QUARK MASSES Written by A. Manohar

Total Page:16

File Type:pdf, Size:1020Kb

QUARK MASSES Written by A. Manohar 1 1 QUARK MASSES b,andtquarks are heavy, and the u, d and s quarks are light. Written by A. Manohar (University of California, San Diego). The computations for light quarks involve an expansion in mq/Λχ about the limit mq = 0, whereas for heavy quarks, they A. Introduction involve an expansion in Λχ/mq about mq = ∞. The corrections This note discusses some of the theoretical issues involved in are largest for the s and c quarks, which are the heaviest light the determination of quark masses. Unlike the leptons, quarks quark and the lightest heavy quark, respectively. are confined inside hadrons and are not observed as physical At high energies or short distances, nonperturbative effects particles. Quark masses cannot be measured directly, but must such as chiral symmetry breaking are unimportant, and one be determined indirectly through their influence on hadron can in principle analyze mass-dependent effects using QCD properties. As a result, the values of the quark masses depend perturbation theory to extract the quark mass values. The on precisely how they are defined; there is no one definition QCD computations are conventionally performed using the MS that is the obvious choice. Though one often speaks loosely of scheme at a scale µ Λχ,andgivetheMS “running” mass quark masses as one would of the electron or muon mass, any m(µ). The µ dependence of m(µ) at short distances can be careful statement of a quark mass value must make reference calculated using the renormalization group equations. to a particular computational scheme that is used to extract For heavy quarks, one can obtain useful information on the the mass from observations. It is important to keep this scheme quark masses by studying the spectrum and decays of hadrons dependence in mind when using the quark mass values tabulated containing heavy quarks. One method of calculation uses the in the data listings. heavy quark effective theory (HQET), which defines a HQET The simplest way to define the mass of a quark is by making quark mass mQ. Other commonly used definitions of heavy a fit of the hadron mass spectrum to a nonrelativistic quark quark masses such as the pole mass are discussed in Sec. C. model. The quark masses are defined as the values obtained QCD perturbation theory at the heavy quark scale µ = mQ can from the fit. The resulting masses only make sense in the be used to relate the various heavy quark masses to the MS limited context of a particular quark model. They depend on mass m(µ), and to each other. the phenomenological potential used, and on how relativistic For light quarks, one can obtain useful information on effects are modelled. The quark masses used in potential models the quark mass ratios by studying the properties of the light also cannot be connected with the quark mass parameters in pseudoscalar mesons using chiral perturbation theory, which the QCD Lagrangian. Fortunately, there exist other definitions utilizes the symmetries of the QCD Lagrangian Eq. (1). The of the quark mass that have a more general significance, though quark mass ratios determined using chiral perturbation theory they also depend on the method of calculation. The purpose of are those in a subtraction scheme that is independent of the this review is to explain the most important such definitions quark masses themselves, such as the MS scheme. and their interrelations. A more detailed discussion of the masses for heavy and B. Mass parameters and the QCD Lagrangian light quarks is given in the next two sections. The MS scheme The QCD Lagrangian for NF quark flavors is applies to both heavy and light quarks. It is also commonly used for predictions of quark masses in unified theories, and XNF for computing radiative corrections in the Standard Model. For L = q (iD/ − m ) q − 1 G Gµν , (1) k k k 4 µν k=1 this reason, we use the MS scheme as the standard scheme in reporting quark masses. One can easily convert the MS masses whereD=( / ∂ −igA ) γµ is the gauge covariant derivative, A µ µ µ into other schemes using the formulæ given in this review. is the gluon field, Gµν is the gluon field strength, mk is the mass th C. Heavy quarks parameter of the k quark, and qk is the quark Dirac field. The QCD Lagrangian Eq. (1) gives finite scattering amplitudes after The commonly used definitions of the quark mass for heavy renormalization, a procedure that invokes a subtraction scheme quarks are the pole mass, the MS mass, the Georgi-Politzer to render the amplitudes finite, and requires the introduction of mass, the potential model mass used in ψ and Υ spectroscopy, a dimensionful scale parameter µ. The mass parameters in the and the HQET mass. QCD Lagrangian Eq. (1) depend on the renormalization scheme The strong interaction coupling constant at the heavy quark used to define the theory, and also on the scale parameter µ. scale is small, and one can compute the heavy quark propagator The most commonly used renormalization scheme for QCD using QCD perturbation theory. For an observable particle such perturbation theory is the MS scheme. as the electron, the position of the pole in the propagator is the The QCD Lagrangian has a chiral symmetry in the limit definition of the particle mass. In QCD this definition of the that the quark masses vanish. This symmetry is spontaneously quark mass is known as the pole mass mP , and is independent of broken by dynamical chiral symmetry breaking, and explicitly the renormalization scheme used. It is known that the on-shell broken by the quark masses. The nonperturbative scale of quark propagator has no infrared divergences in perturbation theory [1], so this provides a perturbative definition of the dynamical chiral symmetry breaking, Λχ, is around 1 GeV. It quark mass. The pole mass cannot be used to arbitrarily high is conventional to call quarks heavy if m>Λχ, so that explicit accuracy because of nonperturbative infrared effects in QCD. chiral symmetry breaking dominates, and light if m<Λχ,so that spontaneous chiral symmetry breaking dominates. The c, The full quark propagator has no pole because the quarks are 2 2 ! 2 confined, so that the pole mass cannot be defined outside of Λ M(D)=mc+Λ+O . (2) perturbation theory. mc The MS running mass m(µ) is defined by regulating the − QCD theory using dimensional regularization, and subtracting This allows one to determine the mass difference mb mc = − 2 − the divergences using the modified minimal subtraction scheme. M(B) M(D)=3.4 GeV up to corrections of order Λ /mb 2 The MS scheme is particularly convenient for Feynman diagram Λ /mc. The extraction of the individual quark masses mb and computations, and is the most commonly used subtraction mc requires some knowledge of Λ. An estimate of Λusing scheme. QCD sum rules gives Λ=0.57 0.07 GeV [11]. The HQET The Georgi-Politzer mass mb is defined using the momentum masseswiththisvalueofΛaremb=4.74 0.14 GeV and space subtraction scheme at the spacelike point −p2 = mb 2 [2]. mc =1.4 0.2 GeV, where the spin averaged meson masses ∗ ∗ A generalization of the Georgi-Politzer mass that is often used (3M(B )+M(B))/4and(3M(D )+M(D))/4 have been used O 2 in computations involving QCD sum rules [3] is mb (ξ), defined to eliminate the spin-dependent (Λ /mQ) correction terms. 2 − 2 The errors reflect the uncertainty in Λ and the unknown spin- at the subtraction point p = (ξ +1)mP.QCDsumrules O 2 are discussed in more detail in the next section on light quark averaged (Λ /mQ) correction. The errors do not include any masses. theoretical uncertainty in the QCD sum rules, which could be Lattice gauge theory calculations can be used to obtain large. A quark model estimate suggests that Λ is the constituent heavy quark masses from ψ and Υ spectroscopy. The quark quark mass (≈ 350 MeV), which differs significantly from the masses are obtained by comparing a nonperturbative computa- sum rule estimate. In HQET, the 1/mQ corrections to heavy tion of the meson spectrum with the experimental data. The meson decay form-factors are also given in terms of Λ. Thus lattice quark mass values can then be converted into quark mass an accurate enough measurement of these form-factors could values in the continuum QCD Lagrangian Eq. (1) using lattice be used to extract Λ directly from experiment, which then perturbation theory at a scale given by the inverse lattice spac- determines the quark masses up to corrections of order 1/mQ. ing. A recent computation determines the b-quark pole mass to The quark mass mQ of HQET can be related to other quark be 5.0 0.2GeV,andtheMS mass to be 4.0 0.1 GeV [4]. mass parameters using QCD perturbation theory at the scale b Potential model calculations of the hadron spectrum also mQ. The relation between mQ and mQ(ξ) at one loop is [12] involve the heavy quark mass. There is no way to relate the αb (ξ)ξ+2 m =mb (ξ) 1+ s log (ξ +2) , (3) quark mass as defined in a potential model to the quark Q Q π ξ+1 mass parameter of the QCD Lagrangian, or to the pole mass. b Even in the heavy quark limit, the two masses can differ by where αs(ξ) is the strong interaction coupling constant in the momentum space subtraction scheme. The relation between m nonperturbative effects of order ΛQCD.
Recommended publications
  • Effective Field Theories, Reductionism and Scientific Explanation Stephan
    To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics.
    [Show full text]
  • Finite-Volume and Magnetic Effects on the Phase Structure of the Three-Flavor Nambu–Jona-Lasinio Model
    PHYSICAL REVIEW D 99, 076001 (2019) Finite-volume and magnetic effects on the phase structure of the three-flavor Nambu–Jona-Lasinio model Luciano M. Abreu* Instituto de Física, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil † Emerson B. S. Corrêa Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, 68505-080 Marabá, Pará, Brazil ‡ Cesar A. Linhares Instituto de Física, Universidade do Estado do Rio de Janeiro, 20559-900 Rio de Janeiro, Rio de Janeiro, Brazil Adolfo P. C. Malbouisson§ Centro Brasileiro de Pesquisas Físicas/MCTI, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil (Received 15 January 2019; revised manuscript received 27 February 2019; published 5 April 2019) In this work, we analyze the finite-volume and magnetic effects on the phase structure of a generalized version of Nambu–Jona-Lasinio model with three quark flavors. By making use of mean-field approximation and Schwinger’s proper-time method in a toroidal topology with antiperiodic conditions, we investigate the gap equation solutions under the change of the size of compactified coordinates, strength of magnetic field, temperature, and chemical potential. The ’t Hooft interaction contributions are also evaluated. The thermodynamic behavior is strongly affected by the combined effects of relevant variables. The findings suggest that the broken phase is disfavored due to both the increasing of temperature and chemical potential and the drop of the cubic volume of size L, whereas it is stimulated with the augmentation of magnetic field. In particular, the reduction of L (remarkably at L ≈ 0.5–3 fm) engenders a reduction of the constituent masses for u,d,s quarks through a crossover phase transition to the their corresponding current quark masses.
    [Show full text]
  • Properties of Baryons in the Chiral Quark Model
    Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results.
    [Show full text]
  • International Centre for Theoretical Physics
    INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS OUTLINE OF A NONLINEAR, RELATIVISTIC QUANTUM MECHANICS OF EXTENDED PARTICLES Eckehard W. Mielke INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1981 MIRAMARE-TRIESTE IC/81/9 International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization 3TERKATIOHAL CENTRE FOR THEORETICAL PHTSICS OUTLINE OF A NONLINEAR, KELATIVXSTTC QUANTUM HECHAHICS OF EXTENDED PARTICLES* Eckehard W. Mielke International Centre for Theoretical Physics, Trieste, Italy. MIRAHABE - TRIESTE January 198l • Submitted for publication. ABSTRACT I. INTRODUCTION AMD MOTIVATION A quantum theory of intrinsically extended particles similar to de Broglie's In recent years the conviction has apparently increased among most theory of the Double Solution is proposed, A rational notion of the particle's physicists that all fundamental interactions between particles - including extension is enthroned by realizing its internal structure via soliton-type gravity - can be comprehended by appropriate extensions of local gauge theories. solutions of nonlinear, relativistic wave equations. These droplet-type waves The principle of gauge invarisince was first formulated in have a quasi-objective character except for certain boundary conditions vhich 1923 by Hermann Weyl[l57] with the aim to give a proper connection between may be subject to stochastic fluctuations. More precisely, this assumption Dirac's relativistic quantum theory [37] of the electron and the Maxwell- amounts to a probabilistic description of the center of a soliton such that it Lorentz's theory of electromagnetism. Later Yang and Mills [167] as well as would follow the conventional quantum-mechanical formalism in the limit of zero Sharp were able to extend the latter theory to a nonabelian gauge particle radius.
    [Show full text]
  • Light-Front Holographic QCD and Emerging Confinement
    SLAC–PUB–15972 Light-Front Holographic QCD and Emerging Confinement Stanley J. Brodsky SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA Guy F. de T´eramond Universidad de Costa Rica, San Jos´e, Costa Rica Hans G¨unter Dosch Institut f¨ur Theoretische Physik, Philosophenweg 16, D-6900 Heidelberg, Germany Joshua Erlich College of William and Mary, Williamsburg, VA 23187, USA arXiv:1407.8131v2 [hep-ph] 13 Feb 2015 [email protected], [email protected], [email protected], [email protected] (Invited review article to appear in Physics Reports) This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515 and HEP. Abstract In this report we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essen- tial features of hadron spectra in terms of a single scale. The light-front holographic methods described here gives a precise interpretation of holographic variables and quan- tities in AdS space in terms of light-front variables and quantum numbers.
    [Show full text]
  • Mass Generation Via the Higgs Boson and the Quark Condensate of the QCD Vacuum
    Pramana – J. Phys. (2016) 87: 44 c Indian Academy of Sciences DOI 10.1007/s12043-016-1256-0 Mass generation via the Higgs boson and the quark condensate of the QCD vacuum MARTIN SCHUMACHER II. Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany E-mail: [email protected] Published online 24 August 2016 Abstract. The Higgs boson, recently discovered with a mass of 125.7 GeV is known to mediate the masses of elementary particles, but only 2% of the mass of the nucleon. Extending a previous investigation (Schumacher, Ann. Phys. (Berlin) 526, 215 (2014)) and including the strange-quark sector, hadron masses are derived from the quark condensate of the QCD vacuum and from the effects of the Higgs boson. These calculations include the π meson, the nucleon and the scalar mesons σ(600), κ(800), a0(980), f0(980) and f0(1370). The predicted second σ meson, σ (1344) =|ss¯, is investigated and identified with the f0(1370) meson. An outlook is given on the hyperons , 0,± and 0,−. Keywords. Higgs boson; sigma meson; mass generation; quark condensate. PACS Nos 12.15.y; 12.38.Lg; 13.60.Fz; 14.20.Jn 1. Introduction adds a small additional part to the total constituent- quark mass leading to mu = 331 MeV and md = In the Standard Model, the masses of elementary parti- 335 MeV for the up- and down-quark, respectively [9]. cles arise from the Higgs field acting on the originally These constituent quarks are the building blocks of the massless particles. When applied to the visible matter nucleon in a similar way as the nucleons are in the case of the Universe, this explanation remains unsatisfac- of nuclei.
    [Show full text]
  • PERTURBATIVE CURRENT QUARK MASSES in QCD V"") — ; • - S • • By
    421 V) PERTURBATIVE CURRENT QUARK MASSES IN QCD V"") — ; • - s • • by Michael D. Scadron • Physics Department University of Arizona Tucson, Arizona 85721, OSA ..Abstract Neutral PCAC current quark masses follow from the covarlant light plane or QCD requirement that OlCuu^lTD « m(M), which is not Inconsistent with the spontaneous breakdown of chiral symmetry. The resulting current quark nas3 ratio (ms/m)curr = 5 and scale ®ourr = ®2 at M = 2 GeV are compatible with the observed itîJ o-term, the Goldberger-Treiman discrepancy, the low-lying 0~, 1/2+, 1"». 3/2+ hadron mass spectrum, the flavor independence of the dynamically generated .quark mass and the perturbative weak binding I. Introduction Even though it appears that quarks are condemned to be bound in hadrons, it is now well understood that there are two distinctly different types of quark masses: a nonperturbative,; flavor-independent, dynamically generated nass mdyn and perturbative, flavor-dependent current quark masses ' m^^. In chiral field theories such as QCD, It is also clear that these (running) masses are momentum dependent and that mcurr = ®curr^M - 2 GeV) vanishes in the (^Ural limit while may. n does not, but the current quark mass ratio -422 remains constant for any value•of M. Despite this good start it has always amazed us that so many physicists faithfully believe in and do ao nuoh hard work employing the "strong PCAC" [1] current quark mass paradigm (SPCAC) •£-'2fii"2 ficurr <OlqqlO> (la) (Vfi)curî°= » 1 = 25 ' âeuSÎC=5MeV' (1b> based on so few (no) pieces of independent corroborating experimental evidence.
    [Show full text]
  • Arxiv:1203.5341V1 [Nucl-Th] 23 Mar 2012 0Eiou 76
    Strong QCD and Dyson-Schwinger Equations Craig D. Roberts Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; and Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616-3793, USA. Abstract. The real-world properties of quantum chromodynamics (QCD) – the strongly- interacting piece of the Standard Model – are dominated by two emergent phenomena: confinement; namely, the theory’s elementary degrees-of-freedom – quarks and gluons – have never been detected in isolation; and dynamical chiral symmetry breaking (DCSB), which is a remarkably effective mass generating mechanism, responsible for the mass of more than 98% of visible matter in the Universe. These phenomena are not apparent in the formulae that define QCD, yet they play a principal role in determining Nature’s observable characteristics. Much remains to be learnt before confinement can properly be understood. On the other hand,the last decade has seen important progress in the use of relativistic quantum field theory, so that we can now explain the origin of DCSB and are beginning to demonstrate its far-reaching consequences. Dyson-Schwinger equations have played a critical role in these advances. These lecture notes provide an introduction to Dyson-Schwinger equations (DSEs), QCD and hadron physics, and illustrate the use of DSEs to predict phenomena that are truly observable. 2010 Mathematics Subject Classification: 81Q40, 81T16, 81T18 Keywords: confinement, dynamical chiral symmetry breaking, Dyson-Schwinger equa- tions, hadron spectrum, hadron elastic and transition form factors, in-hadron conden- sates, parton distribution functions, UA(1)-problem Contents 1 Introduction ..................................... 2 arXiv:1203.5341v1 [nucl-th] 23 Mar 2012 2 EmergentPhenomena...............................
    [Show full text]
  • Arxiv:1606.09602V2 [Hep-Ph] 22 Jul 2016
    Baryons as relativistic three-quark bound states Gernot Eichmanna,1, Hèlios Sanchis-Alepuzb,3, Richard Williamsa,2, Reinhard Alkoferb,4, Christian S. Fischera,c,5 aInstitut für Theoretische Physik, Justus-Liebig–Universität Giessen, 35392 Giessen, Germany bInstitute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria cHIC for FAIR Giessen, 35392 Giessen, Germany Abstract We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) cur- rents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish ‘expected’ from ‘unexpected’ physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson- Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom. Keywords: Baryon properties, Nucleon resonances, Form factors, Compton scattering, Dyson-Schwinger approach, Bethe-Salpeter/Faddeev equations, Quark-diquark model arXiv:1606.09602v2 [hep-ph] 22 Jul 2016 [email protected] [email protected].
    [Show full text]
  • ELEMENTARY PARTICLES in PHYSICS 1 Elementary Particles in Physics S
    ELEMENTARY PARTICLES IN PHYSICS 1 Elementary Particles in Physics S. Gasiorowicz and P. Langacker Elementary-particle physics deals with the fundamental constituents of mat- ter and their interactions. In the past several decades an enormous amount of experimental information has been accumulated, and many patterns and sys- tematic features have been observed. Highly successful mathematical theories of the electromagnetic, weak, and strong interactions have been devised and tested. These theories, which are collectively known as the standard model, are almost certainly the correct description of Nature, to first approximation, down to a distance scale 1/1000th the size of the atomic nucleus. There are also spec- ulative but encouraging developments in the attempt to unify these interactions into a simple underlying framework, and even to incorporate quantum gravity in a parameter-free “theory of everything.” In this article we shall attempt to highlight the ways in which information has been organized, and to sketch the outlines of the standard model and its possible extensions. Classification of Particles The particles that have been identified in high-energy experiments fall into dis- tinct classes. There are the leptons (see Electron, Leptons, Neutrino, Muonium), 1 all of which have spin 2 . They may be charged or neutral. The charged lep- tons have electromagnetic as well as weak interactions; the neutral ones only interact weakly. There are three well-defined lepton pairs, the electron (e−) and − the electron neutrino (νe), the muon (µ ) and the muon neutrino (νµ), and the (much heavier) charged lepton, the tau (τ), and its tau neutrino (ντ ). These particles all have antiparticles, in accordance with the predictions of relativistic quantum mechanics (see CPT Theorem).
    [Show full text]
  • Nuclear Physics at the Energy Frontier: Recent Heavy Ion Results from the Perspective of the Electron Ion Collider
    universe Article Nuclear Physics at the Energy Frontier: Recent Heavy Ion Results from the Perspective of the Electron Ion Collider Astrid Morreale 1,2 1 Institute for Globally Distributed Open Research, 75014 Paris, France; [email protected] or [email protected] 2 Center for Frontiers in Nuclear Science, Stony Brook, NY 11790, USA Received: 9 April 2019; Accepted: 24 April 2019; Published: 28 April 2019 Abstract: Quarks and gluons are the fundamental constituents of nucleons. Their interactions rather than their mass are responsible for 99% of the mass of all visible matter in the universe. Measuring the fundamental properties of matter has had a large impact on our understanding of the nucleon structure and it has given us decades of research and technological innovation. Despite the large number of discoveries made, many fundamental questions remain open and in need of a new and more precise generation of measurements. The future Electron Ion Collider (EIC) will be a machine dedicated to hadron structure research. It will study the content of protons and neutrons in a largely unexplored regime in which gluons are expected to dominate and eventually saturate. While the EIC will be the machine of choice to quantify this regime, recent surprising results from the heavy ion community have begun to exhibit similar signatures as those expected from a regime dominated by gluons. Many of the heavy ion results that will be discussed in this document highlight the kinematic limitations of hadron–hadron and hadron–nucleus collisions. The reliability of using as a reference proton–proton (pp) and proton–ion (pA) collisions to quantify and disentangle vacuum and Cold Nuclear Matter (CNM) effects from those proceeding from a Quark Gluon Plasma (QGP) may be under question.
    [Show full text]
  • QUARK MASSES Updated Jan 2012 by A.V
    – 1– QUARK MASSES Updated Jan 2012 by A.V. Manohar (University of California, San Diego) and C.T. Sachrajda (University of Southampton) A. Introduction This note discusses some of the theoretical issues relevant for the determination of quark masses, which are fundamental parameters of the Standard Model of particle physics. Unlike the leptons, quarks are confined inside hadrons and are not observed as physical particles. Quark masses therefore can- not be measured directly, but must be determined indirectly through their influence on hadronic properties. Although one often speaks loosely of quark masses as one would of the mass of the electron or muon, any quantitative statement about the value of a quark mass must make careful reference to the particular theoretical framework that is used to define it. It is important to keep this scheme dependence in mind when using the quark mass values tabulated in the data listings. Historically, the first determinations of quark masses were performed using quark models. The resulting masses only make sense in the limited context of a particular quark model, and cannot be related to the quark mass parameters of the Standard Model. In order to discuss quark masses at a fundamental level, definitions based on quantum field theory be used, and the purpose of this note is to discuss these definitions and the corresponding determinations of the values of the masses. B. Mass parameters and the QCD Lagrangian The QCD [1] Lagrangian for NF quark flavors is NF 1 µν L = qk (i /D − mk) qk − 4 GµνG , (1) =1 Xk µ where /D= (∂µ − igAµ) γ is the gauge covariant derivative, Aµ is the gluon field, Gµν is the gluon field strength, mk is th the mass parameter of the k quark, and qk is the quark Dirac field.
    [Show full text]