Classical Ghost Imaging with Opto-Electronic Light Sources: Novel and Highly Incoherent Concepts
Total Page:16
File Type:pdf, Size:1020Kb
Classical ghost imaging with opto-electronic light sources: novel and highly incoherent concepts Dissertation approved by the Department of Physics of the Technische Universität Darmstadt in fulfillment of the requirements for the academic degree of Doctor rerum naturalium (Dr. rer. nat.) by M. Sc. Sébastien Adrian Blumenstein (name of birth: Hartmann) Day of submission: 07.02.2017, Day of examination: 19.04.2017 Darmstadt 2017 – D17 First referee: Prof. Dr. Wolfgang Elsäßer Second referee: Prof. Dr. Reinhold Walser Classical ghost imaging with opto- electronic light sources: novel and highly incoherent concepts Klassisches Ghost Imaging mit opto- elektronischen Lichtquellen: neue und hoch inkohärente Konzepte Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von M. Sc. Sébastien Adrian Blumenstein (geb. Hartmann) aus Frankfurt am Main Referent: Prof. Dr. Wolfgang Elsäßer Korreferent: Prof. Dr. Reinhold Walser Tag der Einreichung: 7. 2. 2017 Tag der Prüfung: 19. 4. 2017 Darmstadt 2017 D17 Table of Content LIST OF ABBREVIATIONS .............................................................................................................................. 1 1. INTRODUCTION ........................................................................................................................................ 2 2. FUNDAMENTALS ...................................................................................................................................... 5 2.1. Correlations of light ............................................................................................................................................. 5 2.1.1. First-order correlations ....................................................................................................................................... 5 2.1.2. Second-order temporal auto-correlations .......................................................................................................... 8 2.1.3. Higher-order temporal auto-correlations ......................................................................................................... 12 2.2. Ghost Imaging .................................................................................................................................................... 15 3. EXPERIMENTAL METHODS ................................................................................................................ 24 3.1. Determining photon statistics by one single-photon-counting detector ............................................................. 24 3.2. Determining intensity correlations by two-photon-absorption interferometry .................................................. 30 4. TAILORING FIRST- AND SECOND-ORDER COHERENCE PROPERTIES OF LIGHT EMITTED BY SLDS ............................................................................................................................................................. 40 4.1. Superluminescent diodes (SLDs) ........................................................................................................................ 40 4.2. Coherence control via broadband optical feedback ........................................................................................... 48 4.3. Coherence control by mixing incoherent SLD light with coherent laser light ...................................................... 53 5. GHOST IMAGING (GI) WITH OPTO-ELECTRONIC EMITTERS ................................................. 61 5.1. Photon statistics-based GI with pseudo-thermal light ........................................................................................ 63 5.1.1. GI scheme ......................................................................................................................................................... 63 5.1.2. Model ................................................................................................................................................................ 68 5.1.3. Experimental results ......................................................................................................................................... 76 5.1.4. Numerical 2D ghost images .............................................................................................................................. 81 5.2. Spectrally ultra-broadband GI with hybrid pseudo-thermal-SLD light ................................................................ 85 5.2.1. GI scheme ......................................................................................................................................................... 85 5.2.2. Point-to-point correspondence ........................................................................................................................ 87 5.2.3. GI experiment ................................................................................................................................................... 88 5.3. Spectrally ultra-broadband GI with a broad-area SLD ........................................................................................ 91 5.3.1. The broad-area SLD ........................................................................................................................................... 91 5.3.2. Temporal correlations ....................................................................................................................................... 92 5.3.3. Spatial correlations ........................................................................................................................................... 94 5.3.4. GI experiment ................................................................................................................................................... 98 6. SUMMARY .............................................................................................................................................. 101 6.1. Key findings ..................................................................................................................................................... 101 6.2. Summary, conclusions and outlook .................................................................................................................. 102 7. ZUSAMMENFASSUNG ......................................................................................................................... 106 7.1. Schlüsselergebnisse .......................................................................................................................................... 106 7.2. Zusammenfassung, Schlussfolgerungen und Ausblick ...................................................................................... 107 8. APPENDIX .............................................................................................................................................. 111 8.1. Towards ultra-broadband GI in 2D ................................................................................................................... 111 BIBLIOGRAPHY ............................................................................................................................................ 113 LIST OF FIGURES.......................................................................................................................................... 127 ACKNOWLEDGEMENT ............................................................................................................................... 133 CURRICULUM VITAE ................................................................................................................................... 134 PUBLICATIONS AND PROCEEDINGS ..................................................................................................... 135 SUPERVISED THESES ................................................................................................................................. 138 ERKLÄRUNGEN ............................................................................................................................................ 139 List of abbreviations AR anti-reflection BE Bose-Einstein CCD charge-coupled device DFB distributed feedback DLS dynamic light scattering DM discrete mode DMD digital micromirror device DWELL dot-in-well ECDL external-cavity diode laser EM electro-magnetic FCS fluorescence correlation spectroscopy FP Fabry-Pérot FTIR Fourier-transform infrared FWHM full width at half maximum GI ghost imaging HBT Hanbury Brown – Twiss or Hanbury Brown and Twiss HR high-reflection MM multimode NIR near infra-red OCT optical coherence tomography OFB optical feedback OSA optical spectrum analyzer PS-GI photon statistics-based ghost imaging PT pseudo-thermal QD quantum dot RGG rotating ground glass RIN relative intensity noise RGB red green blue SLD superluminescent diode SLM spatial light modulator SM single-mode SOA semiconductor optical amplifier TCSPC time-correlated single-photon-counting UBB-GI ultra-broadband ghost imaging VCZ Van-Cittert-Zernike List of abbreviations 1 1. Introduction Since the invention of the laser in the 1960s, higher-order correlations of optical fields have been a central aspect of fundamental research on the coherence of light. The first-order coherence of light is described by correlation functions of the electric field, closely connected to its spectral properties, which were already studied and applied in the