Fast MRI in Medical Diagnostics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
International Max Planck Research School
Georg-August-Universität Göttingen International Max Planck Research School Neurosciences Max Planck Institutes for • Biophysical Chemistry MSc/PhD/MD-PhD Program • Experimental Medicine • Dynamics and Self- Organization DPZ German Primate Center Gottingen European Neuroscience Institute Göttingen www.gpneuro.uni-goettingen.de YEARBOOK 2015 / 2016 MSc/PhD/MD-PhD Neuroscience Program at the University of Göttingen International Max Planck Research School Yearbook 2015/2016 Yearbook Index / Imprint Letter from the University ...........................................................................................................................................1 Letter from the Max Planck Society ............................................................................................................................2 Overview .....................................................................................................................................................................3 Intensive Course Program (First Year) ........................................................................................................................4 Lectures and Tutorials .................................................................................................................................................4 Methods Courses .......................................................................................................................................................5 Laboratory Rotations ..................................................................................................................................................5 -
In Vivo Magnetic Resonance Imaging: Insights Into Structure and Function of the Central Nervous System
INSTITUTE OF PHYSICS PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY Meas. Sci. Technol. 16 (2005) R17–R36 doi:10.1088/0957-0233/16/4/R01 REVIEW ARTICLE In vivo magnetic resonance imaging: insights into structure and function of the central nervous system Oliver Natt and Jens Frahm Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut fur¨ biophysikalische Chemie, Am Faßberg 11, 37070 Gottingen,¨ Germany E-mail: [email protected] Received 25 February 2004, in final form 22 November 2004 Published 24 February 2005 Online at stacks.iop.org/MST/16/R17 Abstract Spatially resolved nuclear magnetic resonance (NMR) techniques provide structural, metabolic and functional insights into the central nervous system and allow for repetitive in vivo studies of both humans and animals. Complementing its prominent role in diagnostic imaging, magnetic resonance imaging (MRI) has evolved into an indispensable research tool in system-oriented neurobiology where contributions to functional genomics and translational medicine bridge the gap from molecular biology to animal models and clinical applications. This review presents an overview on some of the most relevant advances in MRI. An introduction covering the basic principles is followed by a discussion of technological improvements in instrumentation and imaging sequences including recent developments in parallel acquisition techniques. Because MRI is noninvasive in contrast to most other imaging modalities, examples focus on in vivo studies of the central nervous system in a variety of species ranging from humans to mice and insects. Keywords: blood oxygenation level dependent (BOLD) contrast, central nervous system (CNS), diffusion, echo-planar imaging (EPI), fast low angle shot (FLASH), magnetic resonance angiography (MRA), magnetic resonance imaging (MRI), magnetization transfer (MT) contrast, nuclear magnetic resonance (NMR), partially parallel acquisition (PPA) (Some figures in this article are in colour only in the electronic version) 1. -
• Discovery of Nuclear Magnetic Resonance • Invention of MR Imaging Methods • Advancements in MRI Hardware and Imaging Methods • Trends in MRI Utilization
8/4/2012 Geoffrey D. Clarke University of Texas Health Science Center at San Antonio • Discovery of Nuclear Magnetic Resonance • Invention of MR Imaging Methods • Advancements in MRI Hardware and Imaging Methods • Trends in MRI Utilization 1 8/4/2012 • 1902 Nobel Laureate in Physics • In recognition of the extraordinary service he (and HA Lorentz) rendered by their researches into the influence of magnetism upon radiation phenomena. • Spectral lines split into even more lines in the presence of a Zeeman Effect static magnetic field. Where several lines appear, forming a complex pattern, is actually more common than the normal Zeemen effect. ∆ 2 Note: is the constant known Energy as the “gyromagnetic ratio” Bo= 0 Bo = 1 T Bo = 2 T 2 8/4/2012 • Wolfgang Pauli hypothesized to existence of “spin” in c.1925 • “Spin” is inherent to PAM Dirac’s 1928 formulation of relativistic quantum mechanics. • Physicists realize that charged particles with “spin” should exhibit magnetic properties • 1944 Nobel Laureate in Physics • for his resonance method for recording the magnetic properties of atomic nuclei. • In 1937 he showed that nuclei were magnetic by measuring their deflection in a magnetic field. 3 8/4/2012 • From Stanford, 1952 Nobel Laureate in Physics • With Purcell for development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith (1946). • Was an expert on the design of strong magnets • Demonstrated NMR in water samples • From MIT, 1952 Nobel Laureate in Physics • With Bloch for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith. • Demonstrated NMR in paraffin. -
Numerical Simulation of Bloch Equations for Dynamic Magnetic Resonance Imaging
Numerical Simulation of Bloch Equations for Dynamic Magnetic Resonance Imaging Dissertation for the award of the degree ŞDoctor of PhilosophyŤ (Ph.D.) Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program PhD School of Mathematical Sciences (SMS) of the Georg-August University School of Science (GAUSS) submitted by Arijit Hazra from Burdwan, West Bengal, India Göttingen, 2016 This work has been done at: Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie Under the supervision of: Institut für Numerische und Angewandte Mathematik Georg-August-Universität Göttingen Thesis Committee Prof. Dr. Gert Lube (referee) Institut für Numerische und Angewandte Mathematik Georg-August-Universität Göttingen Prof. Dr. Jens Frahm (co-referee) Biomedizinische NMR Forschungs GmbH Max-Planck-Institut für biophysikalische Chemie Examination Board: Prof. Dr. Gert Lube Institut für Numerische und Angewandte Mathematik Georg-August-Universität Göttingen Prof. Dr. Jens Frahm Biomedizinische NMR Forschungs GmbH Max-Planck-Institut für biophysikalische Chemie Prof. Dr. Hans Hofsaess Institut für Physik II Georg-August-Universität Göttingen Prof. Dr. Gerlind Plonka-Hoch Institut für Numerische und Angewandte Mathematik Georg-August-Universität Göttingen Jr. Prof. Dr. Christoph Lehrenfeld Institut für Numerische und Angewandte Mathematik Georg-August-Universität Göttingen PD. Dr. Hartje Kriete Mathematisches Institut Georg-August-Universität Göttingen Date of Oral Examination: 7.10.2016 Dedicated to Koninika Acknowledgements First of all, I would like to thank Prof. Dr. Jens Frahm, head of Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, for ofering me this great opportunity to work in an excellent research facility. He has given suicient freedom and timely input to make the journey of scientiĄc research in his group a memorable experience.