PHYS 2410 General Astronomy Homework 7 Due 12/02 Before the Classes

Total Page:16

File Type:pdf, Size:1020Kb

PHYS 2410 General Astronomy Homework 7 Due 12/02 Before the Classes PHYS 2410 General Astronomy Homework 7 Due 12/02 before the classes !!請將答案用筆寫在一張A4 紙上交給助教!! Multiple Choice (單選題, 33 題, 每題 3 分, 送 1 分) 1. In the core of a main sequence star, gas pressure _____ the weight of the overlying materials. a. is less than b. is greater than * c. balances 2. The energy emitted from the surface of a main sequence star is _____the energy generated in the core. a. greater than b. less than * c. equal to 3. There is a mass-luminosity relation because a. hydrogen fusion produces helium. b. stars expand when they become giants. * c. stars support their weight by making energy. d. the helium flash occurs in degenerate matter. e. all stars on the main sequence have about the same radius. 4. The main sequence has a limit at the lower end because a. low mass stars form from the interstellar medium very rarely. b. hydrogen fusion combined 4 hydrogen nuclei to form 1 helium nucleus. c. pressure does not depend on temperature in degenerate matter. d. the lower limit represents when the radius of the star would be zero. * e. there is a minimum temperature for hydrogen fusion. 5. The lowest mass object that can initiate thermonuclear fusion of hydrogen has a mass of about a. 1 M. b. 60 M. c. 0.5 M. * d. 0.08 M. e. 0.001 M. 6. In degenerate matter a. pressure depends only on the temperature. b. temperature depends only on density. * c. pressure does not depend on temperature. d. pressure does not depend on density. e. b and c 7. Giant and supergiant stars are rare because a. they do not form as often as main sequence stars. b the giant and supergiant stage is unstable. * c. the giant and supergiant stage is very short. d. helium is very rare. e. helium flash destroys many of the stars before they can become giants and supergiants. 8. Which of the following nuclear fuels does a one solar mass star use over the course of its entire evolution? a. hydrogen * b. hydrogen and helium c. hydrogen, helium, and carbon d. hydrogen, helium, carbon, and neon e. hydrogen, helium, carbon, neon, and oxygen 9. What is the approximate age of the star cluster in the diagram below? a. 2 million years b. 2 billion years Apparent * c. 10 billion years Magnitude d. 100 billion years e. The age of the cluster cannot be estimated from an HR diagram of the cluster. O B A F G K M Spectral Type 10. Star cluster are important to our study of stars because a. all stars formed in star clusters. b. the sun was once a member of a globular cluster. * c. they give us a method to test the our theories and models of stellar evolution. d. they are the only objects that contain Cepheid variables. e. all of the above 11. A Cepheid variable with a mass of 10 M ________________ than a Cepheid of 3 M. a. is less luminous b. has a greater surface temperature c. has a smaller radius * d. has a longer period e. a and c 12. If the stars at the turnoff point of a cluster have a mass of 3 M, what is the age of the cluster? (Reference: page 11 of Chap 12 powerpoint file) a. 3.01010 years b. 3.3109 years * c. 6.4108 years d. 1.61011 years e. The age of a star cluster can not be determined from the mass of stars at the turnoff point. 13. What must occur for an object to be considered a main sequence star? a. Hydrostatic equilibrium b. Nuclear fusion reaction in the core c. Protostar life begins * d. Both a and b. 14. Why do higher mass stars live shorter lives on the main sequence than lower mass stars? * a. Higher mass stars burn through their nuclear fuel faster. b. Lower mass stars don’t get their energy from that same nuclear fusion source as higher mass stars. c. Higher mass stars have less hydrogen fuel to burn. d. Lower mass stars spend a longer time evolving to the main-sequence. e. All of the above are false. 15. What characteristic of a star primarily determines its location on the main sequence? a. age b. distance from the galactic center * c. mass d. space motion e. radius 16. The lowest-mass stars cannot become giants because a. they do not contain helium. b. they rotate too slowly. * c. they cannot heat their centers hot enough. d. they contain strong magnetic fields. e. they never use up their hydrogen. 17. A planetary nebula is * a. the expelled outer envelope of a medium mass star. b. produced by a supernova explosion. c. produced by a nova explosion. d. a nebula within which planets are forming. e. a cloud of hot gas surrounding a planet. 18. A white dwarf is composed of a. hydrogen nuclei and degenerate electrons. b. helium nuclei and normal electrons. * c. carbon and oxygen nuclei and degenerate electrons. d. degenerate iron nuclei. e. a helium burning core and a hydrogen burning shell. 19. A planetary nebula a. produces an absorption spectrum. * b. produces an emission spectrum. c. is contracting to form planets. d. is contracting to form the star. e. is the result of carbon detonation in a 1 M. 20. We know that the central object in a planetary nebula has a surface temperature of at least _________ because the nebula contains large amounts of ionized hydrogen. a. 5000 K b. 10,000 K c. 15,000 K d. 20,000 K * e. 25,000 K 21. Suppose that a planetary nebula is 0.5 parsecs(=pc) in diameter and expanding at 20 km/s. How old is it? a. 25,000 years * b. 12,000 years c. 6,000 years d. 49,000 years e. 100,000 years 22. The Chandrasekhar limit tells us that a. accretion disks can grow hot through friction. b. neutron stars of more than 3 solar masses are not stable. c. white dwarfs must contain more than 1.4 solar masses. * d. not all stars will end up as white dwarfs. e. stars with a mass less than 0.5 solar masses will not go through helium flash. 23. A main sequence star of 8.5 solar masses can become a white dwarf by a. exceeding the Chandrasekhar limit. * b. losing mass. c. gaining mass. d. remaining at 8.5 solar masses. 24. The Chandrasekhar limit is ________ solar masses. a. 0.014 b. 0.14 * c. 1.4 d. 14 25. The energy a white dwarf emits into space is a. replaced by fusion of hydrogen atoms into helium. b. replaced by fusion of helium atoms into carbon. * c. not replaced. 26. A Type I supernova is believed to occur when a. the core of a massive star collapses. b. carbon detonation occurs. * c. a white dwarf exceeds the Chandrasekhar limit. d. the cores of massive stars collapse. e. neutrinos in a massive star become degenerate and form a shock wave that explodes the star. 27. A nova is almost always associated with a. a very massive star. b. a very young star. c. a star undergoing helium flash. * d. a white dwarf in a close binary system. e. a solar like star that has exhausted its hydrogen and helium. 28. If the theory that novae occur in close binary systems is correct, then novae should a. produce synchrotron radiation. b. occur in regions of star formation. c. not occur in old star clusters. d. all be visual binaries. * e. repeat after some interval. 29. Massive stars cannot generate energy through iron fusion because a. iron fusion requires very high density. b. stars contain very little iron. c. no star can get hot enough for iron fusion. * d. iron is the most tightly bound of all nuclei. e. massive stars supernova before they create an iron core. 30. Synchrotron radiation is produced by a. objects with temperatures below 10,000 K. * b. high-velocity electrons moving through a magnetic field. c. cold hydrogen atoms in space. d. the collapsing cores of massive stars. e. helium flash. 31. A type-II supernova a. occurs when a white dwarf's mass exceeds the Chandrasekhar limit. b. is the result of helium flash. c. is characterized by a spectrum that shows hydrogen lines. d. occurs when the iron core of a massive star collapses. * e. c and d 32. What are the two longest stages in the life of a one solar mass star? a. Protostar, pre-main sequence. b. Protostar, white dwarf. c. Protostar, main-sequence. * d. Main-sequence, white dwarf. 33. After what evolutionary stage does a star become a white dwarf? a. Protostar b. Pre-main sequence c. Main sequence * d. Giant.
Recommended publications
  • Stellar Explosions
    Chapter 11: Stellar Explosions Prof. Douglas Laurence AST 1002 What are Stellar Explosions? Stellar remnant, probably a neutron star. • When stars above a certain mass die (run out of fuel at their core), they will literally explode in novae, supernovae, or hypernovae • The explosions “blows away” some of the star, leaving a stellar remnant, which can be: • A white dwarf • A neutron star • Or a black hole Stellar and Remnants Masses • Stars with a (main sequence) mass < 8#⊙ will eventually become white dwarfs. • White dwarfs have a remnant mass < 1.4#⊙, known as the Chandrasekhar limit. • Stars with a mass < 25#⊙will eventually become neutron stars. • Neutron stars have a remnant mass < 3#⊙, known as the Tolman-Oppenheimer- Volkoff (TOV) limit. • Stars with mass > 25#⊙, or remnant mass > 3#⊙, become black holes. • What a star becomes is determined by the remnant mass; remnant masses trend with main sequence masses, but they’re the decider. • A star with a very large mass can have a dramatically lower remnant mass after a stellar explosion, if the explosion blows away much of the star’s mass. Novae and White Dwarfs • Very little mass is ejected by a nova, so it will not affect the type of stellar remnant left behind (which will invariably be a white dwarf.) • Novae can increase brightness by 10,000 times. • Some novae repeat themselves, becoming what are called recurrent novae. Mechanism of Nova Production • Novae occur in binary systems between a red giant and a white dwarf. • White dwarf is formed by planetary nebula. • Novae don’t produce white dwarfs.
    [Show full text]
  • Metadata of the Chapter That Will Be Visualized Online
    Metadata of the chapter that will be visualized online Chapter Title Binary Systems and Their Nuclear Explosions Copyright Year 2018 Copyright Holder The Author(s) Author Family Name Isern Particle Given Name Jordi Suffix Organization Institute of Space Sciences (ICE, CSIC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Corresponding Author Family Name Hernanz Particle Given Name Margarita Suffix Organization Institute of Space Sciences (ICE, CSIC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Author Family Name José Particle Given Name Jordi Suffix Organization Universitat Politècnica de Catalunya (UPC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Abstract The nuclear energy supply of a typical star like the Sun would be ∼ 1052 erg if all the hydrogen could be incinerated into iron peak elements. Chapter 5 1 Binary Systems and Their Nuclear 2 Explosions 3 Jordi Isern, Margarita Hernanz, and Jordi José 4 5.1 Accretion onto Compact Objects and Thermonuclear 5 Runaways 6 The nuclear energy supply of a typical star like the Sun would be ∼1052 erg if all 7 the hydrogen could be incinerated into iron peak elements. Since the gravitational 8 binding energy is ∼1049 erg, it is evident that the nuclear energy content is more 9 than enough to blow up the Sun. However, stars are stable thanks to the fact that their 10 matter obeys the equation of state of a classical ideal gas that acts as a thermostat: if 11 some energy is released as a consequence of a thermal fluctuation, the gas expands, 12 the temperature drops and the instability is quenched.
    [Show full text]
  • Fundamentals of Stellar Evolution Theory: Understanding the HRD
    Fundamentals of Stellar Evolution Theory: Understanding the HRD By C E S A R E C H I O S I Department of Astronomy, University of Padua, Vicolo Osservatorio 5, 35122 Padua, Italy Published in: "Stellar Astrophysics for the Local Group: a First Step to the Universe" VIII Canary Islands Winter School Cambridge University Press 25 March, 1997 Abstract. We summarize the results of stellar evolution theory for single stars that have been obtained over the last two decades, and compare these results with the observations. We discuss in particular the effect of mass loss by stellar winds during the various evolutionary stages of stars that are affected by this phenomenon. In addition, we focus on the problem of mixing in stellar interiors calling attention on weak aspects of current formulations and presenting plausible alternatives. Finally, we survey some applications of stellar models to several areas of modern astrophysics. 1. Introduction The major goal of stellar evolution theory is the interpretation and reproduction of the Hertzsprung-Russell Diagram (HRD) of stars in different astrophysical environments: solar vicinity, star clusters of the Milky Way and nearby galaxies, fields in external galaxies. The HRD of star clusters, in virtue of the small spread in age and composition of the component stars, is the classical template to which stellar models are compared. If the sample of stars is properly chosen from the point of view of completeness, even the shortest lived evolutionary phases can be tested. The HRD of field stars, those in external galaxies in particular, contains much information on the past star formation history.
    [Show full text]
  • Nuclear Astrophysics: the Unfinished Quest for the Origin of the Elements
    Nuclear astrophysics: the unfinished quest for the origin of the elements Jordi Jos´e Departament de F´ısica i Enginyeria Nuclear, EUETIB, Universitat Polit`ecnica de Catalunya, E-08036 Barcelona, Spain; Institut d’Estudis Espacials de Catalunya, E-08034 Barcelona, Spain E-mail: [email protected] Christian Iliadis Department of Physics & Astronomy, University of North Carolina, Chapel Hill, North Carolina, 27599, USA; Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA E-mail: [email protected] Abstract. Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe arXiv:1107.2234v1 [astro-ph.SR] 12 Jul 2011 and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe.
    [Show full text]
  • The Hertzsprung-Russell Diagram Help Sheet
    School of Physics and Astronomy Edgbaston Birmingham B15 2TT The Hertzsprung-Russell Diagram Help Sheet Setting up the Telescope What is the wavelength range of an optical telescope? Approx. 400 - 700 nm Locating the Star Cluster Observing the sky from the Northern hemisphere, which star remains fixed in the sky whilst the other stars rotate around it? In which direction do they rotate? North Star/Pole Star/Polaris Stars rotate anticlockwise around Polaris Observing the Star Cluster - Stellar Observation What is the difference between the apparent magnitude and the absolute magnitude of a star? The apparent magnitude is how bright the star appears from Earth. The absolute magnitude is how bright the star would appear if it was 10pc away from Earth. Part 1 - Distance to the Star Cluster What is the distance to the star cluster in lightyears? 136 pc = 444 lightyears Conversion: 1 pc = 3.26 lightyears Why might the distance to the cluster you have calculated differ from the literature value? Uncertainty in fit of ZAMS (due to outlying stars, for example), hence uncertainty in distance modulus and hence distance. Part 2 - Age of the Star Cluster Why might there be an uncertainty in the age of the cluster determined by this method? Uncertainty in fit of isochrone; with 2 or 3 parameters to fit it can be difficult to reproduce the correct shape. Also problem with outlying stars, as explained in the manual. How does the age you have calculated compare to the age of the universe? Age of universe ~ 13.8 GYr Part 3 - Comparison of Star Clusters Consider the shape of the CMD for the Hyades.
    [Show full text]
  • Hr Diagrams of Star Clusters
    HR Diagrams of Open Clusters 1 HR DIAGRAMS OF STAR CLUSTERS Student Manual A Manual to Accompany Software for the Introductory Astronomy Lab Exercise Document SM 14: Circ.Version 1.0 Department of Physics Gettysburg College Gettysburg, PA 17325 Telephone: (717) 337-6028 email: [email protected] Database, Software, and Manuals prepared by: Contemporary Laboratory Glenn Snyder and Laurence Marschall (CLEA PROJECT, Gettysburg College) Experiences in Astronomy HR Diagrams of Open Clusters 2 Contents Learning Goals and Procedural Objectives ..................................................................................................................... 3 Introduction: HR Diagrams and Their Uses ................................................................................................................... 4 Software Users Guide ANALYZING THE HR DIAGRAMS OF STAR CLUSTERS ................................................ 8 Starting the Program .................................................................................................................................................. 8 Accessing the Help Files.............................................................................................................................................. 8 Displaying Stored Data for Clusters on a HR diagram........................................................................................... 8 Fitting a Zero-Age Main Sequence to the Cluster Data: Determining Distance.................................................. 10 Fitting Isochrones
    [Show full text]
  • Stellar Evolution: Evolution Off the Main Sequence
    Evolution of a Low-Mass Star Stellar Evolution: (< 8 M , focus on 1 M case) Evolution off the Main Sequence sun sun - All H converted to He in core. - Core too cool for He burning. Contracts. Main Sequence Lifetimes Heats up. Most massive (O and B stars): millions of years - H burns in shell around core: "H-shell burning phase". Stars like the Sun (G stars): billions of years - Tremendous energy produced. Star must Low mass stars (K and M stars): a trillion years! expand. While on Main Sequence, stellar core has H -> He fusion, by p-p - Star now a "Red Giant". Diameter ~ 1 AU! chain in stars like Sun or less massive. In more massive stars, 9 Red Giant “CNO cycle” becomes more important. - Phase lasts ~ 10 years for 1 MSun star. - Example: Arcturus Red Giant Star on H-R Diagram Eventually: Core Helium Fusion - Core shrinks and heats up to 108 K, helium can now burn into carbon. "Triple-alpha process" 4He + 4He -> 8Be + energy 8Be + 4He -> 12C + energy - First occurs in a runaway process: "the helium flash". Energy from fusion goes into re-expanding and cooling the core. Takes only a few seconds! This slows fusion, so star gets dimmer again. - Then stable He -> C burning. Still have H -> He shell burning surrounding it. - Now star on "Horizontal Branch" of H-R diagram. Lasts ~108 years for 1 MSun star. More massive less massive Helium Runs out in Core Horizontal branch star structure -All He -> C. Not hot enough -for C fusion. - Core shrinks and heats up.
    [Show full text]
  • Middle School - Round 16A
    MIDDLE SCHOOL - ROUND 16A TOSS-UP 1) Energy – Short Answer Researchers at Oak Ridge National Lab found that exposing a solution of guanidine [GWAH-nih-deen] to air resulted in the formation of carbonate crystals, indicating absorption of what atmospheric compound? ANSWER: CARBON DIOXIDE (ACCEPT: CO2) BONUS 1) Energy – Short Answer Researchers at Lawrence Berkley National Lab are using the Advanced Light Source to study how a group of highly porous organic materials can capture heavy metal cations [CAT-eye- onz] and sequester them away. What is the term for this large group of compounds? ANSWER: METAL-ORGANIC FRAMEWORKS (ACCEPT: MOFs) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TOSS-UP 2) Physical Science – Short Answer Capacitance describes the ratio of the electric charge stored in a capacitor to what quantity? ANSWER: VOLTAGE (ACCEPT: ELECTRIC POTENTIAL) BONUS 2) Physical Science – Short Answer A 4-kilogram block moving at 3 meters per second collides elastically with a 2-kilogram block at rest. In meters per second, what is the final velocity of the lighter block? ANSWER: 4 Middle School - Round 16A Page 1 TOSS-UP 3) Earth and Space – Short Answer What measure of angular distance is the celestial equivalent of latitude? ANSWER: DECLINATION BONUS 3) Earth and Space – Short Answer Identify all of the following three statements that are true of gas giants in our solar system: 1) They have a lower density than terrestial planets; 2) They have a slower rotational period than terrestrial planets; 3) They all have rings. ANSWER: 1 AND 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TOSS-UP 4) Life Science – Multiple Choice Which part of a dicot [DYE-kawt] seed has the greatest concentration of carbohydrates? W) Cotyledon [kaw-til-EE-dun] X) Seed coat Y) Endosperm Z) Epicotyl [EH-pih-caw-dil] ANSWER: Y) ENDOSPERM BONUS 4) Life Science – Short Answer Identify all of the following three amino acids that, when found on the surface of a protein, increase its water solubility: 1) Arginine [AR-jih-neen]; 2) Isoleucine [eye-so-LOO- seen]; 3) Valine [VAIL-een].
    [Show full text]
  • Chapter 8: Simple Stellar Populations
    Chapter 8: Simple Stellar Populations Simple Stellar Population consists of stars born at the same time and having the same initial element composition. Stars of different masses follow different evolutionary tracks. Theoretical isochrones Old SSPs Age estimates Abundances of light elements Reddening and metallicity estimates Distance estimates Luminosity functions and estimates of the IMF Young SSPs Age estimates Distance estimates Review Outline Theoretical isochrones Old SSPs Age estimates Abundances of light elements Reddening and metallicity estimates Distance estimates Luminosity functions and estimates of the IMF Young SSPs Age estimates Distance estimates Review Theoretical isochrones In a theoretical HRD, stars of an SSP are located along an isochrone (which originates from the Greek word meaning “same age”). This line connects the points belong to the various theoretical evolutionary tracks at the same age. I By applying to each point a set of appropriate bolometric corrections, the isochrone can then be converted to an observational CMD. I The turnover (TO) point is the the bluest point along the isochrone MS, where the central hydrogen is exhausted. I For a particular isochrone, the stellar mass range is very large along the MS. I The mass evolving along RGB and HRD of two isochrones with ages equal to successive phases is approximately 2 and 3 Gyr (Z = 0:001). Stellar masses constant; i.e., the stars there essentially (in solar mass units) at representative all evolved from the same ZAMS mass. evolving points are marked. The evolutionary phase of a star along an isochrone may be characterized with the curvilinear coordinate s, starting from at the bottom of the ZAMS and increasing when moving towards more advanced phases.
    [Show full text]
  • N-Body Techniques for Astrophysics: Lecture 4 – STARLAB
    Michela Mapelli N-body techniques for astrophysics: Lecture 4 – STARLAB PhD School in Astrophysics, University of Padova November 19-30, 2018 Michela Mapelli N-body techniques for astrophysics: Lecture 4 – STARLAB MOST IMPORTANT INGREDIENT: stay calm, breath, don't panic, don't kill yourself, don't kill your office mates PhD School in Astrophysics, University of Padova November 19-30, 2018 OUTLINE: 1* definition and structure of starlab http://www.sns.ias.edu/~starlab/overview/ http://www.sns.ias.edu/~starlab/structure/ 2* the dynamics: KIRA http://www.sns.ias.edu/~starlab/kira/ 3* the stellar evolution: SEBA 4* the outputs http://www.sns.ias.edu/~starlab/internals/ 5* compilation and installation 6* writing initial conditions http://www.sns.ias.edu/~starlab/examples/ 7* running kira 8* visualize outputs 1) definition and structure of starlab http://www.sns.ias.edu/~starlab/ * Software environment: multiple codes to generate, evolve and analyze a collisional system (such as a star cluster) They can be combined * Tools to Monte Carlo generate initial conditions (e.g. makeplummer) Evolve stars and binaries via population synthesis (e.g. SeBa) Evolve collisional dynamics (e.g. kira) Analyze outputs (e.g. xstarplot) * Collisional dynamics is evolved through HERMITE SCHEME with block time steps: example of code adopting tools described in lecture 3 1) definition and structure of starlab http://www.sns.ias.edu/~starlab/structure/ - CLASS: description of structure+ its functions - an OBJECT belongs to a class if it is DEFINED as member of the class → star a; EACH PARTICLE + root belongs to the node class (include/node.h) class node { static node* root; // Global address of the root node.
    [Show full text]
  • Ch 06-Phys--Star Death & H-R Di
    Ch. 6--Stars and H-R Diagrams Chapter 6 THE LIFE AND DEATH OF A STAR, and THE H-R DIAGRAM A.) Hertzsprung-Russell Diagrams: 1.) The Hertzsprung-Russell diagram plots luminosity versus temperature. Aside from its primary use (i.e., if you can determine a star's surface temperature, the H-R diagram will give you its luminosity), it is a useful educational tool in the sense that it highlights in the universe order out of what would otherwise appear to be disorder. Hertzsprung-Russell diagram 2.) The basics of the H-R diagram and things you Luminosity (solar units) blue giants need to understand about and supergiants the system follow. 10,000 red giants and supergiants a.) Temperature 100 on the H-R diagram 100 R ranges from 30,000 main sun sequence degrees Kelvin to 1 sun 3000 degrees Kelvin 10 Rsun (those temperatures are plotted backward- .01 R -odd, but that's the sun red dwarfs way some white dwarfs astronomers are--a .0001 .1 Rsun little bit of physicist humor). It plots from 30,000 10,000 6000 3000 O type to M type stars (we talked about spec- Surface Temperature (degrees K) tral classification earlier). OAGMBFK Spectral Class 171 b.) The luminosity scale is expressed in terms of luminosity of the sun. That is, on a H-R diagram, L = 1 is found in the middle of the plot and denotes the sun's position on the diagram. c.) Luminosity on the H-R diagram ranges from 10-4 to 104. Again, 1 denotes the luminosity of the sun.
    [Show full text]
  • NEUTRON STARS, GAMMA RAY BURSTS, and BLACK HOLES (Chap
    NEUTRON STARS, GAMMA RAY BURSTS, and BLACK HOLES (chap. 22 in textbook) We will review the classes of remnants that can be left behind a star at the end of its life. We have already discussed the remnants of low-mass stars: white dwarfs. The following diagram may clarify, and is a useful review of stellar evolution. So we will discuss “neturon stars” and “black holes,” but in between we discuss the still mysterious “gamma-ray bursts.” Neutron Stars For carbon detonation SN ⇒ probably no remnant. The entire white dwarf explodes and disperses. A large fraction of it is turned into iron, and in fact this is believed to be the main supply of iron everywhere in the universe. (Recall that the light curves could be interpreted as the radioactive decay of two elements: nickel and cobalt. These will become iron.) For core-collapse SN ⇒ remnant is a neutron-degenerate core ⇒ neutron star Densities ~ 1014 to 1015 g/cm3 ~ billion times denser than water Cubic centimeter contains ~ 100 million tons! Like a single enormous nucleus, all neutrons nearly touching. So they are very tiny for stars! (See graphic figure 22.1 in textbook.) Gravity at surface is huge. e.g. a human would weigh ~ million tons Rotation period ~ fraction of a second when first formed (conservation of angular momentum) Magnetic field is huge, amplified by the collapse (~1012 x Earth’s field strength). Most extreme of these are called “magnetars”—100s now known. Observed as pulsars (discovered 1967). This was one of the most important astronomical discoveries of all time, by graduate student Jocelyn Bell, although her advisor was given the Nobel Prize for the totally accidental or serendipitous discovery.
    [Show full text]