Mantle convection Encyclopedia of Solid Earth Geophysics, Harsh Gupta (ed.), Springer David Bercovici Professor & Chair Department of Geology & Geophsyics Yale University New Haven, Connecticut 06520-8109, USA E-mail:
[email protected] Tel: (203) 432-3168 Fax: (203) 432-3134 December 26, 2010 Encyclopedia of Solid Earth Geophysics Mantle Convection, David Bercovici MANTLE CONVECTION tic techniques paved the way for the discovery of sea-floor spreading [Hess, 1962; Vine and Synonyms Matthews, 1963] and the birth of the grand uni- fying theory of Plate Tectonics in the 1960s; Mantle dynamics. Mantle circulation. this consequently revived interest in mantle con- vection as the driving mechanism for plate mo- Definition tions [Runcorn, 1962a,b] as well as non-plate- tectonic volcanism such as the possible Hawai- Mantle convection: Thermal convection in the ian plume [Morgan, 1971]. The success of man- terrestrial planetary mantles, the rocky layer be- tle convection theory in explaining plate veloc- tween crust and core, in which hot material rises, ities, sea-floor subsidence, volcanism, gravity cold material sinks and the induced flow governs anomalies, etc., lead to its further application to plate tectonic and volcanic activity, as well as other terrestrial planets such as Venus and Mars, chemical segregation and cooling of the entire which also sustained unique forms of mantle planet. convection, evident from volcanic activity. Mantle convection Basics of thermal or free convection Introduction and History Rayleigh-Benard´ Convection All planetary bodies retain some heat from their The simplest form of thermal convection is early formation but are inexorably cooling to referred to as B´enard convection named after space.