysical exploration in a book The theory of the study of the rocks resistance by the carottage method (1933); the methods are called the well logging in modern literature. Fock made significant contributions to general relativity theory, specifically for the many body problems. https://en.wikipedia.org/wiki/Vladimir_Fock 1. Introduction What is the definition of the second quantization? In quantum mechanics, the system behaves like wave and like particle (duality). The first quantization is that particles behave like waves. For example, the wave function of electrons is a solution of the Schrödinger equation. Although electromagnetic waves behave like wave, they also behave like particle, as known as photon. This idea is known as second quantization; waves behave like particles. Instead of traditional treatment of a wave function as a solution of the Schrödinger equation in the position representation or representation of some dynamical observable, we will now find a totally different basis formed by number states (or Fock states). -
1 Lecture 3. Second Quantization, Bosons
Manyb o dy phenomena in condensed matter and atomic physics Last modied September Lecture Second Quantization Bosons In this lecture we discuss second quantization a formalism that is commonly used to analyze manyb o dy problems The key ideas of this metho d were develop ed starting from the initial work of Dirac most notably by Fo ck and Jordan In this approach one thinks of multiparticle states of b osons or fermions as single particle states each lled with a certain numb er of identical particles The language of second quantization often allows to reduce the manybo dy problem to a single particle problem dened in terms of quasiparticles ie particles dressed by interactions The Fo ck space The manyb o dy problem is dened for N particles here b osons describ ed by the sum of singleparticle Hamiltonians and the twob o dy interaction Hamiltonian N X X (1) (2) H H x H x x b a a a�1 a6�b 2 h (1) (2) 0 (2) 0 2 H x H x x U x x U x r x m where x are particle co ordinates In some rare cases eg for nuclear particles one a also has to include the threeparticle and higher order multiparticle interactions such as P (3) H x x x etc a b c abc The system is describ ed by the manyb o dy wavefunction x x x symmetric 2 1 N with resp ect to the p ermutations of co ordinates x The symmetry requirement fol a lows from pareticles indestinguishability and Bose statistics ie the wav efunction invari ance under p ermutations of the particles The wavefunction x x x ob eys the 2 1 N h H Since the numb er of particles in typical