Measuring portfolio performance

Muhammad Shahid U.U.D.M. Project Report 2007:19

Examensarbete i matematik, 20 poäng Handledare och examinator: Johan Tysk Juni 2007

Department of Mathematics Uppsala University

i

Dedications Idedicatethisthesistomybelovedparentsandteacher(Prof.AbdulHafeezSh),who playedthemostvitalroleinmyupbringingandgrooming.TodaywhateverIamisdue tovirtueoftheirnurtureandprays.MyDegree(MasterinFinancialMathematics)would notbeencompletedwithouttheirsupportandencouragement.MayAllahblessthem.

Measuring Portfolio Performance ii

Acknowledgement All prays to Allah Almighty who induced the man with intelligence, knowledge and wisdom.ItisHewhogavemeability,perseveranceanddeterminationtocompletethis thesis. Teachersarelighthousesspreadingthelightofknowledgeandwisdomeverywhereand guidingthenewgenerationsothattheycancruisesafelytowardstheirdestination.They are really lamps that are kindling the candles of knowledge in the heart of young generation.Theyareperformingthejob,whichAllahhimselfacknowledgeasthenoblest toalljobs;thejobofteaching.TheywillgetitsrewardnotonlyfromAllahbutalsoin theformofimmenserespectthateverystudentcarriesfortheminthecoreofhisheart. IoffermysincerestthanksanddeepestgratitudetomyresearchsupervisorProf.Johan Tysk for his inspiring and valuable guidance, encouraging attitude and enlightening discussionsenablingmetopursuemyworkwithdedication. Iwouldliketosayabigthankstoalltheteacherswhotaughtmeintheentireprogram. Theydidnotonlyteachmehowtolearn,theyalsotaughtmehowtoteach,andtheir excellencehasalwaysinspiredme. Ialsowishtoexpressmyfeelingofgratitudetomyparents,sisters,brothersandfriends, whoprayedformyhealthandbrilliantfuture. AveryspecialthanksandappreciationgoestomydearestteacherProf.AbdulHafeezSh, thoughyouwereforaway,yourpersistenttelephonecallsandthethoughtofyougave metheenthusiasmtocarryonwithmyacademicwork.

Measuring Portfolio Performance iii

Table of Contents 1 Introduction 1 2 Portfolio Mean and Variance 3 2.1 MeanReturnofaPortfolio 3 2.2 VarianceofPortfolioReturn 3 2.3 TheMarkowitzProblem 4 2.4 TheCapitalMarketLine 8 3 The Capital Asset Pricing Model 11 3.1 HistoryofCAPM 11 3.1.1SystematicRisk 11 3.1.2UnsystematicRisk 11 3.2 AssumptionofCapitalAssetPricingModel 14 3.3 TheSecurityMarketLine 17 3.4 CAPMasaPricingFormula 17 3.4.1 LinearityofPricingandCertaintyEquivalentForm 19 4 Measuring Portfolio Performance 20 4.1 MeasuringtheRateofReturnofaPortfolio 20 4.1.1 TimeWeightedRateofReturn 20 4.1.2 ValueWeightedRateofReturn 20 4.2 RiskAdjustedPerformanceMeasure 21 4.2.1PublicInformation 21 4.2.2PrivateInformation 21 4.3 RiskAdjustedPerformanceIndices 23 4.3.1TheJensenIndex 23 4.3.2TheTreynorIndex 26 4.3.3TheSharpeIndex 29 4.4 ComparisonofThreeIndices 36 4.5 Conclusion 39 Reference 40

Measuring Portfolio Performance

1

Chapter 1

INTRODUCTION Measuring of portfolio performance has become an essential topic in the financial marketsfortheportfoliomanagers,andalmostallthathavesomethingtodoin thefieldoffinanceanditplaysaveryimportantroleinthefinancialmarketalmostall aroundtheworld. Earlierthen1950,portfoliomanagersandinvestorsmeasuredtheportfolioperformance almost on the rate of return basis. During that time, they knew that risk was a very importantvariableindetermininginvestmentsuccessbuttheyhadnosimpleorclearway ofmeasureit. In 1952 Markowitz created the idea of Modern Portfolio Theory and proposed that investorsexpectedtobecompensatedforadditionalriskandprovidedaframeworkfor measuringrisk.Inearly1960,afterthedevelopmentofportfoliotheoryandcapitalasset pricingmodelinsubsequenceyears,riskwasincludedintheevaluationprocess. ThecapitalassetpricingmodelofWilliamSharpeandJohnLitnermarksthebirthof asset pricing theory. The attraction of capital asset pricing model was that it offered powerpredictionsabouthowtomeasureriskandthe relation between expected return andrisk. Treynor (1965) was the first researcher developing a composite measure of portfolio performance.Hemeasuredportfolioriskwithandcalculatedportfoliomarketrisk premiumandlateronin1966Sharpedevelopedacompositeindexwhichissimilartothe Treynormeasure,theonlydifferencebeingtheuseofstandarddeviationinsteadofbeta. In 1967 Sharpe index evaluated funds performance based on both rate of return and diversification but for a completely diversified portfolio Treynor and Sharpe indices wouldgiveidenticalranking.Jensenin1968,ontheotherhand,attemptedtoconstructa measure based on the security market line and he showed the difference between the expectedrateofreturnoftheportfolioandexpectedreturnofabenchmarkportfoliothat wouldbepositionedonthesecuritymarketline. According to Prof. K. Spremann, “ Portfolio measurement has not only the goal to inform about the quality of a portfolio performance__ but and that’s even more important__ to decompose and analyze the success factors of a portfolio ”. This thesis is organized as fellows. In Chapter 2, we explore the concept of Mean Variance portfolio theory with example. We also describe the Markowitz problem, solutionoftheMarkowitzproblemandtheconceptofcapitalmarketline.InChapter3, we describe the capital asset pricing model and prove its theorem along with assumptions.CAPMasapricingformulaandlinearityofpricingandcertaintyequivalent Measuring Portfolio Performance 2 formarealsoexplainedinthischapter.Finally,inChapter4,weexploretheconceptsof measuringportfolioperformance,includingdefinitionsofmeasuringtherateofreturnof aportfolio,timeweightedandvalueweightedrateofreturns.Finally,wediscusstherisk adjustedperformancemeasurebasedoncapitalassetpricingmodel.Basedonthreerisk adjustedperformanceindices(Jensen,SharpeandTreynor)wecalculatetheperformance ofdifferentportfolioandcomparetheseindices. Themainreferencesofthisthesisare[1],[2],[4],[5],[9],[10]and[11].InChapter2,we refer to [3],[7], [8] and [16]. In Chapter 3, we also refer to [6], [12], [13] and [15] frequently.Somedataalsorefertowebpageslistedattheendofreferencesection.

Measuring Portfolio Performance 3

Chapter 2

PORTFOLIO MEAN AND VARIANCE

2.1 Mean Return of a Portfolio

Suppose that there are n assets with rates of return r1 , r2 ,…, rn and these have expected values E(r1 ) = r1 , E(r2 ) = r2 , ….. , E(rn ) = rn .Weformaportfolioofthese n assets usingtheweights wi , i =1,2,…,n.Therateofreturnintermsoftheindividualreturnof theportfoliois

r = w1r1 + w2 r2 + … + wn rn . (1) Wefindtheexpectedrateofreturnbytakingtheweightedsumofindividualexpected ratesofreturn.Usingthepropertyoflinearity,wetaketheexpectedvaluesontheboth sidesofequation(1)

E(r) = w1E(r1 ) + w2 E(r2 ) + … + wn E(rn ) . (2)

2.2 Variance of Portfolio Return

2 Thevarianceofthereturnofasset i isdenotedby σ i ,thevarianceofthereturnofthe 2 portfolioby σ , andthecovarianceoftheasset i withasset j by σ ij .Wecanperform thefollowingcalculation, 2 2 σ = E[(r − r) ], n n  2  = E(∑wi ri − ∑ wi ri )  ,  i=1i = 1   n n  = E(∑wi (ri − ri ))( ∑ w j (rj − rj ) ,  i=1j = 1   n  = E∑ wi w j (ri − ri )(rj − rj ) , i, j=1  n 2 σ = ∑ wi w jσ ij . (3) i, j=1 Equation(3)representstheVarianceofthereturnontheportfolio.

Measuring Portfolio Performance 4

Example 2.1 Considertherearetwoassetswithexpectedvalues r1 =0.22, r2 =0.55 andthevarianceare σ 1 =0.80,σ 2 =0.88and σ 12 =0.55respectively.Aportfoliowith weights w1 = 0.25 and w2 = 0.65 is formed. Calculate the mean and variance of the portfolio? Solution

Mean of the portfolio r = w1E(r1 ) + w2 E(r2 ) =0.25(0.22)+0.65(0.55) = 0.4125. Variance of the portfolio n 2 σ = ∑ wi w jσ ij i, j=1 2 2 2 2 = w1 σ 1 + w2σ 2 + w1w2σ 12 + w2 w1σ 21 = (0.25) 2(0.80) 2+(0.65) 2(0.88) 2+(0.25)(0.65)(0.01)+(0.65)(0.25)(0.01) = 0.040+0.327+0.002+0.002 = 0.371. 2.3 The Markowitz Problem TheMarkowitzproblemexplicitlyaddressesthetradeoffbetweenexpectedrateofreturn of a portfolio and variance of the rate of return ofaportfolio.Thisproblemismainly used when the risk free assets as well as risky assets are available. The Markowitz problemcanbesolvednumerically.Whenwesolvetheproblemnumericallythenweget anumericalsolution.

Considerthatthereare n assetsandtheirexpectedratesofreturnare r1 , r2 ,..., rn and theircovariances are σ i j ,fori=j=1,2,…, n .Theportfolioisdefinedasasetof n weights wi ,fori=1,2… n ,thatitssumequalto1.Inordertofindaminimumvariance ofaportfolio,somearbitraryvalue r isassigntothemeanvalue.Hencetheproblemcan beformulatedas

Measuring Portfolio Performance 5

1 n min ∑ wi w jσ ij , 2 i, j=1 subjectto n ∑ wi ri = r , i=1 n ∑ wi = 1. i=1

Solution of Markowitz Problem LagrangeMultipliers λ and areusedtosolvetheproblem.IntheLagrangian,firstwe convertalltheconstraintstoonewithzeroontherighthandsideasshownbelow. 1 n f = ∑ wi w jσ ij , 2 i, j=1 n ∑ wi ri − r = 0, i=1 n ∑ wi −1 = 0. i=1 ThentheeachlefthandsideismultipliedtoitsLagrangeMultiplierandsubtractedfrom theobjectivefunction. Lagrangian function 1 n n n L ( wi , w j ) = ∑ wi w jσ ij - λ ( ∑ wi ri − r ) - ( ∑ wi −1 ). 2 i, j=1 i=1 i=1

DifferentiatetheLagrangianwithrespectto wi and w j andputequaltozero.Ifthetype structureisunfamiliarthenitisdifficulttodifferentiateit.Hereweconsiderthecaseof onlytwovariablesanditiseasytogeneralizeitto nvariable. Functions of two variables 1 2 2 2 L ( wi , w j ) = ∑ wi w jσ ij - λ ( ∑ wi ri − r ) - ( ∑ wi −1 ) 2 i, j=1 i=1 i=1 or 1 L ( w , w ) = ( w2σ 2 + w w σ + w w σ + w2σ 2 ) i j 2 1 1 1 2 12 2 1 21 2 2

- λ ( r1w1 + r2 w2 - r ) - ( w1 + w2 - 1 ).

Measuring Portfolio Performance 6

Differentiatetheaboveequationwithrespectto w1 and w2 ,weobtain

∂L 1 2 = (2 w1σ 1 + w2σ 12 +σ 21w2 ) - λ r1 - , ∂w1 2 and

∂L 1 2 = (σ 12 w1 + w1σ 21 + 2 w2σ 2 ) - λ r2 - . ∂w2 2 ∂L ∂L Nowputting = 0, = 0, andusingthefact σ 12 =σ 21 ,weget ∂w1 ∂w2 2 σ 1 w1 + σ 12 w2 + λ r1 - = 0, and 2 σ 21w1 + σ 2 w2 - λ r2 - = 0 . Herewehavefourequations,twoasaboveandtwofromtheconstraints.Theseequations canbesolvedforthefourunknown w1 , w2 , λ and . Equation for efficient set TheefficientportfoliofortwoLagrangeMultipliers λ and andtheportfolioweight wi fori=1,2…nhavingthemeanrateofreturn r satisfy n ∑σ ij wi - λ ri - = 0,fori=1,2…n (1) j=1 n ∑ wi ri = r , (2) i=1 and n ∑ wi = 1. (3) i=1 Fromequation(1),wehave n equationsandtwoequationsoftheconstraints.Nowwe have total n + 2 linear equations,withn + 2 unknown i.e. wi 's , λ and . Using the linearalgebramethodtheseequationscanbesolvedeasily. Example 2.2Considerwehavethreeuncorrelatedassets.Eachhasvariance1andthe meanvaluesare1,2and3,respectively,thereisabitofsimplicityandsymmetryinthis situation,whichmakesitrelativelyeasytofindanexplicitsolution.

Measuring Portfolio Performance 7

Usingtheequations, n ∑σ ij wi - λ ri - = 0, fori=1,2…n (1) j=1 n ∑ wi ri = r , (2) i=1 and n ∑ wi = 1. (3) i=1 wehave 2 2 2 σ 1 = σ 2 = σ 3 = 1 and σ 12 = σ 23 = σ 31 = 0. Usingallknownvaluesinequations(1)–(3),wegetthefollowingfiveequations.

w1 - λ - = 0, (4)

w2 - 2 λ - = 0, (5)

w3 - 3 λ - = 0. (6)

And w1 + 2 w2 + 3 w3 = r , (7)

w1 + w2 + w3 = 1. (8)

Wehavetofindthevaluesof λ and ,substitutingthevaluesof w1 , w2 and w3 from equations4,5and6inequations7and8,weobtain ( λ + ) + 2(2 λ + ) + 3(3 λ + ) = r , 14 λ +6 = r , (9) and ( λ + ) + (2 λ + ) + (3 λ + ) = 1, 6 λ + 3 = 1. (10) Solvingequation(9)and(10)simultaneously,weget λ and as r λ = - 1, 2 1 = 2( ) - r . 3

Substituting λ and inequations(4)to(6),wegetthevaluesof w1 , w2 and w3 Measuring Portfolio Performance 8

4 r w = - ( ), 1 3 2 1 w = , 2 3 and r 2 w = ( ) - ( ). 3 2 3 Thestandarddeviationisgivenby 2 2 2 σ = w1 + w2 + w3 2 7 r σ = − 2r + 3 2 Theminimumvariancepointis,bysymmetry,at r = 2,with σ = /3 3.

2.4 The Line Thelinearefficientsetofcapitalassetpricingmodel(CAPM)isknownascapitalmarket line.Itisalsostatedas“Theefficientsetconsistingofasinglestraightline,fromtherisk freepointandwhichispassingthroughthemarketportfolio,thatlineisknownascapital marketline”.

Figure 1: The Capital market line

Thecapitalmarketlineisillustratedabove,withreturn p ontheyaxisandrisk σ p onx axis.Thelineshowstherelationshipbetweentheexpectedrateofreturnandtheriskof returnforefficientportfoliosofassets.Itisalsoreferredtopricinglineandiftherisk

Measuring Portfolio Performance 9 increases then corresponding expected rate of return must also increase. “M” is the marketportfolioand rf istheriskfreerateofreturn. Thecapitalmarketlinestatesthat

rM − rf rp = rf + σ p . σ M Here

rp = expectedreturnofanefficientportfolio

rf = riskfreerateofreturn

rM = expectedreturnofthemarketportfolio

σ p = standarddeviationoftheefficientportfolio

σ M = standarddeviationofthemarketportfolio. Theslopeofthecapitalmarketlineisgivenby r − r K = M f . σ M Itisalsocalledthepriceofrisk.Ittellsushowtheexpectedrateofreturnofaportfolio mustbeincreaseifthestandarddeviationofthatrateisincreasebyoneunit.

Example 2.3 Consider an oil drilling venture. The price of a share of this venture is $1750. After one year, it is expected to the equivalent of $2000. The standard deviationofthereturnis σ =45%.Currently,theriskfreerateis15%.Theexpectedrate ofreturnonthemarketportfoliois23%andthestandarddeviationofthisrateis17%. Comparethisoilventurewiththeassetonthecapitalmarketline.

Solution Here

rf =15%=.15, rM =23%=.23

σ M =17%=.17, σ p =45%=.45 Fromthecapitalmarketline,weknowthat

rM − rf rp = rf + σ p , σ M .23− .15 =(.15)+( (.45) ), .17 Measuring Portfolio Performance 10

=(.15)+(0.47)(.45), =36%. Actualexpectedrateofreturnis 2000 r =( )–1, 1750 =.14, = 14%. Aftercomparingthebothvaluesitisclearthattheoilventurelieswellbelowthecapital marketline.

Measuring Portfolio Performance 11

Chapter 3

THE CAPITAL ASSET PRICING MODEL (CAPM) 3.1 History of CAPM Thecapitalassetpricingmodel(CAPM)wasintroducedbyJackTreynor(1961)while parallelworkwasalsoperformedbyWilliamSharp(1964)andLintner(1965).In1990, Sharp received the Nobel Memorial Prize in Economics with Harry Markowitz and MertonMillerinthefieldoffinancialeconomics. TheCapitalAssetPricingModelisaneconomicmodelwhichisusedforvaluingthe securities,andassetsbyrelatingriskandexpectedrateofreturn. Inthecapitalmarketline,theexpectedrateofreturnofanefficientportfoliorelatestoits standarddeviationbutcannotshowhowtheexpectedrateofreturnofanindividualasset relatestoitsindividualrisk.Thisrelationisexpressedbythecapitalassetpricingmodel (CAPM). TheCAPMhelpustocalculateinvestmentriskandwhatisthereturnontheinvestment. Thisinvestmentcontainstwotypesofrisk. • SystematicRisk • UnsystematicRisk

3.1.1 Systematic Risk Systematicrisksaremarketrisksthatcannotbediversifiedaway. Forexample,warsandinterestratesaregoodexamplesofthesystematicrisk.

3.1.2 Unsystematic Risk Unsystematicriskisspecifictoeachindividualstocksandit canbediversifiedawayastheincreasesthenumberofstocksinportfolio.Itis alsoknownas“specificrisk”.

Theorem SupposethatmarketportfolioMisefficient,theexpectedreturn ri ofanyasset i satisfiestherelationship.

ri - rf = βi ( rM − rf ), where

rf = riskfreerate

βi = betaofthesecurity

rM = expectedmarketreturn

( rM − rf ) = equitymarketpremium and Measuring Portfolio Performance 12

σ iM βi = 2 . σ M

Proof Supposeforany α ,theportfolioconsistingofaportion α investedintheasset i andtheremainingpotion1α investedinthemarketportfolioM.Theexpectedrateof returnofthisportfoliois

rα = α ri + (1 - α ) rM (1)

Standarddeviationoftherateofreturnis 2 2 2 2 1/2 σ α = [α σ i + 2 α (1 - α ) σ iM + (1 - α ) σ M ] (2) Thevaluesof α aretracedoutasshowninthediagrambelow.

M

Inparticular α =0correspondingtothemarketportfolioM.Thiscurvecannotcrossthe capitalmarketline.Ifitcrossesthecapitalmarketlinethenitwouldviolatethedefinition ofthecapitalmarketline.Thecurvemustbetangenttocapitalmarketline.Atthepoint Mtheslopeofthecurveisequaltotheslopeofthecapitalmarketline. Differentiatingequations(1)and(2)withrespectto α ,weget d r α = r - r . dα i M Furthermore dσ 1 α = [α 2σ 2 + 2 α (1 - α ) σ + (1 - α ) 2 σ 2 ] −1 2 × dα 2 i iM M 2 [2 ασ i + 2(1 - α ) σ iM + 2(1 - α )(-1) σ M ],

Measuring Portfolio Performance 13

2 1 2ασ i + 1(2 −α)σ iM + (2 α − )1 σ M = 2 2 2 2 1/2 2 [α σ i 2+ α (1 α ) σ iM + (1 α ) σ M ]

2 ασ i + 1( −α)σ iM + (α − )1 σ M = 2 2 2 2 1/2 . [α σ i 2+ α (1 α ) σ iM + (1 α ) σ M ] At α = 0, weget 2 dσ α )0( σ i + 1( − )0 σ iM + 0( − )1 σ M = 2 2 2 2 1/2 dα α =0 [(0) σ i 2+ α (1 0)σ iM + (1 )0 σ M ]

2 σ iM −σ M = 2 1/2 [σ M ] σ −σ 2 = iM M . σ M Usingtherelation d r d r dα α = α , dσ α dσ α dα atpoint α = 0, weget

dσ α ri − rM = 2 dα α =0 σ iM −σ m

σ M

(ri − rM )σ M = 2 . σ iM − σ M Thisslopeisalsoequaltotheslopeofthecapitalmarketline.

(ri − rM )σ M rM − rf 2 = , σ iM − σ M σ M andtherefore,

2 2 2 riσ M − rM σ M = (rM − rf ) (σ iM −σ M ),

Measuring Portfolio Performance 14

2 2 2 2 riσ M − rM σ M = rM σ iM − rM σ M −σ iM rf + σ M rf . Thus 2 2 riσ M − rf σ M = (rM − rf )σ iM , and

(rM − rf )σ iM ri = rf + 2 . (3) σ M Nowlet

σ iM βi = 2 . σ M

Puttingthevalueof βi inequation3,weget

ri = rf + βi (rM − rf ). Thusthetheoremisproved.

The ri − rf is expected excess rate of return of asset i , it is defined as the amount by whichtherateofreturnisexpectedtoexceedtheriskfreerate.Similarly, rM − rf isthe expected excess rate of return of the market portfolio.Thecapitalassetpricingmodel (CAPM)tellsusthattheexpectedexcessrateofreturnofanassetisproportionaltothe expectedexcessrateofreturnofthemarketportfolio. 3.2 Assumptions of Capital Asset Pricing Model (CAPM) The capital asset pricing model (CAPM) is valid within a special set of assumption. Theseassumptionsare • Allinvestorshavehomogenousexpectationsabouttheassets. • Investormayborrowandlendunlimitedamountofriskfreeasset. • Theriskfreeborrowingandlendingratesareequal. • Thequantityofassetsisfixed. • Perfectlyefficientcapitalmarkets. • Nomarketimperfectionssuchliketaxesandregulationandnochangeinthelevel ofinterestrateexists. • Therearenoarbitrageopportunities. • Thereisaseparationofproductionandfinancialstocks. • Returns(assets)aredistributedbynormaldistribution.

Measuring Portfolio Performance 15

Example 3.1 Supposetherateofreturnofthemarkethasanexpectedvalue14%anda standarddeviationof15%,lettheriskfreeratebe10%.Usingthecapitalassetpricing modelformulacalculateanexpectedrateofreturn. Solution Consideranassethascovarianceof.045withthemarket;first,wehavetofind thevalueofthe β (beta).

σ iM β = 2 , σ M .0 045 = , ().0 15 2 =2.

Hererf =10%=.10, rM =14%=.14 Thecapitalassetpricingmodelformulais

ri = rf + βi ( rM − rf ), r =(.10)+2(.14.10), =(.10)+(.08), =.18, =18%.

Example 3.2 Assumethattheriskfreerateis8%andtheexpectedmarketreturnis12%. Findtheexpectedrateofreturnwhen(a) β =0(b) β =2.

Solution rf =.08, rM =.12 Case (a) When β =0

ri = rf + βi ( rM − rf ), =.08+0(.12.08), =.08. Measuring Portfolio Performance 16

Case (b) When β =2

ri = rf + βi ( rM − rf ), =.08+2(.12.08), =.08+.08=.16. Thisexampleshowsthatthehigherthedegreeofthesystematicrisk β ,thehigherthe returnonagivensecuritydemandedbyinvestors.

Example3.3 Considerthatyouhave$30,000inthefollowing4stocks. Security Amount Beta Xi R = r + βi (Rm − r) A 5,000 0.75 5/30 0.1225 StockB 10,000 1.10 10/30 0.1610 StockC 8,000 1.36 8/30 0.1896 StockD 7,000 1.88 7/30 0.2468 Theriskfreerateis4%andtheexpectedreturnonthemarketportfoliois15%.Usingthe capitalassetpricingmarket,whatistheexpectedreturnontheaboveportfolio? Solution

Here rf =.04, rM =.15.

Here βi denotesthebetacoefficientofthestock i .Wecalculatethebetacoefficient βi fortheportfolioandgettheexpectedreturnontheportfoliofromthecapitalassetpricing modelequation.

Here βi = x A β A + xB β B + xC β C + xD β D =(5/30)(0.75)+(10/30)(1.10)+(8/30)(1.36)+(7/30)(1.88) = 1.29 Capitalassetpricingmodelequationis

ri = rf + βi ( rM − rf ), =.04+(1.29)(.15.04), =.04+0.15, =0.19.

Measuring Portfolio Performance 17

3.3 The Thesecuritymarketlineisthegraphicalrepresentationofthecapitalassetpricingmodel. Thecapitalassetpricingmodelequationdescribesalinearrelationshipbetweenriskand return.Thislinearrelationshipistermedasthesecuritymarketline.

Thegraphshowstherelationintheformofbeta.Inthiscase,themarketportfoliotothe pointbetaisequaltoone.Accordingtothecapitalassetpricingmodelthislineexpresses theriskrewardstructureofassets.Theexpectedrateofreturnincreaseslinearlyasbeta increases. It is a useful tool in determining if an asset being considered for a portfolio offers a reasonable expected return for risk on the security market line. We plotted individual securities,ifthesecurity’sriskversusexpectedreturnisplottedabovethesecuritymarket line,thenitisundervaluedandtheinvestorcanexpectahigherreturnfortheinherent risk.Ifasecurity’sriskversusexpectedreturnisplottedbelowthesecuritymarketline, thenitisovervaluedandtheinvestorwouldbeacceptinglessreturnfortheamountof riskassumed. 3.4 CAPM as a Pricing Formula CAPMisapricingmodel.Itonlycontainstheexpectedrateofreturnbutcannotcontain priceexplicitly.WewanttoseewhytheCAPMiscalledapricingmodel. Consideranassetisbeingpurchasedatprice P andaftersometimeitissoldatprice Q . (Q − P) Then r = istherateofreturn,Here P isknownand Q israndom(unknown), P theCAPMformulais

r = rf + βi (rM − rf ). (1) Puttingthevalueof r inequation(1),giveus

Measuring Portfolio Performance 18

(Q − P) = r + β (r − r ), P f M f

Q − P = P ( rf + β (rM − rf ) ),

Q = P + P ( rf + β (rM − rf ) ),

= P (1 + ( rf + β (rM − rf ) ),

Q P = . (2) 1( + (rf + β (rM − rf ))) ItisthepriceoftheassetaccordingtotheCAPM.Here β isthebetaoftheasset. Example 3.4 Let us consider an oil drilling venture. The possibility of investing in a certainoilsharethatproducesapayoff,itisrandombecauseoftheuncertaintyinfuture oilprice.Theexpectedpayoffis$1200andstandarddeviationofreturnis40%.The β of theassetis0.8thatisrelativelylow.Theriskfreerateis20%andtheexpectedreturnon themarketportfoliois70%.Whatisthevalueofthisshareoftheoilventureusingthe CAPM? Solution Weknowthat Q P = (1) 1( + (rf + β (rM − rf ))) here Q =$1200 , β =0.8

rf =20%=0.20 , rM =70%=0.70 puttingthisvalueinaboveequation(1) 1200 P = , 1+ .0 20 + .0(8.0 70 − .0 20) 1200 P = , 1.6 P =$750.

Measuring Portfolio Performance 19

3.4.1 Linearity of Pricing and the Certainty Equivalent Form Linearityofthepricingformulaisaveryimportantproperty.Itsmeanthatthepriceof thesumoftwoassetsisthesumoftheirprices,similarly,thepriceofamultipleofan assetisalsothesamemultipleoftheprice.Theformuladoesnotlooklinear,inthecase ofsums.Considertheexample Suppose

Q1 Q2 P1 = , P2 = . 1+ rf + β1 (rM − rf ) 1+ rf + β 2 (rM − rf )

Adding P1 and P2 ,weget

Q1 Q2 P1 + P2 = + 1+ rf + β1 (rM − rf ) 1+ rf + β 2 (rM − rf )

Q + Q = 1 2 . 1+ rf + β1+2 (rM − rf )

Itisthesumofassets1and2,here β1+2 isthebetavalueofthenewasset.

Measuring Portfolio Performance 20

Chapter 4

MEASURING PORTFOLIO PERFORMANCE 4.1 Measuring the to a portfolio Therateofreturnofaportfolioismeasuredasthesumofcashreceived()and thechangeintheportfolio’smarketvalue(capitalgainorloss)dividedbythemarket valueoftheportfolioatthebeginningoftheportfolio,mathematically, Cash( Dividend )+ Capital ( gainor loss ) Return of a portfolio = Market valueof a portfolio( purchase price ) Therateofreturnisthemostimportantoutcomefromanyinvestment.Itworkswellfor staticportfolio.Managedportfoliosreceiveadditionalamounttobeinvestedintheperiod (amonthoraquarter)andtheirinvestorscanalsowithdrawfundfromtheportfolio. Suppose that the market value of aportfolio $ 1 million invested for the period of a quarterand$1millionisaddedattheendofthefirstmonthandthen$1.5millionis withdrawnattheendof2 nd month.Howisthereturntobecalculatedforthequarter? Therearetwomethodstocalculatethisreturn. • TimeWeightedrateofreturn • ValueWeightedrateofreturn 4.1.1 Time Weighted rate of return Thefirstmethodiscalledtimeweightedrateofreturn.Thetimeweightedrateofreturn measures the performance of the portfolio manager. The amount of funds invested is neutralizedinthecalculationoftimeweightedreturnbecausethefundshavedepositsand withdrawals by the investors are not under the control of the fund manager but their returnarecomputedonthebasisofcashdistributionsandthechangesinthemarketvalue ofasingleshareinthefundbutthetimeweightedreturniscalculatedbydividingthe beginningvalueofashareintothecashdistribution and the change in the value of a shareduringtheperiod.However,tocalculatethetimeweightedrateofreturn,dividethe portfoliointosharesandcomputethereturntoasingleshareintheportfolioacrossthe period.Inthesamewaywecancalculatetherateofreturnofamutualfund. 4.1.2 Value Weighted rate of return Thesecondmethodiscalledvalueweightedrateofreturn.Thetimeweightedmethod ignored the deposits and withdrawal to and from the portfolio during the period over which return to be measured but the value weighted method takes deposits and withdrawal into its account. Suppose that wT is a withdrawal at time T and Dt is a

Measuring Portfolio Performance 21 depositattime tandfurtherassumedthatcash(dividend)totheportfolioarereceivedat the end of the period. The value weighted rate of return r is found by solving the followingparticularequation. n D m w Beginning portfolio Value = t + T ∑ t ∑ t t=1 (1+ r ) t=1 (1+ r ) Total ending valueof portfolio + . (1+ r ) t Here misnumberofwithdrawals, tisthelengthoftimeinyearsand n is number of depositsduringtheperiod. 4.2 Risk Adjusted performance Measure (BasedonCapitalAssetpricingmodel) Suppose that for a set of information relevant to any given stock, we can divide this informationintotwomajortypes. 4.2.1 Public information it is also called open end information. These pieces of informationareavailabletoeveryoneandthemanagercanoffernewsharesatanytime. 4.2.2 Private information Thisinformationisavailableforselectedindividualsonly. Supposethatifweweretoestimatetheexpectedreturns,varianceandcovariancebased on the analysis of the public available information alone, we would see the market portfoliopositionedonthecapitalmarketlineshownintheFigure4.1andeverystocks andportfoliowouldbepositionedonthesecuritymarketlineshownintheFigure4.2. Figure 4.1 E(r) 0´ 14 JensenIndex 12 0 SML 0 M 10 0 A´ 8 A 0 rf Expectedreturn β 0 .50 1.00 1.50

0 Beta Measuring Portfolio Performance 22

Figure 4.2

E(r) 0´ CML M 0 E( Tm ) A` A 0 rf Expectedreturn Standarddeviation σ(r) 0 σ(rm) Standarddeviation Consider two professionally managed portfolio, fund and Omega fund. In the Alphafund,themanagershaveprivateinformationrelatingtoasinglecompanyandthis privateinformationisfavorableinthesensethatexpectedrateofreturntothestockis higherthenwethinkaboutthepublicinformationalone.Supposethatthemanagersof theAlphafundinvest100%ofmoneyintheirportfolioinsinglestockofthiscompany. Ifweplottheportfoliobasedonthepublicinformationalone.ItspointlabelAin figures4.1and4.2asshownabove.AlphafundplotatpointA /intheabovetwofigures, basedonthebothpublicandprivateinformationanditisabovethesecuritymarketline. Withthe2%additionalincrementinitsexpectedrateofreturn,itsstillpositioninsidethe efficientset. IntheOmegafund,themanagersaremoreskillfulbecause they have able to acquire private information on many other companies. Suppose in this case, the private informationaffectsonlyintheestimateofexpectedreturnbutnotintheestimateofrisk. IntheFigures4.1and4.2theOmegaispointatOandO /basedonpublicinformation aloneandbothpublic andprivateinformation respectively. Omega does not look like veryspecialtothoseofuswhoonlyhavepublicinformationtomakeoneestimates. Thetypicalstructureofariskadjustedperformancemeasureis Risk adjusted performance = performance / Risk

Measuring Portfolio Performance 23

4.3 Risk-Adjusted Performance Indices Therearethreeindicesavailableformeasuringtheriskadjustedperformance. • The Jensen Index (Jensen, 1968) • The Sharp Index (Sharp, 1966) • The Treynor Index (Treynor, 1965) Allthreeindicesarebasedonthecapitalassetpricingmodelandtheyareinwidespread use.TheJensenIndexisameasureofrelativeperformancebasedonthesecuritymarket line,whereastheTreynorandSharpindicesarebasedontheratioofthereturntorisk.It isgenerallyassumedintheJensenandTreynorIndicesthatstocksarepricedaccordingto thecapitalassetpricingmodel.Weknowthatcapitalassetpricingmodeltheoryproposes thattheexpectedreturnonariskyinvestmentiscomposedoftheriskfreerateandarisk premium, where the risk premium is the excess market return over the risk free rate multipliedbybeta.TheJensenandTreynorindicesdealwithriskadjustedperformance sticklebasedwithintheframeworkofcapitalassetpricingmodelandbotharebounded bycapitalassetpricingmodelassumptions.Wehavealreadydiscussedtheseassumptions inChapter3. 4.3.1 The Jensen Index Anindexthatusesthecapitalassetpricingmodel(CAPM)todeterminewhetheramoney manageroutperformedamarketindex. Infinance,Jensen’sindexisusedtodeterminetherequired(excess)returnof astock, securityorportfoliobythecapitalassetpricingmodel.Jensenindexutilizesthesecurity marketlineasabenchmark.In1970’s,thismeasurewasfirstusedintheevaluationof mutualfundmanagers.Thismodelisusedtoadjustthelevelofbetarisk,sothatriskier securitiesareexpectedtohavehigher returns. Itallowstheinvestortostatisticallytest whetherportfolioproducedanabnormalreturnrelativetotheoverallcapitalmarket. AnimportantissueregardingtheuseofJensenIndexisthechoiceofthemarketindex, becausetheportfolioperformancewillbecomparedwiththemarketportfolio. Accordingtocapitalassetpricingmodel(CAPM),inanequilibriumriskreturnmodel (LevyandSarnat,1984)theexpectedrateofreturnonanassetorportfolioisexpressed as

Erpp= r +( Er mfp − r ) β . (1) Here

Er p = expectedreturnofanassetorportfolio

rf = riskfreerateofreturn

Er m = expectedreturnonthemarketportfolio

Measuring Portfolio Performance 24

β p = betaorsystematicriskoftheassetorportfolio. We want to obtain the Jensen Index, a time series regression of the security’s return

(rp− r f ) isregressedagainstthemarketportfolioexcessreturn (rm− r f ) . Now

(rrpf−=+−) α pmfpp( rr ) β + ε . (2) Here

rp = returnontheportfolio

rf = riskfreerateofreturn

α p = JensenIndexmeasureoftheperformanceoftheportfolio

β p = betaorsystematicriskoftheportfolio

rm = returnofthemarketportfolio

ε p = portfoliorandomerrorterm. Nowbytakingmeanonthebothsidesofequation(2),weobtain

(rrpf−) =α pmfp +( rr − ) β . (3)

ByLevyandSarnat1984,theaverageerrorterm ε p isalwayszero. Soequation(3)become

αpp=−r( r f +( rr mf − ) β p ) . (4)

Intheframeworkofcapitalassetpricingmodel(CAPM), α p shouldbezero.Itmeans thatthestockhasperformedexactlysameasthemarketexpectedbasedonitssystematic risk.

TheJensenIndex( α p )foraparticularportfolioisidentifiedbytheverticalinterceptof theregressionmodeldescribedinequation(4),fromtheequation(4)itisclearthatthe higher the vertical intercept ( α p ), the greater the abnormal return achieved by the portfoliointheexcessofthemarketreturn. Herewediscussedthreescenariosofsupermarketperformancealongwiththediagrams. Inallthescenarios,theexcessreturnsonthefundareplottedagainsttheexcessreturns onthemarket.

Measuring Portfolio Performance 25

First Scenario

Theexcessreturnsonthefundareplottedagainstthe excess returns on the market as shownabove.Theregressionlineinthefirstscenariohasapositive(+ve)intercept.This istheabnormalperformance.

Second Scenario

Thesecondscenarioshowswhatisknownasmarkettiming. If the portfolio manager knows when the stock market is going up, he will shift into high beta stocks. If the portfoliomanagerknowsthemarketisgoingdown,hewillswitchintolowbetamarket. Inthehighbetastocks,thesestockswillgoupevenfurtherthenthemarketandinthe caseonlowbetastocks,thesestockswillgodownlessthenthemarket.Herewenotice that the Jensen measure is positive signaling superior performance.

Measuring Portfolio Performance 26

Third Scenario

Thethirdscenarioshowsmarkettiming,supposethemanagerissogoodthatthereareno negativereturns.Themanagersknowthegoodmarkettimingabilities.Supposethatthe market goes up. In this case, the fund goes up by more than the market, which is indicating that it shifts into high beta stocks. It is important to notice that the Jensen measureinthiscaseisnegative.Eventhoughthemanagerhasexhibitedstrongmarket timingabilities,theperformanceevaluationcriteriatellsthatheisnotdoingasuperior job.ItisamajorproblemintheJensenmeasure. 4.3.2 The Treynor Index

In 1965, Treynor’s was the first researcher who computed measure of the portfolio performance. A measure of a portfolio excess return per unit of risk is equal to the portfoliorateofreturnminustheriskfreerateofreturn,dividingbytheportfoliobeta. Thisisusefulforassessingtheexcessreturn,evaluatinginvestorstoevaluatehowthe structure of the portfolio to different levels of systematic risk will affect the return.

Symbolically,theTreynorIndex( Tp )ispresentedas

rp− r f Tp = . β p Here

rp = portfoliorateofreturn

rf = riskfreerateofreturn

β p = portfoliobeta.

When rp> r f and β p > 0 ,wegetalargerTreynorvalue.Itmeansabetterportfoliofor alltheinvestorsregardingoftheirindividualriskperformance. Measuring Portfolio Performance 27

Wediscusstwocases,inwhichwemayhaveanegativeTreynorValue.

• When rp< r f TheTreynorisnegativebecause rp< r f , wejudgetheportfolio performanceverypoor.

• When β p < 0 Thenegativitybecomesfrombeta,thefundsperformanceis superb.

Thereisanotherveryimportantcase,supposethatwhen rp− r f and β p arebothnegative, thenTreynorwillbecomepositivebutinordertoqualifythefundsperformanceasgood orbadweshouldseewhether rp liesaboveorbelowthesecuritymarketline. The Treynor index uses the security market line as a benchmark. This index has a geometricinterpretationwhichissimilartothesharpindex. Itmeasures theslopeofa linethatstartsattheriskfreerateandconnectswiththepointthatmarksthefundbeta andexpectedreturn. Allriskaverseinvestorswouldliketomaximizethis,whileahighandpositive(+ve) Treynorindexshowsasuperiorriskadjustedperformanceofafund,whilealowand negative(ve)TreynorIndexshowsanunfavorableriskadjustedperformanceofafund.

Theexcessreturnsonthefundareplottedagainstthebeta.Thesecuritymarketlineis drawnwithexcessreturnsontheverticalaxis.Thesecuritymarketlineisthedashedline thatstartsfromzerointheexcessreturnaxis.Noticethatthemutualfundsdistributed randomlyaboveandbelowthesecuritymarketline.

Demonstration with example

As we discuss above, when rp− r f and β p are both negative, then Treynor will be positive (+ve). In order to find the fund performance as good or bad we should see whether rp aboveorbelowthemarketline.Considerthefollowingexample.

Measuring Portfolio Performance 28

Assumethatwehavethefollowingdataforthreefundsnamely,ABC,DEFandGHI, withtheirrateofreturnandbeta.Theriskfreerateis12%.Theriskformarket(M)is1.0 andtherateofreturnforthemarket(M)is18%. Manager Rate of Return Beta Market 18% 1.00 ABC 16% 0.90 DEF 20% 1.05 GHI 22% 1.20 NowbyusingtheTreynorindexequation,wecancalculatethevalueofeachmanager

For Market Weknowthat

rp− r f Tmarket = (1) βM

Here rp = 18%, rf = 12%, βM = 1.0 Puttingthesevaluesinequation(1) (0.18− 0.12) T = market 1.0

Tmarket = 0.06 Manager ABC (0.16− 0.12) T = ABC 0.90

TABC = 0.044

Manager DEF (0.20− 0.12) T = DEF 1.05

TDEF = 0.076

Manager GHI (0.22− 0.12) T = GHI 1.20

TGHI = 0.083

Measuring Portfolio Performance 29

Values of each Manager

• Tmarket = 0.06

• TABC = 0.044

• TDEF = 0.076

• TGHI = 0.083

Treynors SML

0.2 GHI 0.15 DE 0.1 F

Return 0.05 ABC 0 0 1 2 3 Beta Securities Market line Itcanbecalculatedas 0.12+(0.06*Valueofbeta) ManagerABC= 0.12+(0.06*0.90) = 0.174 ManagerDEF= 0.12+(0.06*1.05) = 0.183 ManagerGHI= 0.12+(0.06*1.20) = 0.192 TheseresultsshowthatGHIhadthebestperformanceandABCdidnotbeatthemarket andDEFalsobeatthemarketasshownintheabovefigure.

4.3.3 Sharpe Index

In1966Sharpedevelopedacompositemeasurementofportfolioperformancewhichis very similar to the Treynor measure. The only difference being the use of standard deviationinsteadofbeta.TheSharpeindexisameasureinwhichwemaymeasurethe performanceofourportfolioinagivenperiodoftime. Measuring Portfolio Performance 30

InSharpeindex,wemustknowthreethings,theportfolioreturn,andtheriskfreerateof returnandthestandarddeviationoftheportfolio.Anotherthingisthatfortheriskfree rate of return, we may use the average return (over the given period of time). The standarddeviationoftheportfolioismeasurethesystematicriskoftheportfolio. The Sharpe index is computed by dividing the risk premium of the portfolio by its standarddeviationortotalrisk.Symbolically,theSharpeindexispresentedas

rp− r f SP = . σ p Here

rp = portfoliorateofreturn

rf = riskfreerateofreturn

σ p = standarddeviation. TheSharpeindexusesthecapitalmarketlineasabenchmark.Supposethatmutualfund is positioned on the capital market line then the fund has natural performance. This makes sense under capital asset pricing model, because on the basis of the public informationonly,anyinvestorcanconstructaportfoliothatispositionedonthecapital marketline.ThehighertheSharpemeasureindicatesabetterperformancebecauseeach unitoftotalrisk(standarddeviation)isrewardedwithgreaterexcessreturn. Demonstration with example Rateofreturnandstandarddeviationforthreeportfoliosaregivenbelow,theriskfree rateis0.12.Thesystematicriskforthemarket(M)is1.0andtherateofreturnformarket (M)is18%. Portfolio Rate of Return SDEV Market 18% 2.00 UV 17% 0.18 WX 21% 0.22 YZ 20% 0.23 Sharpe Measure

TheSharpeindexequationis

rp− r f SP = σ p For Market

rp− r f Smarket = σ M

rp = 0.18, rf = 0.12, σ p = 2.0

Measuring Portfolio Performance 31

Puttinginaboveequation (0.18− 0.12) S = market 0.20

Smarket = 0.300

Portfolio UV (0.17− 0.12) S = UV 0.18

SUV = 0.278

Portfolio WX (0.21− 0.12) S = WX 0.22

SWX = 0.409 Portfolio YZ (0.20− 0.12) S = YZ 0.23

SYZ = 0.348

Values of each Portfolio

• Smarket = 0.300

• SUV = 0.278

• SWX = 0.409

• SYZ = 0.348

Capital Market line Itcanbecalculatedas 0.12+(0.30*SDEV) PortfolioUV = 0.12+(0.30*0.18) = 0.174 PortfolioWX = 0.12+(0.30*0.22) = 0.186 PortfolioYZ = 0.12+(0.30*0.23) = 0.189 Thus,theportfolioYZdidthebestperformanceandUVfailedtobeatthemarketand WXalsobeatthemarket.

Measuring Portfolio Performance 32

Example 4.1 Suppose a portfolio manager achieved a return of 15% his portfolio has standarddeviationof0.3andamarketachievedareturnof14.6%,andariskfreerateof returnof7%.CalculatetheSharpeIndex. Solution TheSharpeindexequationis

rp− r f SP = σ p

Here rp = 0.15, rf = 0.07, σ p = 0.3 Puttinginaboveequation (0.15− 0.07) S = p 0.3

S p = 0.267 Example 4.2 Supposewehavetoasktoanalyzetwoportfolioshavingthefollowing characteristics. Portfolio Observed r Beta Residual Variance 1 0.18 1.8 0.04 2 0.12 0.7 0.00 • Thereturnonthemarketportfoliois0.14. • Theriskfreerateis0.07. • Thestandarddeviationofthemarketportfoliois0.02. Compute

a) TheJensenIndexforportfolios1and2. b) TheTreynorIndexforportfolios1and2andthemarketportfolio. c) ThesharpIndexforportfolios1and2andthemarketportfolio. Solution Part (a) Jensen index

Portfolio 1 Weknowthat

αpp=−r( r f +( rr mf − ) β p ) (1)

Measuring Portfolio Performance 33

Here

rp = 0.18 , β p = 1.8

rf = 0.07 , rm = 0.14 puttingallvaluesinaboveequation

α p =0.18 − 0.07 +( 0.14 − 0.07) 1.8 

α p =0.18 − 0.196

α p = − 0.016 or α p = − 1.6% Portfolio 2

Here

rp = 0.12 , β p = 0.7

rf = 0.07 , rm = 0.14 againputtingthisvaluesinequation(1)

α p =0.12 − 0.07 +( 0.14 − 0.07) 0.7 

α p =0.12 − 0.119

α p = 0.001 or α p = 0.1% Part (b) Treynor Index Portfolio 1 Weknowthat

rp− r f Tp = (2) β p

Here rp = 18%, rf = 7%, β p = 1.8 puttingthesevaluesinequation(2). (0.18− 0.07) T = p 1.8

Tp = 6.11

Measuring Portfolio Performance 34

Portfolio 2

Here rp = 12%, rf = 7%, β p = 0.7 Againputtingthesevaluesinequation(2) (0.12− 0.07) T = p 0.7

Tp = 7.14 Treynor index for the market r− r T = m f βm

Here rm = 0.14, rf = 0.07, βm = 1.25 puttingthesevaluesinaboveequation. (0.14− 0.07) T = 1.25 T = 5.6 Part (C) Sharpe Index

Portfolio 1 Standarddeviationforportfolio1isgivenbythefollowingequation. 2 22 2 σp= βσ pm + σ p 2 2 21/2 σp=[ βσ pm + σ p ] 1/ 2 2 2  σ p =(1.8) (0.02) + (0.04) 

σ p = 0.0538 =5.38% Sharpeindexforportfolio1

rp− r f SP = (3) σ p

Here rp = 0.18, rf = 0.07, σ p = 0.0538

Measuring Portfolio Performance 35

Puttingvaluesinequation(3) (0.18− 0.07) S = p 0.0538

S p = 2.044 Portfolio 2 Standarddeviationforportfolio1,weknowthat 2 22 2 σp= βσ pm + σ p 2 2 21/2 σp=[ βσ pm + σ p ] 1/ 2 2  σ p =(0.7) (0.02 + 0.00) 

σ p = 0.0989 =9.89%

Here rp = 0.12, rf = 0.07, σ p = 0.0989 Puttingvaluesinequation(3) (0.12− 0.07) S = p 0.0989

S p = 0.505 Sharpe Index for Market

r− r S = m f σ m (0.14− 0.07) S = 0.02 S = 3.5

Measuring Portfolio Performance 36

4.4 Comparison of three indices Whilestudyingthecompositeperformancemeasurementofthefunds,weseethatSharpe usesStandarddeviationasameasurementofrisk;ontheotherhand,TreynorusesBeta. If we are examining a well diversified portfolio, the ranking should be similar for all theseindices. Formyanalysis,IhavechosenthedatafromthePaper“PerformanceEvaluationofthe MutualFunds,byHewadWalasmel”,buthetookthedatafromtheJPMorganGlobal indexbondastheriskfreerate.Inhispaper,hehaschosenaroundabout80international mutualfunds,butItakeonly30andcompareofthese.Allofthefundshavebeeninthe marketatleast10yearperiod. Inthefirsttablementionedbelow,weshowthevaluesofMean,standarddeviationand betavalueagainsteachfund. Table 4.1 Fund Mean SDEV Beta ABBE 0.001 0.015 0.460 ABFA 0.001 0.016 0.140 ASNA 0.001 0.016 0.760 BHUM 0.003 0.029 1.020 CISE 0.002 0.015 0.530 CITY 0.001 0.020 0.140 COMM 0.001 0.022 0.630 FPSI 0.001 0.011 0.370 FPSE 0.002 0.013 0.400 KBCE 0.003 0.020 0.770 NPIP 0.004 0.016 0.610 ROBU 0.001 0.025 0.140 TSB 0.003 0.020 0.750 VARL 0.004 0.028 0.950 VGRN 0.001 0.031 0.410 CAVE 0.001 0.019 0.120 INGG 0.004 0.025 1.010 POST 0.004 0.024 0.920 SEBA 0.004 0.029 1.010 WAAA 0.002 0.030 1.020 HSBC 0.005 0.024 0.900 CONS 0.002 0.015 0.080 DRGE 0.001 0.015 0.110 LLOY 0.004 0.023 0.730 WALS 0.003 0.023 0.810 CERA 0.002 0.034 1.240 UBSM 0.002 0.020 0.460 LAKE 0.003 0.018 0.730 SEBG 0.002 0.022 0.920 DNBR 0.001 0.032 0.980

Measuring Portfolio Performance 37

The first step of analysis is to measure the performance of all listed above 30 funds accordingtotheperformancemeasurementofSharpe,TreynorandJensen.Weknowthe formulashowtocalculatetheSharpe,TreynorandJensenindices.Thetable4.2shown belowprovidesananalysisoftheperformanceofthegivenfunds.Thefirst,secondand thirdcolumnsreporttheSharpe,TreynorandJensenrespectively. Table 4.2 Performance of the given funds

Fund Sharpe Treynor Jensen ABBE 0.088 0.0028 0.0002 ABFA 0.097 0.0112 0.0012 ASNA 0.097 0.0020 0.0032 BHUM 0.110 0.0031 0.0008 CISE 0.174 0.0047 0.0012 CITY 0.071 0.0099 0.0011 COMM 0.057 0.0020 0.0003 FPSI 0.158 0.0046 0.0005 FPSE 0.189 0.0060 0.0011 KBCE 0.176 0.0044 0.0015 NPIP 0.243 0.0063 0.0024 ROBU 0.049 0.0087 0.0009 TSB 0.191 0.0050 0.0020 VARL 0.140 0.0041 0.0017 VGRN 0.010 0.0008 0.0012 CAVE 0.046 0.0074 0.0006 INGG 0.168 0.0042 0.0018 POST 0.174 0.0045 0.0019 SEBA 0.137 0.0039 0.0015 WAAA 0.093 0.0027 0.0003 HSBC 0.201 0.0054 0.0027 CONS 0.156 0.0320 0.0022 DRGE 0.108 0.0141 0.0013 LLOY 0.169 0.0053 0.0021 WALS 0.163 0.0047 0.0018 CERA 0.053 0.0015 0.0048 UBSE 0.114 0.0046 0.0001 LAKE 0.206 0.0052 0.0020 SEBG 0.093 0.0023 0.0001 DNBR 0.004 0.0001 0.0025

Measuring Portfolio Performance 38

Aftermeasuringtheratioofthesefunds,weseparatedtop15fundsaccordingtoeach measure.Itisshownintable4.3.1,4.3.2and4.3.3.Thisshowswhetherthereisidentical rankingforthesethreeratios. Table 4.3.1 Top 15 ranking of funds using Sharpe index

Ranking Sharpe Value 1 NPIP 0.243 2 LAKE 0.206 3 HSBC 0.201 4 TSB 0.191 5 FPSE 0.189 6 KBCE 0.176 7 POST 0.174 8 CISE 0.174 9 LLOY 0.169 10 INGG 0.168 11 WALS 0.163 12 FPSI 0.158 13 CONS 0.156 14 SEBA 0.137 15 UBSE 0.114 Table 4.3.2 Top 15 ranking of funds using Treynor index

Ranking Treynor Value 1 CONS 0.0320 2 DRGE 0.0141 3 ABFA 0.0112 4 CITY 0.0099 5 ROBU 0.0087 6 CAVE 0.0074 7 NPIP 0.0063 8 FPSE 0.0060 9 HSBC 0.0054 10 LLOY 0.0053 11 LAKE 0.0052 12 TSB 0.0050 13 CISE 0.0047 14 WALS 0.0047 15 FPSI 0.0046

Measuring Portfolio Performance 39

Table 4.3.3 Top 15 ranking of funds using Jensen index

Ranking Jensen Value 1 ASNA 0.0032 2 HSBC 0.0027 3 NPIP 0.0024 4 CONS 0.0022 5 LLOY 0.0021 6 LAKE 0.0020 7 TSB 0.0020 8 POST 0.0019 9 WALS 0.0018 10 INGG 0.0018 11 VARL 0.0017 12 KBCE 0.0015 13 SEBA 0.0015 14 DRGE 0.0013 15 UBSM 0.0001

Tables4.3.1,4.3.2and4.3.3showthateachfundintheabove15rankinghasadifferent rank according to the different performance measurements. We find that none of the fundsarefullydiversified.

4.5 Conclusion From the above tables we conclude that there is no identical ranking of the three measurements for any funds. This also shows that these funds are not completely diversifiedbecauseweknowthatcompletelydiversifiedfundshavethesimilarranking forthecompositeperformancemeasurementofSharpe,TreynorandJensen.Itmeansthat there is still some degree of unsystematic risk that any manager can remove by diversification.

Measuring Portfolio Performance 40

References [1] C.T.GurroyandY.Omer,2001,“Evaluationofportfolioperformance”,Dogus University [2] Dr. K .Spremann and Dr. Pascal, 2000, “Approaches to Modern Performance Measurement”.Journalofportfoliomanagement. [3] DromsWGandD.A,Walker1996“Mutualfundsinvestment performance” QuarterlyReviewofeconomics. [4] HewadWalasmel,2005,“PerformanceevaluationofMutualfunds”,Journalof finance0509023 [5] Jensen,M1968“ThePerformanceofMutualFundsintheperiod19451964”, JournalofFinance. [6] Luenberger,D.G.(1997)InvestmentScience.OxfordUniversity.PressInc,New York. [7] Markowitz,H.M,“PortfolioSection”,Journaloffinance,1952,V7(1),7791 [8] Markowitz, H. M, “Portfolio Section: Efficient Diversification of Investment”, JohnWiley&Sons,Inc.,1959 [9] Robert A. Haugan, Modern Investment Theory, Third edition University of California. [10] Sharpe,WilliamF“Mutualfundperformance”Journalofbusiness,January1966 [11] Treynor,JackL1965“HowtoRateManagementofInvestmentFunds”,Harvard BusinessReview [12] http://www.effisols.com/basics/mno.htm [13] http://www.investopedia.com/university/concepts/concepts8.asp [14] http://en.wikipedia.org/wiki/capitalassetpricingmodel [15] http://www.mutualfundsindia.com/perf.asp [16] http://www.duke.edu/~charvey/Classes/ba350/perfeval/perfeval.htm

Measuring Portfolio Performance