The Chemistry of Specificity in the Rinorea- Cymothoe Host-Herbivore

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of Specificity in the Rinorea- Cymothoe Host-Herbivore THE CHEMISTRY OF SPECIFICITY IN THE RINOREA - CYMOTHOE HOST -HERBIVORE ASSOCIATION AN EXPERIMENTAL INVESTIGATING INTO THE CHEMICAL BASIS FOR RECOGNITION BY THE AFROTROPICAL SPECIALIST HERBIVORE CYMOTHOE EGESTA (N YMPHALIDAE ), OF ITS HOST PLANT RINOREA ILICIFOLIA (V IOLACEAE ) AUTHOR : MS C THESIS GERCO S. NIEZING AUGUST 2011 REG . NO. 860414 604 010 BIS-80436 SUPERVISION : FREEK T. BAKKER -BIOSYSTEMATICS GROUP ROBIN VAN VELZEN -BIOSYSTEMATICS GROUP MAARTEN A. JONGSMA -PRI BIOSCIENCE THE CHEMISTRY OF SPECIFICITY IN THE RINOREA -CYMOTHOE HOST -HERBIVORE ASSOCIATION NIEZING , AUGUST 2011 2 THE CHEMISTRY OF SPECIFICITY IN THE RINOREA -CYMOTHOE HOST -HERBIVORE ASSOCIATION NIEZING , AUGUST 2011 Title Page: 1: View of Kakum National Park from the Canopy Walkway 1 2 2: Cymothoe egesta eggs on a Rinorea ilicifolia leaf 3: Cage experiment with a female Cymothoe egesta feeding on coconut 3 4 4: Cymothoe egesta caterpillar on a young Rinorea ilicifolia leaf 5: LC-MS chromatogram, i.e. “the chemistry underlying host specificity” 5 1 THE CHEMISTRY OF SPECIFICITY IN THE RINOREA - CYMOTHOE HOST -HERBIVORE ASSOCIATION AN EXPERIMENTAL INVESTIGATING INTO THE CHEMICAL BASIS FOR RECOGNITION BY THE AFROTROPICAL SPECIALIST HERBIVORE CYMOTHOE EGESTA (N YMPHALIDAE ), OF ITS HOST PLANT RINOREA ILICIFOLIA (V IOLACEAE ) AUGUST 2011 MS C THESIS BIS-80436 Author: Gerco S. Niezing, BSc Reg. No. 860414 604 010 [email protected] Supervisors: Dr. Freek T. Bakker Biosystematics Group [email protected] Ir. Robin van Velzen Biosystematics Group [email protected] Dr. Ir. Maarten A. Jongsma PRI Bioscience [email protected] 3 THE CHEMISTRY OF SPECIFICITY IN THE RINOREA -CYMOTHOE HOST -HERBIVORE ASSOCIATION NIEZING , AUGUST 2011 PREFACE It was my ambition to have this thesis do two things for me personally: allow me to go somewhere far, warm and adventurous, as well as let me have a taste of scientific research. The first goal was met ten times over. I lived with a local family in a Ghanaian village where I connected intimately with the local culture and – every biologist’s dream – I could run around in a tropical rainforest. With regard to the second goal, I have explored some very diverse scientific aspects: field work, behavioural experimentation as well as lab work with cutting edge chemical analyses. At the top-level, this thesis deals with macroevolution, the science of speciation and the basis of biodiversity; this fascinates me more than anything. The methods I have used have never been performed in this manner before to my knowledge and that in my opinion already warrants this study. I did however often wonder whether I had not bitten off more than I could chew in constructing this project. Whilst actually being an animal biologist, I have herewith performed an investigation in the fields of ecology and phytochemistry using experimental methods that have never been done in this way before, at a chair group that normally deals with phylogenetic studies. Still, I am very well aware of the fact that the MSc thesis investigation is a training period. I have learned a great deal about science, evolution, the world and myself in the past year. It is my only hope that the esteemed reader will also learn something about the interesting world of insect-plant biology and the role of chemistry in its evolution. Gerco Niezing Wageningen, August 2011 4 THE CHEMISTRY OF SPECIFICITY IN THE RINOREA -CYMOTHOE HOST -HERBIVORE ASSOCIATION NIEZING , AUGUST 2011 TABLE OF CONTENTS Preface ....................................................................................................... 4 Table of Contents ........................................................................................ 5 Summary ................................................................................................... 6 Chapter 1 Introduction ............................................................................... 7 1.1 General introduction ......................................................................... 7 1.2 The case of Rinorea and Cymothoe ....................................................10 1.3 Oviposition preference as a proximate cause of host specificity .............12 1.4 Identifying chemicals involved in host recognition by Cymothoe ............13 1.5 Identifying chemicals involved in host recognition by Cymothoe ............14 1.6 Model association Rinorea ilicifolia-Cymothoe egesta ...........................16 1.7 Untargeted metabolomics approach ...................................................18 1.8 Testing of CPG as oviposition stimulant ..............................................23 1.9 Aims and hypotheses .......................................................................24 Chapter 2 Field work: set-up and observations .............................................25 2.1 Set-up and location .........................................................................25 2.2 Observations of Cymothoe egesta (oviposition) behavior ......................27 2.3 Miscellaneous observations ...............................................................32 Chapter 3 Untargeted metabolomics ...........................................................34 3.1 Method and materials ......................................................................34 Procedure in field work and sampling protocol ...........................................34 Metabolite extraction ..............................................................................35 LC PDA QTOF MS analysis .......................................................................36 Data processing .....................................................................................37 Metabolite identification ..........................................................................39 3.2 Results ..........................................................................................40 Sampling of Rinorea ilicifolia plant material ...............................................40 LC PDA TOF MS analysis and data processing ............................................41 Data analysis and peak selection .............................................................42 Metabolite identification ..........................................................................52 Discussion ............................................................................................54 Chapter 4 Testing of CPG as oviposition stimulant ........................................55 4.1 Obtaining 2-(3’-cyclopentenyl)glycine ................................................55 4.2 Testing for the presence of CPG using LC-MS ......................................57 Method .................................................................................................57 Results .................................................................................................58 Discussion ............................................................................................59 4.3 Behavioral experiment .....................................................................61 Methods and materials ...........................................................................61 Results and Discussion ...........................................................................65 Chapter 5 Conclusions ...............................................................................68 Chapter 6 Recommendations .....................................................................69 Acknowledgements .....................................................................................70 References ................................................................................................71 Appendix Preliminary testing of R. yaundensis .............................................76 5 THE CHEMISTRY OF SPECIFICITY IN THE RINOREA -CYMOTHOE HOST -HERBIVORE ASSOCIATION NIEZING , AUGUST 2011 SUMMARY Plants and phytophagous insects together show an enormous diversity. Studying the driving factors behind the diversification of these groups is a major topic in ecology and evolutionary biology. One of the most striking observations regarding this topic is the high level of host specialization by herbivorous insects. There may be a process of reciprocal co-evolution at the basis of the observed patterns. Most evidence for this however, is gathered with clear cases of plant defence and insect adaptation to these defences. Whether plants radiate because of selective pressure from insects, and what causes insects to be host specific even on apparently undefended plants is still not quite understood. This MSc thesis deals with these issues using the model host-herbivore association Rinorea-Cymothoe . This is an “extreme case” of host specificity involving a large number of congeneric species, and without clear co-adaptation regarding (anti-)herbivory. Within the WU biosystematics group, this association is being study by PhD student Robin van Velzen, who is performing phylogenetic studies of both genera to gain insight into the evolutionary patterns. In order to make this a more integrative study on different levels, I have attempted to uncover the chemical basis for the proximate cause of host specificity: female oviposition preference. To this end, I have conducted field work in Kakum National Park, Ghana, during which I observed and experimented on the model association Rinorea ilicifolia-Cymothoe egesta . I had two main approaches: 1) untargeted metabolomics to select hypothetical oviposition stimulants to Cymothoe egesta , and 2)
Recommended publications
  • Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
    Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop.
    [Show full text]
  • Special-Status Plants and Invasive/Noxious Weeds Technical Report
    SACRAMENTO MUNICIPAL UTILITY DISTRICT UPPER AMERICAN RIVER PROJECT (FERC NO. 2101) SPECIAL-STATUS PLANTS AND INVASIVE/NOXIOUS WEEDS TECHNICAL REPORT Prepared by: Devine Tarbell & Associates, Inc. Sacramento, California Prepared for: Sacramento Municipal Utility District Sacramento, California JULY 2004 Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101 TABLE OF CONTENTS Section & Description Page 1.0 INTRODUCTION .............................................................................................................. 1 2.0 BACKGROUND ................................................................................................................ 2 2.1 Special-Status Plants Study Plan ............................................................................ 2 2.2 Invasive/Noxious Weeds Study Plan...................................................................... 3 2.3 Water Year Types................................................................................................... 4 2.4 Agency Requested Information .............................................................................. 5 3.0 METHODS ......................................................................................................................... 5 3.1 Special-Status Plants............................................................................................... 5 3.2 Noxious Weeds ....................................................................................................... 6 4.0 RESULTS ..........................................................................................................................
    [Show full text]
  • Is Palatability of a Root-Hemiparasitic Plant Influenced by Its Host Species?
    Oecologia (2005) 146: 227–233 DOI 10.1007/s00442-005-0192-3 PLANTANIMALINTERACTIONS Martin Scha¨dler Æ Mareike Roeder Æ Roland Brandl Diethart Matthies Is palatability of a root-hemiparasitic plant influenced by its host species? Received: 16 November 2004 / Accepted: 21 June 2005 / Published online: 19 July 2005 Ó Springer-Verlag 2005 Abstract Palatability of parasitic plants may be influ- Introduction enced by their host species, because the parasites take up nutrients and secondary compounds from the hosts. If Parasitic plants attack shoots or roots of other plants and parasitic plants acquired the full spectrum of secondary take up water, nutrients and solutes from the hosts by compounds from their host, one would expect a corre- means of specialized contact organs (haustoria, Kuijt lation between host and parasite palatability. We 1969). About 1% of all plants are parasitic and parasitic examined the palatability of leaves of the root-hemi- plants are common components of many plant commu- parasite Melampyrum arvense grown with different host nities (Molau 1995). The majority of parasitic plants are plants and the palatability of these host plants for two actually hemiparasites that have green leaves and are generalist herbivores, the caterpillar of Spodoptera lit- able to photosynthesize (Kuijt 1969). Parasitic plants can toralis and the slug Arion lusitanicus. We used 19 species drastically reduce the growth of their host plants and of host plants from 11 families that are known to con- some are important agricultural pests (Parker and Riches tain a wide spectrum of anti-herbivore compounds. 1993; Pennings and Callaway 2002). Because parasitic Growth of M.
    [Show full text]
  • Rhinanthus Minor and Its Invertebrate Herbivores
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online A University of Sussex DPhil thesis Available online via Sussex Research Online: http://eprints.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details The ecological interactions of the hemiparasite Rhinanthus minor and its invertebrate herbivores By David Fisher Barham Thesis submitted for the degree of Doctor of Philosophy University of Sussex July 2010 1 University of Sussex David Fisher Barham Doctor of Philosophy The ecological interactions of the hemiparasite Rhinanthus minor and its invertebrate herbivores Summary The hemiparasite Rhinanthus minor is a common component of many northern temperate grasslands. It can have major impacts on ecosystem processes, and is often present at very high densities, therefore constituting an important potential food source for invertebrate herbivores. Thus, the aim of this thesis is to investigate the interaction between this hemiparasite and its invertebrate herbivores, and to explore the various ecological factors which are likely to affect this interaction. In the first series of experiments the thesis explores how the density of the hemiparasite affects the composition of the vegetation, the performance of the hemiparasite and the levels of invertebrate herbivore damage it receives.
    [Show full text]
  • A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern Natural Resource Report NPS/SEKI/ NRR—2013/665.14 In Memory of Rebecca Ciresa Wenk, Botaness ON THE COVER Giant Forest, Sequoia National Park Photography by: Brent Paull A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern Natural Resource Report NPS/SEKI/ NRR—2013/665.14 Ann Huber University of California Berkeley 41043 Grouse Drive Three Rivers, CA 93271 Adrian Das U.S. Geological Survey Western Ecological Research Center, Sequoia-Kings Canyon Field Station 47050 Generals Highway #4 Three Rivers, CA 93271 Rebecca Wenk University of California Berkeley 137 Mulford Hall Berkeley, CA 94720-3114 Sylvia Haultain Sequoia and Kings Canyon National Parks 47050 Generals Highway Three Rivers, CA 93271 June 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability.
    [Show full text]
  • Pollination and Evolution in Pedicularis (Scrophulariaceae) Elizabeth F
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 5 | Issue 2 Article 6 1962 Pollination and Evolution in Pedicularis (Scrophulariaceae) Elizabeth F. Sprague Sweet Briar College Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Sprague, Elizabeth F. (1962) "Pollination and Evolution in Pedicularis (Scrophulariaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 5: Iss. 2, Article 6. Available at: http://scholarship.claremont.edu/aliso/vol5/iss2/6 ALISO VoL. 5, No.2, pp. 181-209 MARCH 30, 1962 POLLINATION AND EVOLUTION IN PEDICULARIS (SCROPHULARIACEAE) 1 ELIZABETH F. SPRAGUE Sweet Briar College, Sweet Briar, Virginia Pedicularis is a circumboreal and North Temperate genus of semi-parasitic herbs belong­ ing to the tribe Euphrasieae. The complex flower shape is typical of bee flowers. The mode of pollination for seven species occurring in California has been studied. The purpose of this paper is to present data on pollination mechanisms of some western North American species and to relate these findings to the evolution of the genus. The seven species observed all fall into Li's (1948) infrageneric group, Allopbyllum, of alternate-leaved species with alternate flowers and terminal spicate or racemose inflores­ cences. They represent six of the eleven coastal series recognized by Pennell ( 1951) as natural groups having very homogeneous vegetative and floral characters. The following species were observed in California: P. crenulata occurs in the Rocky Mountains in Colorado, Wyoming, west into Nevada, and in a tiny relictual outpost of 25-30 white-flowering plants on Convict Creek, Inyo County, California.
    [Show full text]
  • Journal of Threatened Taxa
    The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Short Communication Diversity pattern of butterfly communities (Lepidoptera) in different habitat types of Nahan, Himachal Pradesh, India Suveena Thakur, Suneet Bahrdwaj & Amar Paul Singh 26 July 2021 | Vol. 13 | No. 8 | Pages: 19137–19143 DOI: 10.11609/jot.7095.13.8.19137-19143 For Focus, Scope, Aims, and Policies, visit htps://threatenedtaxa.org/index.php/JoTT/aims_scope For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/policies_various For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible
    [Show full text]
  • Cytotoxic Agent Against Human Gastric Carcinoma Cells from a Kind of Danaidae and Its Host Plant
    No. l ] Proc. Japan Acad., 75, Ser. B (1999) 7 Cytotoxic agent against human gastric carcinoma cells from a kind of Danaidae and its host plant By Kotaro KoYAMA,* ) Masaki BABA,* ) Masahiko WATANABE,* ) Hiroaki TAKAHASHI, Haruo ISHIYAMA,* * Takashi SUGIMURA,* M.J.A., and Keiji WAKABAYASHI (Contributedby TakashiSUGIMURA, M.J. A., Jan. 12,1999) Abstract: Cytotoxic activity of chloroform-methanol extracts from 92 kinds of butterflies was tested in vitro against human gastric carcinoma TMK-1 cells. Among the species tested, cytotoxicity was found only in a kind of Danaidae, Ideopsis similis, with an IC50 value at the 5 X 11106 dilution. The other butter- flies showed no activity, even at a dilution of 11102. Cytotoxic activity was also detected in chloroform-methanol extract from leaves of Tylophora tanakae, a food source for caterpillars of I. similis. The active principles in I. similis were thus suggested to be derived from compounds present in the leaves of T tanakae. Key words: Cytotoxic agent; gastric carcinoma cell; Danaidae; Ideopsis similis; Tylophora tanakae. As part of the search for cancer cures, an extensive vitro, and found activity in three species of butterflies, screening for anti-cancer drugs started about 40 years Pieris rapae, Pieris napi and Pieris brassicae.9~ The ago. Tremendous numbers of compounds have been active principle, named pierisin, in the pupae of P examined in in vitro and in vivo test systems, but, the rapae was elucidated to be protein having a molecular number of chemotherapeutic agents which have weight of 98 kDa.10~Pierisin showed cytotoxic effects become approved for clinical application is less than against various kinds of human cancer cell lines including 100.1)'2)Taking a variety of types of cancer and the effec- TMK-1, with IC54 values ranging from 0.043 ng to 150 tiveness of available agents into consideration, further .'°" ) ng/ml studies of new anti-cancer compounds are required.
    [Show full text]
  • Bioactivity of 68 Species of Medicinal Plants of Eastern Nicaragua
    Journal of Pharmacognosy and Phytochemistry 2020; 9(3): 101-112 E-ISSN: 2278-4136 P-ISSN: 2349-8234 www.phytojournal.com Bioactivity of 68 Species of Medicinal Plants of JPP 2020; 9(3): 101-112 Received: 01-03-2020 Eastern Nicaragua Accepted: 03-04-2020 Felix G Coe Felix G Coe, Dimpi M Parikh, Caley A Johnson, Monika Kucharczyk and Department of Ecology and Janet A Tovar Evolutionary Biology, University of Connecticut, Storrs Abstract Dimpi M Parikh Context: Plant based medicinals form the basis for a significant part of medical treatment in many places Department of Ecology and Including Nicaragua. Tests that indicate the presence/absence of alkaloids, and general biotoxicity Evolutionary Biology, evaluations are critical elements to predicting effectiveness and evaluating safety. University of Connecticut, Storrs Objective: To determine the bioactivity and cytotoxicity of aqueous extracts of widely used medicinal species in eastern Nicaragua. Caley A Johnson Materials and Methods: Ethnomedicinal applications were obtained from interviews of traditional Department of Ecology and healers. We used Dragendorff’s reagent to test alkaloids and brine shrimp for cytotoxicity of aqueous Evolutionary Biology, extracts. University of Connecticut, Storrs Results: Forty-five of the 68 species (55 genera and 33 plant families) tested positive for alkaloids. The Monika Kucharczyk median lethal concentration that kills 50% of the larvae within 24 h of contact with the extract (LC50) Department of Ecology and was less than 249 µg/mL for 6 (9%) species, 250-499 µg/mL for 7 (10%) species, 500-1000 µg/mL for Evolutionary Biology, 27 (40%) species, 1001-2500 µg/mL for 10 (15%) species, 2501-5000 µg/mL for 12 (18%) species, University of Connecticut, Storrs 5001- 7500 µg/mL for 5 (7%) species and between 7501-10000 µg/mL for 1 (1%) species.
    [Show full text]
  • The Linnaean Collections
    THE LINNEAN SPECIAL ISSUE No. 7 The Linnaean Collections edited by B. Gardiner and M. Morris WILEY-BLACKWELL 9600 Garsington Road, Oxford OX4 2DQ © 2007 The Linnean Society of London All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher. The designations of geographic entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the publishers, the Linnean Society, the editors or any other participating organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The Linnaean Collections Introduction In its creation the Linnaean methodology owes as much to Artedi as to Linneaus himself. So how did this come about? It was in the spring of 1729 when Linnaeus first met Artedi in Uppsala and they remained together for just over seven years. It was during this period that they not only became the closest of friends but also developed what was to become their modus operandi. Artedi was especially interested in natural history, mineralogy and chemistry; Linnaeus on the other hand was far more interested in botany. Thus it was at this point that they decided to split up the natural world between them. Artedi took the fishes, amphibia and reptiles, Linnaeus the plants, insects and birds and, while both agreed to work on the mammals, Linneaus obligingly gave over one plant family – the Umbelliforae – to Artedi “as he wanted to work out a new method of classifying them”.
    [Show full text]
  • Appendix 6 Biological Report (PDF)
    Biological Constraints Analysis Tahoe Donner 5-Year Trail Implementation Plan Truckee, Nevada County, CA Nevada County File Number ___ Prepared for: Tahoe Donner Association Forrest Huisman, Director of Capital Projects 11509 Northwoods Boulevard Truckee, California 96161 530-587-9487 Prepared by: Micki Kelly Kelly Biological Consulting PO Box 1625 Truckee, CA 96160 530-582-9713 June 2015, Revised December 2015 Biological Constraints Report, Tahoe Donner Trails 5-Year Implementation Plan December 2015 Table of Contents 1.0 INFORMATION SUMMARY ..................................................................................................................................... 1 2.0 PROJECT AND PROPERTY DESCRIPTION ................................................................................................................. 4 2.1 SITE OVERVIEW ............................................................................................................................................................ 4 2.2 REGULATORY FRAMEWORK ............................................................................................................................................. 4 2.2.1 Special-Status Species ...................................................................................................................................... 5 2.2.2 Wetlands and Waters of the U.S. ..................................................................................................................... 6 2.2.3 Waters of the State .........................................................................................................................................
    [Show full text]
  • Morpho Butterfly Scales
    Bioinspired, Biomimetic and Nanobiomaterials Pages 68–72 http://dx.doi.org/10.1680/bbn.14.00026 Volume 4 Issue BBN1 Memorial Issue Short Communication Received 25/06/2014 Accepted 28/07/2014 Making photonic structures via cell culture: Published online 03/08/2014 Morpho butterfly scales Keywords: biomimetics\cell culture\development\nanostructu res\natural photonics\Morpho butterfly Parker and Townley ice | science ICE Publishing: All rights reserved Making photonic structures via cell culture: Morpho butterfly scales 1 Andrew Richard Parker* 2 Helen Elizabeth Townley Research Leader, Department of Life Sciences, Natural History Senior Research Fellow, Department of Engineering Science, Museum, London, UK University of Oxford, Oxford, UK 1 2 The photonic structures that cause the electric blue colour of some Morpho butterflies are desirable within industry. They have been reproduced on very small areas to produce prototype biomimetic structures, yet there is currently no technique to accurately manufacture these structures at a commercial level. Here, tissue and cell culture techniques are explored as a possible method of producing large quantities of the blue scales of Morpho peliedes. This represents the first attempt to culture the wing scales of aMorpho butterfly, and many problems were encountered. These could be remedied in future studies, but it is concluded that cell culture is probably not a viable technique to provide the Morpho structure for industry in the near future. However, tissue culture experiments revealed important results of scale development. 1. Introduction (Figure 1). Often this colour-generating scale is covered by another Animals and plants boast a range of sub-micron photonic devices, scale, which serves to further scatter the light.
    [Show full text]