A Virtualisation Framework for Embedded Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Powervm Virtualization on System P: Managing and Monitoring
Front cover Draft Document for Review November 7, 2008 7:23 pm SG24-7590-01 PowerVM Virtualization on IBM Power Systems (Volume 2): Managing and Monitoring Covers AIX, IBM i and Linux for Power virtual I/O clients A collection of managing and monitoring best practices focused on Virtualization Includes the Virtual I/O Server 2.1 enhancements Ingo Dimmer Volker Haug Thierry Huché Anil K Singh Morten Vågmo Ananda K Venkataraman ibm.com/redbooks Draft Document for Review November 7, 2008 4:31 pm 7590edno.fm International Technical Support Organization PowerVM Virtualization on Power Systems: Managing and Monitoring February 2009 SG24-7590-01 7590edno.fm Draft Document for Review November 7, 2008 4:31 pm Note: Before using this information and the product it supports, read the information in “Notices” on page xxv. Second Edition (February 2009) This edition applies to the following products: IBM AIX 6.1 Technology Level 2 (5765-G62) IBM AIX 5.3 Technology Level 9 (5765-G03) IBM i 6.1 (5761-SS1) Novell SUSE Linux Enterprise Server 10 for POWER (5639-S10) Red Hat Enterprise Linux 5 for POWER (5639-RHL) IBM PowerVM Express Edition (5765-PVX) IBM PowerVM Standard Edition (5765-PVS) IBM PowerVM Enterprise Edition (5765-PVE) IBM Virtual I/O Server Version 2.1 with Fix Pack 20.1, or later IBM Hardware Management Console Version 7.3.4, or later IBM Tivoli Monitoring V6.1 for System p (5765-ITM) IBM Tivoli Storage Manager (5608-ISM) IBM Director 6.1 IBM Power Systems © Copyright International Business Machines Corporation 2009. -
Carrier Grade Virtualization
Carrier Grade Virtualization Leveraging virtualization in Carrier Grade Systems Abstract Network Equipment Providers (NEPs) have been building networking infrastructure equipment able to deliver “carrier grade” services, typically mission-critical services such as voice telephony. In decades past, NEPs have achieved high degrees of availability through purpose-built hardware and software implementations. Today they increasingly build on COTS (Commercial Off The Shelf) hardware and Open Source Software (OSS), freeing their engineering resources to focus on core telephony competencies. The move to COTS and OSS requires that these hardware and software components be available from an ecosystem of suppliers, and that they interoperate seamlessly. Bodies such as The Linux Foundation (LF), the Service Availability Forum (SA Forum) and PICMG have defined standards and specifications such as carrier grade OSes (CGLinux), Service Availability Forum APIs and AdvancedTCA hardware to target carrier grade applications. Recent advances have made virtualization appealing for carrier class equipment by permitting significant cost reduction through consolidation of workloads and of physical hardware. Virtualization also transparently lets NEPs and other OEMs (Original Equipment Manufacturers) leverage multi-core processors to run legacy software designed for uniprocessor hardware. However, virtualization needs to meet specific requirements to enable network equipment deploying this technology to meet industry expectations for carrier grade systems. This -
IBM Powervm Lx86 Expands the Ability of IBM System P and Bladecenter Servers to Run X86 Linux Applications
IBM United States Announcement 208-010, dated January 29, 2008 IBM PowerVM Lx86 expands the ability of IBM System p and BladeCenter servers to run x86 Linux applications Reference information ............................... 2 At a glance Offering Information ...................................2 Publications ............................................... 3 PowerVM Lx86, a standard feature of all PowerVM Editions, is available Technical information .................................3 at no additional charge to support the installation and running of most Ordering information ..................................5 32-bit Linux on x86 applications1 on any System p model with IBM Terms and conditions ................................ 6 POWER5, POWER5+, or POWER6 technology. PowerVM Lx86: Prices .........................................................7 • Creates a Linux on x86 application environment running on Linux on Order now ..................................................7 System p servers by dynamically translating and mapping Linux on x86 instructions to POWER5, POWER5+, and POWER6 processors • Requires no native porting or application upgrade for supported applications For ordering, contact: Your IBM representative, an IBM Business Partner, or the Americas Call Centers at 800-IBM-CALL Reference: RE001 Overview IBM is offering new and expanded options for POWER5™, POWER5+™, and POWER6™ processor-based System p™ servers so that clients can run x86 Linux™ applications that are not available as a native port on an IBM POWER™ platform running Linux. This enables clients to take advantage of the feature-rich IBM PowerVM Virtualization (formerly called System p Virtualization), high performance, and superb Reliability, Availability, and Serviceability (RAS) features available with System p and BladeCenter® servers. The PowerVM Lx86 feature expands the capabilities of POWER5, POWER5+, and POWER6 processor-based System p servers and PowerPC® and POWER6 processor-based blade servers to install and run most x86 Linux applications1. -
IBM Power Systems for the Large Enterprise
Smarter Systems for a Smarter Planet IBM Power Systems for the Large Enterprise – which ought to be the smartest aspect of the planet – is itself in need of an intelligence makeover. It’s not a problem with the technology per se. Servers, storage, software, networking gear and the Internet will all continue to become more powerful, affordable and available. The problem is how all this technology is currently configured into systems and the way data centers are designed and operated. The way applications are developed and deployed. The way servers are managed, upgraded and kept secure. The fact is the IT Highlights How can we make our systems smarter? systems that underpin so much of how the world works must y The most powerful and become much smarter. How scalable UNIX systems ever Over the past year IBM has much smarter? The average been facilitating a discussion on commodity server rarely uses y Designed to support the how our planet is becoming more than 6% of its available continuous operations of smarter. The world is becoming capacity. In some organizations, today's business critical more instrumented. Sensors as many as 30% of servers applications and RFID tags are being aren’t utilized at all; they simply embedded everywhere: in cars, y Integrated virtualization waste energy and valuable data appliances, food, cameras, without limits for large scale center space. IT energy roads, pipelines...even in consolidation and rapid consumption is expected to medicine and livestock. This provisioning of new double in the next five years. In instrumentation is workloads some cases, nearly 70% of interconnected into an “internet companies’ IT budgets can be y Dramatic expansion of data of things” …with the internet devoted to managing, center capacity within growing from just connecting maintaining, securing and existing energy and floor people to connecting devices, upgrading their systems rather space over a trillion networked things than building new capabilities, creating information at an services and applications. -
IBM Bladecenter JS23 and JS43 Express
The Power Blades for your most demanding workloads IBM BladeCenter JS23 and JS43 Express Built on the promise of the IBM BladeCenter® family of products— easy-to-use, integrated platforms with a high degree of deployment flexibility, energy efficiency, scalability and manageability—the BladeCenter JS23 and JS43 Express are the premier blades for 64-bit applications. They rep- resent one of the most flexible and cost-efficient solutions for UNIX®, i and Linux deployments available in the mar- ket. Further enhanced by its ability to BladeCenter JS23 and JS43 Express blade servers be installed in the same chassis with other IBM BladeCenter blade servers, the JS23 and JS43 can deliver the Highlights rapid return on investment that clients and businesses demand. Delivering ■ Ideal for infrastructure consoli- ■ Elegantly simple scalability, on the promise of a truly Dynamic dation, virtualization, and allowing easy expansion Infrastructure, the BladeCenter JS23 demanding applications that and pay-as-you-grow and JS43 help in delivering superior require scalable performance flexibility for the utmost in business and IT services with agility and and high memory capacity investment protection and speed—all in a simple to manage highly performance growth efficient way. ■ IBM POWER6™ processor tech- nology and the ability to run ■ A secure, resilient and dynamic AIX®, IBM i, and Linux® operat- infrastructure solution that ing systems simultaneously helps drive cost down, reduces risk, improves energy efficiency and enhances flexibility The JS23 and JS43 Express blades have been pre-configured and tested by IBM and are based on proven tech- nology. Utilizing a 4.2 GHz 64-bit POWER6 processor and available in a four-core or eight-core configuration including a new 32 MB Level 3 cache for each core pair, and simultaneous BladeCenter S chassis multi-threading, they are designed to deliver outstanding performance and tough-to-break solutions. -
IBM System X and Bladecenter Business Partner Guidebook Titles of Interest
July 2011 CLICK HERE to check for updates Your Road Map to Success with IBM IBM System x System x and and BladeCenter BladeCenter Business Partner Guidebook Over 100,000 copies downloaded! Edited by Jim Hoskins IBM System x and BladeCenter Business Partner Guidebook Titles of Interest More IBM Titles of Interest • IBM Information Infrastructure Business Partner Guidebook • Exploring IBM SOA Technology & Practice • Exploring IBM Accelerators for WebSphere Portal Top Internet Business Titles • 101 Ways to Promote Your Web Site • 3G Marketing on the Internet • Protect Your Great Ideas for Free! • And many more… For more information, visit us at maxpress.com or email us at [email protected]. IBM System x and BladeCenter Business Partner Guidebook Twentieth Edition Your Road Map to Success with IBM System x and BladeCenter Edited by Jim Hoskins (version 20.0e) 605 Silverthorn Road Gulf Breeze, FL 32561 maxpress.com Notices Production Manager: Jacquie Wallace Cover Designer: Lauren Smith This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If legal, accounting, medical, psychological, or any other expert assistance is required, the services of a competent professional person should be sought. ADAPTED FROM A DECLARATION OF PRIN- CIPLES OF A JOINT COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND PUBLISHERS. Copyright 2011 by Maximum Press. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. -
Comparison of Platform Virtual Machines - Wikipedia
Comparison of platform virtual machines - Wikipedia... http://en.wikipedia.org/wiki/Comparison_of_platform... Comparison of platform virtual machines From Wikipedia, the free encyclopedia The table below compares basic information about platform virtual machine (VM) packages. Contents 1 General Information 2 More details 3 Features 4 Other emulators 5 See also 6 References 7 External links General Information Name Creator Host CPU Guest CPU Bochs Kevin Lawton any x86, AMD64 CHARON-AXP Stromasys x86 (64 bit) DEC Alphaserver CHARON-VAX Stromasys x86, IA-64 VAX x86, x86-64, SPARC (portable: Contai ners (al so 'Zones') Sun Microsystems (Same as host) not tied to hardware) Dan Aloni helped by other Cooperati ve Li nux x86[1] (Same as parent) developers (1) Denal i University of Washington x86 x86 Peter Veenstra and Sjoerd with DOSBox any x86 community help DOSEMU Community Project x86, AMD64 x86 1 of 15 10/26/2009 12:50 PM Comparison of platform virtual machines - Wikipedia... http://en.wikipedia.org/wiki/Comparison_of_platform... FreeVPS PSoft (http://www.FreeVPS.com) x86, AMD64 compatible ARM, MIPS, M88K GXemul Anders Gavare any PowerPC, SuperH Written by Roger Bowler, Hercul es currently maintained by Jay any z/Architecture Maynard x64 + hardware-assisted Hyper-V Microsoft virtualization (Intel VT or x64,x86 AMD-V) OR1K, MIPS32, ARC600/ARC700, A (can use all OVP OVP Imperas [1] [2] Imperas OVP Tool s x86 (http://www.imperas.com) (http://www.ovpworld compliant models, u can write own to pu OVP APIs) i Core Vi rtual Accounts iCore Software -
IBM Powervm Lx86 Expands the Ability of IBM System P and Bladecenter Servers to Run X86 Linux Applications
IBM Canada Ltd. Announcement A08-0079, dated January 29, 2008 IBM PowerVM Lx86 expands the ability of IBM System p and BladeCenter servers to run x86 Linux applications Reference information ............................... 2 At a glance PowerVM Lx86, a standard feature of all PowerVM Editions, is available at no additional charge to support the installation and running of most 32-bit Linux on x86 applications1 on any System p model with IBM POWER5, POWER5+, or POWER6 technology. PowerVM Lx86: • Creates a Linux on x86 application environment running on Linux on System p servers by dynamically translating and mapping Linux on x86 instructions to POWER5, POWER5+, and POWER6 processors • Requires no native porting or application upgrade for supported applications Overview IBM is offering new and expanded options for POWER5™, POWER5+™, and POWER6™ processor-based System p™ servers so that clients can run x86 Linux™ applications that are not available as a native port on an IBM POWER™ platform running Linux. This enables clients to take advantage of the feature-rich IBM PowerVM Virtualization (formerly called System p Virtualization), high performance, and superb Reliability, Availability, and Serviceability (RAS) features available with System p and BladeCenter® servers. The PowerVM Lx86 feature expands the capabilities of POWER5, POWER5+, and POWER6 processor-based System p servers and PowerPC® and POWER6 processor-based blade servers to install and run most x86 Linux applications1. This new feature creates a virtual x86 Linux environment that will dynamically translate x86 instructions to POWER instructions and cache them to enhance performance, as well as map Linux on Intel® system calls to Linux on POWER system calls. -
Large Scale Distributed Computing - Summary
Large Scale Distributed Computing - Summary Author: @triggetry, @lanoxx Source available on github.com/triggetry/lsdc-summary December 10, 2013 Contents 1 Preamble 3 2 CHAPTER 1 3 2.1 Most common forms of Large Scale Distributed Computing . 3 2.2 High Performance Computing . 3 2.2.1 Parallel Programming . 5 2.3 Grid Computing . 5 2.3.1 Definitions . 5 2.3.2 Virtual Organizations . 6 2.4 Cloud Computing . 6 2.4.1 Definitions . 6 2.4.2 5 Cloud Characteristics . 7 2.4.3 Delivery Models . 7 2.4.4 Cloud Deployment Types . 7 2.4.5 Cloud Technologies . 7 2.4.5.1 Virtualization . 7 2.4.5.2 The history of Virtualization . 8 2.5 Web Application Frameworks . 9 2.6 Web Services . 9 2.7 Multi-tenancy . 9 2.8 BIGDATA .................................................. 10 3 CHAPTER 2 11 3.1 OS / Virtualization . 11 3.1.1 Batchsystems . 11 3.1.1.1 Common Batch processing usage . 11 3.1.1.2 Portable Batch System (PBS) . 12 3.1.2 VGE - Vienna Grid Environment . 12 3.2 VMs, VMMs . 12 3.2.1 Why Virtualization? . 12 3.2.2 Types of virtualization . 13 3.2.3 Hypervisor vs. hosted Virtualization . 14 3.2.3.1 Type 1 and Type 2 Virtualization . 14 3.2.4 Basic Virtualization Techniques . 14 3.3 Xen ...................................................... 14 3.3.1 Architecture . 14 3.3.2 Dynamic Memory Control (DMC) . 16 3.3.3 Balloon Drivers . 16 3.3.4 Paravirtualization . 16 3.3.5 Domains in Xen . 17 3.3.6 Hypercalls in Xen . -
Cna Laboratory Enhancement by Virtualisation Centria
Akintomide Akinsola CNA LABORATORY ENHANCEMENT BY VIRTUALISATION Bachelor’s thesis CENTRIA UNIVERSITY OF APPLIED SCIENCES Degree Programme in Information Technology June 2015 ABSTRACT Unit Date Author /s Kokkola-Pietarsaari June 2015 Akintomide Akinsola Degree program me Information Technology Name of thesis CNA LABORATORY ENHANCEMENT BY VIRTUALISATION Instructor Pages 28 + 3 Supervisor The role of the Cisco Networking Academy of Centria University of Applied Sciences in the Media and Communication Technology specialisation is an essential one. An improvement in the infrastructure of the CNA laboratory directly leads to an improvement in the quality of education received in the laboratory. This thesis work described the creation of an alternative arrangement using Linux Ubuntu as a supplementary option in the studying of networking subjects in the CNA laboratory of the university. Linux Ubuntu is a free software available to download and with some adjustments and modifications it can be made to function just as properly as a Windows operating system in the experience of learning networking. The process of creating and deploying a customised Ubuntu image deployed via the Virtual Machine, was discussed in this thesis work. Linux is a UNIX-like software, the knowledge of which is valuable to students as they study to become professionals. An introduction to several applications such as Minicom, Wireshark, and Nmap was also discussed in this thesis. A simple laboratory experiment was designed to test the performance and functioning of the newly created system. Expertise in more than one operating system expands the horizon of future students of the UAS, an opportunity older students did not have, and capacitates them to become proficient engineers. -
Partitioned System with Xtratum on Powerpc
Tesina de M´asteren Autom´aticae Inform´aticaIndustrial Partitioned System with XtratuM on PowerPC Author: Rui Zhou Advisor: Prof. Alfons Crespo i Lorente December 2009 Contents 1. Introduction1 1.1. MILS......................................2 1.2. ARINC 653..................................3 1.3. PikeOS.....................................6 1.4. ADEOS....................................7 2. Overview of XtratuM 11 2.1. Virtualization and Hypervisor........................ 11 2.2. XtratuM.................................... 12 3. Overview of PowerPC 16 3.1. POWER.................................... 16 3.2. PowerPC.................................... 17 3.3. PowerPC in Safety-critical.......................... 19 4. Main PowerPC Drivers to Virtualize 20 4.1. Processors................................... 20 4.2. Timer..................................... 21 4.3. Interrupt.................................... 23 4.4. Memory.................................... 24 5. Porting Implementation 25 5.1. Hypercall................................... 26 5.2. Timer..................................... 27 5.3. Interrupt.................................... 28 5.4. Memory.................................... 31 5.5. Partition.................................... 32 6. Benchmark 34 7. Conclusions and Future Work 38 Abstract Nowadays, the diversity of embedded applications has been developed into a new stage with the availability of various new high-performance processors and low cost on-chip memory. As the result of these new advances in hardware, there is a -
Virtual Machines
Virtual Machines Today l VM over time l Implementation methods l Hardware features supporting VM Next time l Midterm? *Partially based on notes from C. Waldspurger, VMware, 2010 Too many computers! An organization can have a bit too many machines – Why many? Running different services (email, web) to ensure • Each has enough resources • … fails independently • ... survives if another one gets attack • ... services may require different Oses – Why too many? Hard and expensive to maintain! Virtualization as an alternative – A VMM (or hypervisor) creates the illusion of multiple (virtual) machines 2 Virtualization applications Server consolidation – Convert underutilized servers to VMs, saving cost – Increasingly used for virtual desktops Simplified management – Datacenter provisioning and monitoring – Dynamic load balancing Improved availability – Automatic restart – Fault tolerance – Disaster recovery Test and development Cloud support – Isolation for clients 3 Types of virtualization Process virtualization – Language-level: Java, .NET, Smalltalk – OS-level: processes, Solaris Zones, BSD Jails – Cross-ISA emulation: Apple 68K-PPC-x86 Device virtualization – Logical vs. physical: VLAN, VPN, LUN, RAID System virtualization – Xen, VMware Fusion, KVM, Palacios … 4 System virtualization starting point Physical hardware – Processors, memory, chipset, I/O devices, etc. – Resources often grossly underutilized App App App App Software OS – Tightly coupled to physical hardware – Single active OS instance Hardware – OS controls hardware CPU MEM NIC 5 Adding a virtualization layer Software abstraction – Behaves like hardware – Encapsulates all OS and App App App App application state Virtualization layer OS OS – Extra level of indirection AppVM App AppVM App – Decouples hardware, OS – Enforces isolation VirtualizationOS layer – Multiplexes physical hardware across VMs Hardware CPU MEM NIC 6 Virtual Machine Monitor Classic definition* … an efficient, isolated duplicate of the real machine.