Real Applications of Quantum Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Real Applications of Quantum Imaging Real applications of quantum imaging Marco Genovese INRIM, strada delle Cacce 91, 10135 Turin, Italy and CNISM, sezione di Torino Universit`a,via P.Giuria 1, 10125 Turin, Italy E-mail: [email protected] Abstract. In the last years the possibility of creating and manipulating quantum states of light has paved the way to the development of new technologies exploiting peculiar properties of quantum states, as quantum information, quantum metrology & sensing, quantum imaging ... In particular Quantum Imaging addresses the possibility of overcoming limits of classical optics by using quantum resources as entanglement or sub-poissonian statistics. Albeit quantum imaging is a more recent field than other quantum technologies, e.g. quantum information, it is now substantially mature for application. Several different protocols have been proposed, some of them only theoretically, others with an experimental implementation and a few of them pointing to a clear application. Here we present a few of the most mature protocols ranging from ghost imaging to sub shot noise imaging and sub Rayleigh imaging. PACS numbers: 42.50.-p,42.30.-d,42.50.St,03.65.-w 1. Introduction In the last decade the possibility of manipulating single quantum states, and in particular photons, fostered the realization of technologies exploiting the peculiar properties of these systems (and in particular quantum correlations [1]), collectively dubbed quantum arXiv:1601.06066v1 [quant-ph] 22 Jan 2016 technologies [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Among quantum technologies, quantum imaging [15, 16] addresses the possibility of beating the limits of classical imaging by exploiting the peculiar properties of quantum optical states [17, 18, 19, 20, 21]. In this topical review we would like to present, without any pretension to be exhaustive, some of the most interesting examples of quantum imaging protocols that can find application in a near future. We will introduce their main features, discuss the quantum resources really needed for their implementation and, finally, describe the present state of the art of their development. Section 2 will be devoted to ghost imaging. After introducing this technique, we will clarify what resources are really needed for this protocol and what it is achievable with classical resources. Then, a few practical applications will be presented. In section three, 2 we will introduce sub shot noise imaging. Here we will also discuss the resources needed for this scheme. In section four, quantum illumination will be examined, comparing the original theoretical idea with experimental realizations. In section five, we will review a few schemes for sub Rayleigh imaging based on quantum light. Finally, we will hint at a few more possible developments of quantum imaging, drawing some conclusion on the future of this quantum technology. 2. The ghost imaging Among quantum imaging techniques, ghost imaging [22] (GI) was one of the first to be proposed and attracted a large interest. This technique exploits intensity correlation fluctuations for imaging an object crossed by a beam that is revealed by a detector without any spatial resolution (bucket detector). The image of the object is retrieved when the bucket detector signal is correlated with the signal of a spatial resolving detector measuring a light beam (reference beam) whose noise (the speckles pattern [23, 24, 25]) is spatially correlated to this one. This result may seem amazing sice the image is reconstructed by the spatial information gathered by the detector that did not actually interacted with the object. Nevertheless, even at an intuitive level this result can be understood from the fact that one is correlating in several different frames the fluctuations of the speckle structure of the reference beam with the effect of absorption (reflection) pattern of the imaged object on the correlated beam speckles structure. More in detail, for realising GI, a spatially incoherent beam is addressed to an object and then collected by a bucket detector without any spatial resolution. The correlated beam, not interacting with the object, is sent to a spatially resolving detector (an array of pixels); K frames are collected. The image of the object is retrieved by measuring a function S(xj)(xj being the position of the pixel j in the reference region): 2 2 S(xj) = f(E[N1];E[N2(xj)];E[N1N2(x)];E[N1 ];E[N2 (xj)]; :::); p q where E[N1 N2 (xj)]; (p; q ≥ 0) is the correlation function of N1, the total number of photons collected at the bucket detector, and of N2(xj), the photon number at the j- th pixel of the reference arm; E[X] being the mathematical average over the set of K frames. Substantially, in most of experimental works three main functions S have been used: i) the Glauber intensity correlation function (2) S(x) = G (x) ≡ E[N1N2(x)] (1) ii) the normalized intensity CF (2) (2) S(x) = g (x) ≡ G =(E[N1]E[N2(x)]) (2) iii) the covariance, or CF of intensity fluctuations, S(x) ≡ Cov(x) = E[(N1−E[N1])(N2(x)−E[N2(x)])] = E[N1N2(x)]−E[N1]E[N2(x)](3) 3 In order to discuss the performance of different ways for realising the GI, the most significant figures of merit are the resolution and the signal-to-noise ratio (SNR) [26, 27, 28, 29] j hSin − Souti j SNRS ≡ q ; (4) 2 hδ (Sin − Sout)i where Sin and Sout are the intensity values of the reconstructed ghost image, when xj is either inside or outside the object profile, δS ≡ S − hSi is the fluctuation. The SNRS quantifies how well the image of the object is distinguishable from the background. On the other hand, the resolution is determined by the number of speckles contained in the image and quantifies the number of elementary details of the object that can be distinguished. In view of practical application, several studies addressed a clear theoretical description [27, 30, 31, 32, 33, 34, 35] and eventual improvements of this protocol [36, 37, 38, 39, 40], as the use of high order correlation functions or differential schemes. In particular, a systematic analysis, both theoretical and experimental, was presented [21], demonstrating, among other results, that the cases (ii) and (iii) perform very similarly in terms of SNRS, while the case (i) performs much worse. In the original proposal [22] and in the earliest experimental demonstrations of this technique [41] nonclassical states of light, known as twin beams, were used. These states, produced by a non-linear optical phenomenon dubbed parametric down conversion [42], PDC, (or eventually in other non-linear optical phenomena as 4-wave mixing) are correlated in photon number and are of the form jtwini = ΣnCnjnijni (5) where jni is the n photons Fock state. They present a thermal statistics at single mode level and a speckle (each speckle corresponding to a spatial mode) structure at spatial multimode level. Nevertheless, it was later shown, both theoretically and experimentally, that GI can be realised also with beam-split thermal light [43, 44, 45, 46, 47, 48, 49], eventually even sunlight [50], although with a smaller visibility. Indeed by considering that the field component obeys Z Z + 2 0 0 3 −ikr0 Ei (r; t) = d r h(r; r ) d ke a(k) (6) where a(k) is the field annihilation operator for the optical mode k and h(r; r0) the response function of the optical path, the correlation function of intensity fluctuations can be derived for the thermal case: Z Z 0 0 ∗ 0 0 y 0 2 CovTH (x) / dyj dx dy h1(x; x )h2(y; y )ha (x')a(y )ij (7) bucket area where h1 and h2 are the response functions on the path directed to the spatial resolving and the bucket detector respectively, while a(x) = R d3ke−ikxa(k). On the other hand for twin beams: Z Z 0 0 0 0 y 0 2 CovTB(x) / dyj dx dy h1(x; x )h2(y; y )ha (x')a(y )ij (8) bucket area 4 ∗ A part some numerical factor and the presence of h1 instead of h1 the two CF of intensity fluctuations are analogous. In particular [43], when T (x) is the transmission function of the object to be imaged followed by a lens at a focal distance f from 0 2πi 0 0 the object and from the detection plane, h2(y; y ) / exp(− λf y · y )T (y ). When on the other path only a lens is present at a distance 2f from both the source and the 0 0 iπ 0 2 detection plane, h1(x; x ) = δ(x + x ) exp(− λf jx j ); by assuming that smallest scale of variation of the object spatial distribution is larger than the coherence size (speckle size), since hay(x')a(−y)i is non-zero in a small region around x0 = −y, one finds Cov(x) / jT (−x)j2 for both cases. In this sense, GI does not represent a "true" quantum imaging protocol, since it does not strictly require quantum light for being realised. Anyway, it must be mentioned that split thermal light has a non-zero discord, where non-zero discord is a weaker form of quantum correlation respect to entanglement z, eventually to be seen as the resource needed for GI [51]. However, the fact that GI does not really strictly needs quantum resources is even more evident in the so-called computational ghost imaging [52] (for latest developments see [53]), where discord does not play a role [54]. In this scheme a single light beam is used by modulating its pattern. The measured correlation is between the light detected by the bucket detector and the modulation pattern.
Recommended publications
  • Quantum Imaging for Semiconductor Industry
    Quantum Imaging for Semiconductor Industry Anna V. Paterova1,*, Hongzhi Yang1, Zi S. D. Toa1, Leonid A. Krivitsky1, ** 1Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore *[email protected] **[email protected] Abstract Infrared (IR) imaging is one of the significant tools for the quality control measurements of fabricated samples. Standard IR imaging techniques use direct measurements, where light sources and detectors operate at IR range. Due to the limited choices of IR light sources or detectors, challenges in reaching specific IR wavelengths may arise. In our work, we perform indirect IR microscopy based on the quantum imaging technique. This method allows us to probe the sample with IR light, while the detection is shifted into the visible or near-IR range. Thus, we demonstrate IR quantum imaging of the silicon chips at different magnifications, wherein a sample is probed at 1550 nm wavelength, but the detection is performed at 810 nm. We also analyze the possible measurement conditions of the technique and estimate the time needed to perform quality control checks of samples. Infrared (IR) metrology plays a significant role in areas ranging from biological imaging1-5 to materials characterisation6 and microelectronics7. For example, the semiconductor industry utilizes IR radiation for non-destructive microscopy of silicon-based devices. However, IR optical components, such as synchrotrons8, quantum cascade lasers, and HgCdTe (also known as MCT) photodetectors, are expensive. Some of these components, in order to maximize the signal-to-noise ratio, may require cryogenic cooling, which further increases costs over the operational lifetime.
    [Show full text]
  • Negative Frequency at the Horizon Theoretical Study and Experimental Realisation of Analogue Gravity Physics in Dispersive Optical Media Springer Theses
    Springer Theses Recognizing Outstanding Ph.D. Research Maxime J. Jacquet Negative Frequency at the Horizon Theoretical Study and Experimental Realisation of Analogue Gravity Physics in Dispersive Optical Media Springer Theses Recognizing Outstanding Ph.D. Research Aims and Scope The series “Springer Theses” brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student’s supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today’s younger generation of scientists. Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria • They must be written in good English. • The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics. • The work reported in the thesis must represent a significant scientific advance. • If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder. • They must have been examined and passed during the 12 months prior to nomination.
    [Show full text]
  • Quantum Imaging with a Small Number of Transverse Modes Vincent Delaubert
    Quantum imaging with a small number of transverse modes Vincent Delaubert To cite this version: Vincent Delaubert. Quantum imaging with a small number of transverse modes. Atomic Physics [physics.atom-ph]. Université Pierre et Marie Curie - Paris VI, 2007. English. tel-00146849 HAL Id: tel-00146849 https://tel.archives-ouvertes.fr/tel-00146849 Submitted on 15 May 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Laboratoire Kastler Brossel Universit¶ePierre et Marie Curie Th`ese de doctorat de l'Universit¶eParis VI en co-tutelle avec l'Australian National University Sp¶ecialit¶e: Laser et Mati`ere pr¶esent¶eepar Vincent Delaubert Pour obtenir le grade de DOCTEUR DE L'UNIVERSITE¶ PIERRE ET MARIE CURIE sur le sujet : Imagerie quantique `apetit nombre de modes tranvserses Soutenue le 8 mars 2007 devant le jury compos¶ede : M. Claude FABRE . Co-Directeur de th`ese M. Hans BACHOR . Co-Directeur de th`ese M. Claude BOCCARA . Rapporteur M. Joseph BRAAT . Rapporteur M. John CLOSE . Examinateur M. Nicolas TREPS . Invit¶e 2 Acknowledgements The work presented in this thesis has been undertaken both at the Laboratoire Kastler Brossel, in Claude Fabre's group, and at the Australian National University, within the Australian Research Council Center of Excellence for Quantum-Atom Optics (ACQAO), in Hans Bachor's group.
    [Show full text]
  • Multi-Wavelength Compressive Computational Ghost Imaging
    Multi-wavelength compressive computational ghost imaging Stephen S. Welsha , Matthew P. Edgara, Phillip Jonathanb , Baoqing Suna , Miles. J. Padgetta aUniversity of Glasgow, Kelvin Building University Avenue G12 8QQ, Glasgow, UK; bDepartment of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK; ABSTRACT The field of ghost imaging encompasses systems which can retrieve the spatial information of an object through correlated measurements of a projected light field, having spatial resolution, and the associated reflected or trans- mitted light intensity measured by a photodetector. By employing a digital light projector in a computational ghost imaging system with multiple spectrally filtered photodetectors we obtain high-quality multi-wavelength reconstructions of real macroscopic objects. We compare different reconstruction algorithms and reveal the use of compressive sensing techniques for achieving sub-Nyquist performance. Furthermore, we demonstrate the use of this technology in non-visible and fluorescence imaging applications. Keywords: Ghost Imaging, Single Pixel Detectors, DLP Technologies, Multi-wavelength Imaging, Non-visible Imaging, Fluorescence Imaging 1. INTRODUCTION Ghost imaging (GI) has been an active research area for nearly two decades. First demonstrated utilizing spatially entangled photons,1 it was later shown possible using classical correlations of pseudo-thermal light sources.2{5 Early demonstrations of so called `classical GI' used a laser beam propagated through a ground glass diffuser in order to produce a pseudo-thermal speckle field. A beam splitter was used to produce two identical copies of the field which were subsequently propagated along two different paths: the test path and the reference path. The test path contained a partially transmissive or reflective object (typically planar) and a single-pixel photodetector (SPD) with no spatial resolution, whereas the reference path contained a detector with spatial resolution, typically a charged coupled device (CCD).
    [Show full text]
  • Quantum-Inspired Computational Imaging Yoann Altmann, Stephen Mclaughlin, Miles J
    RESEARCH ◥ emerging technologies are now relying on REVIEW SUMMARY sensors that can detect just one single photon, the smallest quantum out of which light is made. These detectors provide a “click,” just OPTICAL IMAGING like a Geiger detector that clicks in the pres- ence of radioactivity. We have now learned to use these “click” detectors to make cameras Quantum-inspired that have enhanced properties and applica- tions. For example, videos ◥ computational imaging ON OUR WEBSITE can be created at a tril- Read the full article lion frames per second, Yoann Altmann, Stephen McLaughlin, Miles J. Padgett, Vivek K Goyal, at http://dx.doi. making a billion-fold jump Alfred O. Hero, Daniele Faccio* org/10.1126/ in speed with respect to science.aat2298 standard high-speed cam- .................................................. eras. These frame rates BACKGROUND: Imaging technologies, which 10 billion photographs were taken per year. are sufficient, for example, to freeze light in extend human vision capabilities, are such a Facilitated by the explosion in internet usage motion in the same way that previous photo- natural part of our current everyday experience since the 2000s, this year we will approach graphy techniques were able to freeze the that we often take them for granted. However, 2 trillion images per year—nearly 1000 images motion of a bullet—although light travels a the ability to capture images with new kinds of for every person on the planet. This upsurge is billion times faster than a supersonic bullet. Downloaded from sensing devices that allow us to see more than enabled by considerable advances in sensing By fusing this high temporal resolution to- what can be seen by the unaided eye has a rel- and data storage and communication.
    [Show full text]
  • Lensless Imaging with Compressive Ultrafast Sensing Guy Satat, Matthew Tancik and Ramesh Raskar
    1 Lensless Imaging with Compressive Ultrafast Sensing Guy Satat, Matthew Tancik and Ramesh Raskar Abstract—Lensless imaging is an important and challenging time: the physics-based approach is done in one shot (i.e. all problem. One notable solution to lensless imaging is a single the sensing is done in parallel). The single pixel camera and pixel camera which benefits from ideas central to compressive its variants require hundreds of consecutive acquisitions, which sampling. However, traditional single pixel cameras require many illumination patterns which result in a long acquisition process. translates into a substantially longer overall acquisition time. Here we present a method for lensless imaging based on compres- Recently, time-resolved sensors enabled new imaging ca- sive ultrafast sensing. Each sensor acquisition is encoded with a pabilities. Here we consider a time-resolved system with different illumination pattern and produces a time series where pulsed active illumination combined with a sensor with a time is a function of the photon’s origin in the scene. Currently time resolution on the order of picoseconds. Picosecond time available hardware with picosecond time resolution enables time tagging photons as they arrive to an omnidirectional sensor. resolution allows distinguishing between photons that arrive This allows lensless imaging with significantly fewer patterns from different parts of the target with mm resolution. The compared to regular single pixel imaging. To that end, we develop sensor provides more information per acquisition (compared a framework for designing lensless imaging systems that use to regular pixel), and so fewer masks are needed. Moreover, the ultrafast detectors. We provide an algorithm for ideal sensor time-resolved sensor is characterized by a measurement matrix placement and an algorithm for optimized active illumination patterns.
    [Show full text]
  • Imaging with a Small Number of Photons
    ARTICLE Received 19 Aug 2014 | Accepted 19 Nov 2014 | Published 5 Jan 2015 DOI: 10.1038/ncomms6913 OPEN Imaging with a small number of photons Peter A. Morris1, Reuben S. Aspden1, Jessica E.C. Bell1, Robert W. Boyd2,3 & Miles J. Padgett1 Low-light-level imaging techniques have application in many diverse fields, ranging from biological sciences to security. A high-quality digital camera based on a multi-megapixel array will typically record an image by collecting of order 105 photons per pixel, but by how much could this photon flux be reduced? In this work we demonstrate a single-photon imaging system based on a time-gated intensified camera from which the image of an object can be inferred from very few detected photons. We show that a ghost-imaging configuration, where the image is obtained from photons that have never interacted with the object, is a useful approach for obtaining images with high signal-to-noise ratios. The use of heralded single photons ensures that the background counts can be virtually eliminated from the recorded images. By applying principles of image compression and associated image reconstruction, we obtain high-quality images of objects from raw data formed from an average of fewer than one detected photon per image pixel. 1 School of Physics and Astronomy, University of Glasgow, University Avenue, Kelvin Building, Glasgow G12 8QQ, UK. 2 Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5. 3 The Institute of Optics and Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA. Correspondence and requests for materials should be addressed to P.A.M.
    [Show full text]
  • Very Nonlinear Quantum Optics by Juan Nicolбs Quesada Mejґıa A
    Very Nonlinear Quantum Optics by Juan Nicol´asQuesada Mej´ıa A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Physics University of Toronto c Copyright 2015 by Juan Nicol´asQuesada Mej´ıa Abstract Very Nonlinear Quantum Optics Juan Nicol´asQuesada Mej´ıa Doctor of Philosophy Graduate Department of Physics University of Toronto 2015 This thesis presents a study of photon generation and conversion processes in nonlinear optics. Our results extend beyond the first order perturbative regime, in which only pairs of photons are generated in spontaneous parametric down-conversion or four wave mixing. They also allow us to identify the limiting factors for achieving unit efficiency frequency conversion, and to correctly account for the propagation of bright nonclassi- cal photon states generated in the nonlinear material. This is done using the Magnus expansion, which allows us to incorporate corrections due to time-ordering effects in the time evolution of the state, while also respecting the quantum statistics associated with squeezed states (in photon generation) and single photons or coherent states (in pho- ton conversion). We show more generally that this expansion should be the preferred strategy when dealing with any type of time-dependent Hamiltonian that is a quadratic form in the creation and annihilation operators of the fields involved. Using the Mag- nus expansion, simple figures of merit to estimate the relevance of these time-ordering corrections are obtained. These quantities depend on the group velocities of the modes involved in the nonlinear process and provide a very simple physical picture of the in- teractions between the photons at different times.
    [Show full text]
  • Quantum Retrodiction: Foundations and Controversies
    S S symmetry Article Quantum Retrodiction: Foundations and Controversies Stephen M. Barnett 1,* , John Jeffers 2 and David T. Pegg 3 1 School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 2 Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK; [email protected] 3 Centre for Quantum Dynamics, School of Science, Griffith University, Nathan 4111, Australia; d.pegg@griffith.edu.au * Correspondence: [email protected] Abstract: Prediction is the making of statements, usually probabilistic, about future events based on current information. Retrodiction is the making of statements about past events based on cur- rent information. We present the foundations of quantum retrodiction and highlight its intimate connection with the Bayesian interpretation of probability. The close link with Bayesian methods enables us to explore controversies and misunderstandings about retrodiction that have appeared in the literature. To be clear, quantum retrodiction is universally applicable and draws its validity directly from conventional predictive quantum theory coupled with Bayes’ theorem. Keywords: quantum foundations; bayesian inference; time reversal 1. Introduction Quantum theory is usually presented as a predictive theory, with statements made concerning the probabilities for measurement outcomes based upon earlier preparation events. In retrodictive quantum theory this order is reversed and we seek to use the Citation: Barnett, S.M.; Jeffers, J.; outcome of a measurement to make probabilistic statements concerning earlier events [1–6]. Pegg, D.T. Quantum Retrodiction: The theory was first presented within the context of time-reversal symmetry [1–3] but, more Foundations and Controversies. recently, has been developed into a practical tool for analysing experiments in quantum Symmetry 2021, 13, 586.
    [Show full text]
  • Fast First-Photon Ghost Imaging
    www.nature.com/scientificreports OPEN Fast frst-photon ghost imaging Xialin Liu, Jianhong Shi, Xiaoyan Wu & Guihua Zeng Conventional imaging at low light levels requires hundreds of detected photons per pixel to suppress the Poisson noise for accurate refectivity inference. We propose a high-efciency photon-limited imaging technique, called fast frst-photon ghost imaging, which recovers the image by conditional Received: 11 December 2017 averaging of the reference patterns selected by the frst-photon detection signal. Our technique merges the physics of low-fux measurements with the framework of computational ghost imaging. Accepted: 9 March 2018 Experimental results demonstrate that it can reconstruct an image from less than 0.1 detected photon Published: xx xx xxxx per pixel, which is three orders of magnitude less than conventional imaging techniques. A signal- to-noise ratio model of the system is established for noise analysis. With less data manipulation and shorter time requirements, our technique has potential applications in many felds, ranging from biological microscopy to remote sensing. Photon-limited imaging has attracted great interest on account of its important applications under extreme envi- ronments, such as night vision1, biological imaging2, remote sensing3, and so forth, when of-the-shelf methods fail due to photon-limited data. Conventionally, the transverse spatial image is recovered by either a spatially resolving detector array with foodlight illumination or a single detector with raster-scanned point-by-point illumination. In this way, even with time-resolved single-photon detectors, hundreds of photons per pixel are necessary to suppress the Poisson noise that is inherent in photon counting to obtain accurate intensity values.
    [Show full text]
  • Arxiv:2006.08747V1 [Quant-Ph] 15 Jun 2020 Department of Computational Intelligence and Systems Science, Tokyo Institute of Tech- Nology, Japan 2 Fei Yan Et Al
    Noname manuscript No. (will be inserted by the editor) A Critical and Moving-Forward View on Quantum Image Processing Fei Yan · Salvador E. Venegas-Andraca · Kaoru Hirota Received: date / Accepted: date Physics and computer science have a long tradition of cross-fertilization. One of the latest outcomes of this mutually beneficial relationship is quan- tum information science, which comprises the study of information processing tasks that can be accomplished using quantum mechanical systems [1]. Quan- tum Image Processing (QIMP) is an emergent field of quantum information science whose main goal is to strengthen our capacity for storing, processing, and retrieving visual information from images and video either by transition- ing from digital to quantum paradigms or by complementing digital imaging with quantum techniques. The expectation is that harnessing the properties of quantum mechanical systems in QIMP will result in the realization of ad- vanced technologies that will outperform, enhance or complement existing and upcoming digital technologies for image and video processing tasks. QIMP has become a popular area of quantum research due to the ubiquity and primacy of digital image and video processing in modern life [2]. Digital image processing is a key component of several branches of applied computer science and engineering like computer vision and pattern recognition, disci- plines that have had a tremendous scientific, technological and commercial success due to their widespread applications in many fields like medicine [3,4], military technology [5,6] and the entertaining industry [7,8]. The technologi- cal and commercial success of digital image processing in contemporary (both civil and military) life is a most powerful incentive for working on QIMP.
    [Show full text]
  • EU–US Collaboration on Quantum Technologies Emerging Opportunities for Research and Standards-Setting
    Research EU–US collaboration Paper on quantum technologies International Security Programme Emerging opportunities for January 2021 research and standards-setting Martin Everett Chatham House, the Royal Institute of International Affairs, is a world-leading policy institute based in London. Our mission is to help governments and societies build a sustainably secure, prosperous and just world. EU–US collaboration on quantum technologies Emerging opportunities for research and standards-setting Summary — While claims of ‘quantum supremacy’ – where a quantum computer outperforms a classical computer by orders of magnitude – continue to be contested, the security implications of such an achievement have adversely impacted the potential for future partnerships in the field. — Quantum communications infrastructure continues to develop, though technological obstacles remain. The EU has linked development of quantum capacity and capability to its recovery following the COVID-19 pandemic and is expected to make rapid progress through its Quantum Communication Initiative. — Existing dialogue between the EU and US highlights opportunities for collaboration on quantum technologies in the areas of basic scientific research and on communications standards. While the EU Quantum Flagship has already had limited engagement with the US on quantum technology collaboration, greater direct cooperation between EUPOPUSA and the Flagship would improve the prospects of both parties in this field. — Additional support for EU-based researchers and start-ups should be provided where possible – for example, increasing funding for representatives from Europe to attend US-based conferences, while greater investment in EU-based quantum enterprises could mitigate potential ‘brain drain’. — Superconducting qubits remain the most likely basis for a quantum computer. Quantum computers composed of around 50 qubits, as well as a quantum cloud computing service using greater numbers of superconducting qubits, are anticipated to emerge in 2021.
    [Show full text]