New Acquisitions November 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of Physics Group Newsletter No 21 January 2007
History of Physics Group Newsletter No 21 January 2007 Cover picture: Ludwig Boltzmann’s ‘Bicykel’ – a piece of apparatus designed by Boltzmann to demonstrate the effect of one electric circuit on another. This, and the picture of Boltzmann on page 27, are both reproduced by kind permission of Dr Wolfgang Kerber of the Österreichische Zentralbibliothek für Physik, Vienna. Contents Editorial 2 Group meetings AGM Report 3 AGM Lecture programme: ‘Life with Bragg’ by John Nye 6 ‘George Francis Fitzgerald (1851-1901) - Scientific Saint?’ by Denis Weaire 9 ‘Benjamin Franklin (1706-1790) - a brief biography by Peter Ford 15 Reports Oxford visit 24 EPS History of physics group meeting, Graz, Austria 27 European Society for the History of Science - 2nd International conference 30 Sir Joseph Rotblat conference, Liverpool 35 Features: ‘Did Einstein visit Bratislava or not?’ by Juraj Sebesta 39 ‘Wadham College, Oxford and the Experimental Tradition’ by Allan Chapman 44 Book reviews JD Bernal – The Sage of Science 54 Harwell – The Enigma Revealed 59 Web report 62 News 64 Next Group meeting 65 Committee and contacts 68 2 Editorial Browsing through a copy of the group’s ‘aims and objectives’, I notice that part of its aims are ‘to secure the written, oral and instrumental record of British physics and to foster a greater awareness concerning the history of physics among physicists’ and I think that over the years much has been achieved by the group in tackling this not inconsiderable challenge. One must remember, however, that the situation at the time this was written was very different from now. -
Third ICESHS, Austrian Academy of Sciences, Vienna 2008 Electron – A
Third ICESHS, Austrian Academy of Sciences, Vienna 2008 Isabel Serra, Francisca Viegas, Elisa Maia Department of History and Philosophy of Science, University of Lisbon Lisboa, Portugal [email protected] Electron – a main actor in scientific controversies1 1. Introduction The story of the electron can contribute to the study of the continuity-discontinuity of the scientific thinking in modern age, as well as to discuss models and metaphors in history of science. Actually, the electron played a central role in several scientific controversies: nature of electricity and cathode rays, structure and properties of matter. The idea of an atom of electricity was introduced by Faraday and adopted by Helmholtz. In 1874, Stoney estimated its charge and named it electron. However, Maxwell had stated that a complete knowledge of electricity would eliminate the necessity of such particles. The controversy about the nature of electricity was to lie dormant for years until it was brightened by the study of discharges in gases. The nature of cathode rays divided physicists and chemists, with the electron playing the major role in the dispute. The experiences of Perrin (1895) and Thomson (1897), seemed to confirm the existence of the electron, but did not convince all scientists. The electron became the main protagonist of a controversial image of matter: the atomistic view. In 1913, Bohr’s atomic theory was received with enthusiasm by some physicists but with criticism by others. Nevertheless, the atomic structure of matter gradually wins acceptance in reason of its extraordinary power in predicting spectral lines. At last, electrons were particles, coherent with facts and theories. -
Should Physical Laws Be Unit-Invariant?
Should physical laws be unit-invariant? 1. Introduction In a paper published in this journal in 2015, Sally Riordan reviews a recent debate about whether fundamental constants are really “constant”, or whether they may change over cosmological timescales. Her context is the impending redefinition of the kilogram and other units in terms of fundamental constants – a practice which is seen as more “objective” than defining units in terms of human artefacts. She focusses on one particular constant, the fine structure constant (α), for which some evidence of such a variation has been reported. Although α is not one of the fundamental constants involved in the proposed redefinitions, it is linked to some which are, so that there is a clear cause for concern. One of the authors she references is Michael Duff, who presents an argument supporting his assertion that dimensionless constants are more fundamental than dimensioned ones; this argument employs various systems of so-called “natural units”. [see Riordan (2015); Duff (2004)] An interesting feature of this discussion is that not only Riordan herself, but all the papers she cites, use a formula for α that is valid only in certain systems of units, and would not feature in a modern physics textbook. This violates another aspect of objectivity – namely, the idea that our physical laws should be expressed in such a way that they are independent of the particular units we choose to use; they should be unit-invariant. In this paper I investigate the place of unit-invariance in the history of physics, together with its converse, unit-dependence, which we will find is a common feature of some branches of physics, despite the fact that, as I will show in an analysis of Duff’s argument, unit-dependent formulae can lead to erroneous conclusions. -
RUSSIAN SCIENCE and TECHNOLOGY STRUCTURE There Are Around 4000 Organizations in Russia Involved in Research and Development with Almost One Million Personnel
RUSSIAN SCIENCE AND TECHNOLOGY STRUCTURE There are around 4000 organizations in Russia involved in research and development with almost one million personnel. Half of those people are doing scientific research. It is coordinated by Ministry of industry, science and technologies, where strategy and basic priorities of research and development are being formulated. Fundamental scientific research is concentrated in Russian Academy of Sciences, which now includes hundreds of institutes specializing in all major scientific disciplines such as mathematics, physics, chemistry, biology, astronomy, Earth sciences etc. The applied science and technology is mainly done in Institutions and Design Bureaus belonging to different Russian Ministers. They are involved in research and development in nuclear energy (Ministry of atomic energy), space exploration (Russian aviation and space agency), defense (Ministry of defense), telecommunications (Ministry of communications) and so on. Russian Academy of Sciences Russian Academy of Sciences is the community of the top-ranking Russian scientists and principal coordinating body for basic research in natural and social sciences, technology and production in Russia. It is composed of more than 350 research institutions. Outstanding Russian scientists are elected to the Academy, where membership is of three types - academicians, corresponding members and foreign members. The Academy is also involved in post graduate training of students and in publicizing scientific achievements and knowledge. It maintains -
Laser Physics Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 05, 2013)
Laser Physics Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 05, 2013) Laser: Light Amplification by Stimulated Emission of Radiation ________________________________________________________________________ Charles Hard Townes (born July 28, 1915) is an American Nobel Prize-winning physicist and educator. Townes is known for his work on the theory and application of the maser, on which he got the fundamental patent, and other work in quantum electronics connected with both maser and laser devices. He shared the Nobel Prize in Physics in 1964 with Nikolay Basov and Alexander Prokhorov. The Japanese FM Towns computer and game console is named in his honor. http://en.wikipedia.org/wiki/Charles_Hard_Townes http://physics.aps.org/assets/ab8dcdddc4c2309c?1321836906 ________________________________________________________________________ Nikolay Gennadiyevich Basov (Russian: Никола́й Генна́диевич Ба́сов; 14 December 1922 – 1 July 2001) was a Soviet physicist and educator. For his fundamental work in the field of quantum electronics that led to the development of laser and maser, Basov shared the 1964 Nobel Prize in Physics with Alexander Prokhorov and Charles Hard Townes. 1 http://en.wikipedia.org/wiki/Nikolay_Basov ________________________________________________________________________ Alexander Mikhaylovich Prokhorov (Russian: Алекса́ндр Миха́йлович Про́хоров) (11 July 1916– 8 January 2002) was a Russian physicist known for his pioneering research on lasers and masers for which he shared the Nobel Prize in Physics in 1964 with Charles Hard Townes and Nikolay Basov. http://en.wikipedia.org/wiki/Alexander_Prokhorov Nobel prizes related to laser physics 1964 Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for developing masers (1951–1952) and lasers. 2 1981 Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spectroscopy and Kai M. -
Soviet Journalism, the Public, and the Limits of Reform After Stalin, 1953- 1968
ORBIT-OnlineRepository ofBirkbeckInstitutionalTheses Enabling Open Access to Birkbeck’s Research Degree output A Compass in the Sea of Life: Soviet Journalism, the Public, and the Limits of Reform After Stalin, 1953- 1968 https://eprints.bbk.ac.uk/id/eprint/40022/ Version: Full Version Citation: Huxtable, Simon (2013) A Compass in the Sea of Life: Soviet Journalism, the Public, and the Limits of Reform After Stalin, 1953-1968. [Thesis] (Unpublished) c 2020 The Author(s) All material available through ORBIT is protected by intellectual property law, including copy- right law. Any use made of the contents should comply with the relevant law. Deposit Guide Contact: email A Compass in the Sea of Life Soviet Journalism, the Public, and the Limits of Reform After Stalin, 1953-1968 Simon Huxtable Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of London 2012 2 I confirm that the work presented in this thesis is my own, and the work of other persons is appropriately acknowledged. Simon Huxtable The copyright of this thesis rests with the author, who asserts his right to be known as such according to the Copyright Designs and Patents Act 1988. No dealing with the thesis contrary to the copyright or moral rights of the author is permitted. 3 ABSTRACT This thesis examines the development of Soviet journalism between 1953 and 1968 through a case study of the youth newspaper Komsomol’skaia pravda. Stalin’s death removed the climate of fear and caution that had hitherto characterised Soviet journalism, and allowed for many values to be debated and renegotiated. -
Pages from the History of Quantum Electronics Research in the Soviet Union*
Journal of Modern Optics Vol. 52, No. 12, 15 August 2005, 1657–1669 Pages from the history of quantum electronics research in the Soviet Union* SERGEI BAGAYEVz, OLEG KROKHIN} and ALEXANDER MANENKOVôy zInstitute for Laser Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia }Lebedev Physical Institute of Russian Academy of Sciences, Moscow, Russia ôProkhorov General Physics Institute of Russian Academy of Sciences, Moscow, Russia (Received 15 March 2005) 1. Introduction 50 years of quantum electronics is an outstanding event in the history of modern science. Having started in 1954 in two countries, the Soviet Union at Lebedev Physical Institute and in the United States at Columbia University, with proposals for a new concept of amplification and generation of electromagnetic radiation based on using stimulated emission of radiation by atomic systems, this field nowadays has become a very developed multidiscipline science with very broad applications. Outstanding contributions of many scientists to the development of quantum electronics and related fields were awarded with the Nobel Prize. Among these scientists, Nikolai Basov, Alexander Prokhorov and Charles Townes, who shared the Nobel Prize in 1964 for their pioneering works founding quantum electronics (QE), should be emphasized especially. Unfortunately two of QE’s co-founders, Nikolai Basov and Alexander Prokhorov, were not present among us at this session: they passed away some time ago, in 2001 (Basov) and 2002 (Prokhorov). For this reason the authors of this paper, as their successorsk, take responsibility to present here the history of QE in the Soviet Union. Of course, we understand how extremely hard it is to speak about QE history in a brief presentation, since so many research groups and persons in the Soviet Union contributed significantly to the development of QE. -
FORMAT Bulletin
Members’ Paper From IRPS Bulletin Vol 10 No 3 September/October, 1996 ONE HUNDRED YEARS OF ELECTRONS above hypothesis but also to the brilliant discoveries made in the closing years of the 19th century: that of X- Leif Gerwarda and Christopher Cousinsb rays by Wilhelm Conrad Röntgen in 1895 and that of radioactivity by Henri Becquerel in 1896. a. Department of Physics, Technical University of Denmark, Lyngby, Denmark Cathode rays occurs when electricity is discharged in a rarefied gas. At a given low pressure of the gas, rays are b. Department of Physics, University of Exeter, emitted from the negative pole, the cathode. The Exeter, UK cathode rays themselves are invisible, but they can be observed by the phosphorescence that they induce at the The search for the true nature of electricity led walls of the glass tube and by the shadows from objects to the discovery of the electron and the proof placed in their path. The cathode rays propagate in that it is a constituent of all atoms. These straight lines, but unlike ordinary light rays they can be achievements gave the scientists the first deflected by a magnetic field. definite line of attack on the constitution of the atom and on the structure of matter. The phenomena exhibited by the electric discharge in rarefied gas had long been familiar from studies by In a lecture on 'The Stability of Atoms' given to the Royal Julius Plücker, Wilhelm Hittorf, Eugen Goldstein and Society of Arts in 1924, Ernest Rutherford said: other physicists. In a lecture delivered before the British Association at the Sheffield Meeting in 1879, William The trend of physics during the past twenty-five years has Crookes first used the expression radiant matter or been largely influenced by three fundamental discoveries matter in the ultra-gaseous state, to explain the made in the closing years of the nineteenth century. -
ETD Template
CORE Metadata, citation and similar papers at core.ac.uk Provided by D-Scholarship@Pitt ENGENDERING BYT: RUSSIAN WOMEN’S WRITING AND EVERYDAY LIFE FROM I. GREKOVA TO LIUDMILA ULITSKAIA by Benjamin Massey Sutcliffe BA, Reed College, 1996 MA, University of Pittsburgh, 1999 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2004 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Benjamin Massey Sutcliffe It was defended on October 21, 2004 and approved by David Birnbaum Nancy Condee Nancy Glazener Helena Goscilo Dissertation Director ii © Benjamin Massey Sutcliffe, 2004 iii ENGENDERING BYT: RUSSIAN WOMEN’S WRITING AND EVERYDAY LIFE FROM I. GREKOVA TO LIUDMILA ULITSKAIA Benjamin Massey Sutcliffe, PhD University of Pittsburgh, 2004 Gender and byt (everyday life) in post-Stalinist culture stem from tacit conceptions linking the quotidian to women. During the Thaw and Stagnation the posited egalitarianism of Soviet rhetoric and pre-exiting conceptions of the quotidian caused critics to use byt as shorthand for female experience and its literary expression. Addressing the prose of Natal'ia Baranskaia and I. Grekova, they connected the everyday to banality, reduced scope, ateleological time, private life, and anomaly. The authors, for their part, relied on selective representation of the quotidian and a chronotope of crisis to hesitantly address taboo subjects. During perestroika women’s prose reemerged in the context of social turmoil and changing gender roles. The appearance of six literary anthologies gave women authors and Liudmila Petrushevskaia in particular a new visibility. -
The Light That Shin
THE LIGHT THAT SHIN by CHARLES H. TOWNES A Nobel laureate recounts ON JULY 21, 1969, astronauts Neil Armstrong and Edwin “Buzz” Aldrin set up an array of small reflectors on the invention of the laser the moon, facing them toward Earth. At the same time, two teams of astrophysicists, one at the University of California’s Lick Observatory and the other at the University of Texas’s and the birth of quantum McDonald Observatory, were preparing small instruments on two big telescopes. Ten days later, the Lick team pointed electronics. its telescope at the precise location of the reflectors on the moon and sent a small pulse of power into the hardware they had added to it. A few days after that, the McDonald team went through the same steps. In the heart of each telescope, a narrow beam of extraordinarily pure red light emerged from a synthetic ruby crystal, pierced the sky, and entered the near vacuum of space. The two rays were still only a thousand yards wide after traveling 240,000 miles to illumi- nate the moon-based reflectors. Slightly more than a second after each light beam hit its target, the crews in California and Texas detected its faint reflection. The brief time inter- val between launch and detection of these light pulses per- mitted calculation of the distance to the moon to within an inch—a measurement of unprecedented precision. The ruby crystal for each light source was the heart of a laser (an acronym for light amplification by stimulated emis- sion of radiation), which is a device first demonstrated in 1960, just nine years earlier. -
Special Issue, History of Medical Physics 5, 2020
MEDICAL PHYSICS INTERNATIONAL THE JOURNAL OF THE INTERNATIONAL ORGANIZATION FOR MEDICAL PHYSICS MEDICAL PHYSICS INTERNATIONAL Journal, Special Issue, History of Medical Physics 5, 2020 465 MEDICAL PHYSICS INTERNATIONAL Journal, Special Issue, History of Medical Physics 5, 2021 MEDICAL PHYSICS INTERNATIONAL The Journal of the International Organization for Medical Physics Aims and Coverage: Medical Physics International (MPI) is the official IOMP journal. The journal provides a new platform for medical physicists to share their experience, ideas and new information generated from their work of educational, professional and scientific nature. The e- journal is available free of charge to IOMP members. MPI Co-Editors in Chief and Founding Editors Slavik Tabakov, IOMP Past-President (2018-2022), IOMP President (2015-2018), UK Perry Sprawls, Atlanta, USA Editorial Board KY Cheung, IUPESM Past-President (2018-2022), IOMP Past-President (2012-2015), Hong Kong, China Madan Rehani, IOMP President (2018-2022 ), Boston, USA John Damilakis, IOMP Vice-President (2018-2022 ), EFOMP Past-President, Greece Eva Bezak, IOMP Secretary General (2019-2022), Past-President ACPSEM, Australia Ibrahim Duhaini, IOMP Treasurer (2018-2022 ), MEFOMP Past-President, Lebanon Geoffrey Ibbott, IOMP Scientific Com Chair (2018-2022 ), Texas, USA Paulo Russo, IOMP Publication Com Chair (2018-2022), Italy Yakov Pipman, IOMP PRC Chair (2018-2022 ), New York, USA Arun Chougule, IOMP ETC Chair (2018-2022), AFOMP President, India Simone Kodlulovich Renha, IOMP Awards Committee -
PASS Scripta Varia 21
22_TOWNES (G-L)chiuso_137-148.QXD_Layout 1 01/08/11 10:09 Pagina 137 The Scientific Legacy of the 20th Century Pontifical Academy of Sciences, Acta 21, Vatican City 2011 www.pas.va/content/dam/accademia/pdf/acta21/acta21-townes.pdf The Laser and How it Happened Charles H. Townes I’m going to discuss the history of the laser and my own personal partici- pation in it. It will be a very personal story. On the other hand, I want to use it as an illustration of how science develops, how new ideas occur, and so on. I think there are some important issues there that we need to recognize clearly. How do new discoveries really happen? Well, some of them completely by accident. For example, I was at Bell Telephone Laboratories when the transistor was discovered and how? Walter Brattain was making measure- ments of copper oxide on copper, making electrical measurements, and he got some puzzling things he didn’t understand, so he went to John Bardeen, a theorist, and said, ‘What in the world is going on here?’ John Bardeen studied it a little bit and said, ‘Hey, you’ve got amplification, wow!’. Well, their boss was Bill Shockley, and Bill Shockley immediately jumped into the business and added a little bit. They published separate papers but got the Nobel Prize together for discovering the transistor by accident. Another accidental discovery of importance was of a former student of mine, Arno Penzias. I’d assigned him the job of looking for hydrogen in outer space using radio frequencies.