Dr Bernard Taminiau Dr Cristina Rodriguez Pr Georges Daube CLOSTRIDIA
Total Page:16
File Type:pdf, Size:1020Kb
Clostridia in the Gut Microbiota and Their Implication in Food Allergies and Foodborne Diseases Dr Bernard Taminiau Dr Cristina Rodriguez Pr Georges Daube CLOSTRIDIA 80’s 2005 16S NGS taxonomy Cato, E.P. and Collins et al 1994 SILVA DB 2016 Stackebrandt, E 1989 82141 non redundant 30 known sp 110 k n ow n a n d unamed sp 16S Clostridium is a Cluster I (Clostridium ss) to 34 Families composite group Cluster XIX (Fusobacterium) Majority unknown species Lack of phenotypic Lack of culture availability discriminating properties Deficit in wet lab compared to sequences ULg – Faculté de Médecine Vétérinaire - FARAH 2 Microbiota - the new organ Cultivable Unknown or non cultivable ULg – Faculté de Médecine Vétérinaire - FARAH 3 Key determinants Pre-birth contact Colonization and Increasing sensitivity with bacteria tolerance building to disorder Kerr et al Crit Rev Microbiol 2014 online 19 March 2014 Microbiota and host Outside the Immune system relationship, microbiota is a key player Bile acid Obesity metabolism Behavior diabetes Thermogenesis atherosclerose Intestinal Metabolic disease gluconeogenesis Appetite Asthma Hormone autism expression Schroeder et al 2016 ULg – Faculté de Médecine Vétérinaire - FARAH 5 Infant-type microbiota and Clostridia Bacterial flora Colonisation by heterogeneous, Clostridium spp. Sterile independent of and other obligate GI tract feeding habits anaerobes Birth First few First month days Gradual Bacteria from consumption the mother of oxygen by and the aerobic environment bacteria colonize de GI (conditions tract of for a more neonates diversified flora) Jost et al., 2012 ULg – Faculté de Médecine Vétérinaire - FARAH Lopetuso et al., 2013 Elderly-type microbiota The aging process challenges the stability of microbiota and can also affect the presence of Clostridium spp. • Decrease in the stability and in the diversity of the gut microbiota • Increase in the number of facultative anaerobes (streptococci, staphylococi; enterococci, enterobacteriaceae) • Decrease in the total number of strict anaerobes (caused by a lower count of bifidobacteria and bacteroides) Clostridium sensu stricto genus significantly increased Indispensable and key role of Clostridia in modulating gut homeostasis during the entire lifespan Drago et al., 2012 ULg – Faculté de Médecine Vétérinaire - FARAH Mariat et al., 20097 Diversity of microbes in the colon PREDOMINANT ORGANISMS: Three groups of strict anaerobes Bacteroides Clostridium cluster IV Clostridium, Eubacterium, Ruminococcus, Anaerofilum Clostridium cluster XIVa Clostridium, Eubacterium, Ruminococcus, Coprococcus, Dorea, Lachnospira, Roseburia, Butyrivibrio 12 1x10 organisms per gram of feces Hold et al., 2002 Lopetuso et al., 2013 ULg – Faculté de Médecine Vétérinaire - FARAH Spatial organisation and diversity of microbes across the intestinal lumen Regions of the central lumen are populated with Bacteroidaceae, Enterococcaceae and Lactobacillaceae Areas between the mucosal folds are populated with Clostridium cluster XIVa and IV Commensal Clostridia populate a specific region in the intestinal mucosa, establishing a close relationship with gut cells (physiological functions in a cooperative manner) ULg – Faculté de Médecine Vétérinaire - FARAH Lopetuso et al., 2013 Commensal Clostridia and gut homeostasis Commensal Clostridia play an important role in the metabolic welfare of colonocytes by releasing butyrate as an end-product of fermentation Short chain fatty acids Energy source for Butyrate colonocytes Gene expression (hyperacetylation of chromatin) Butyrate production by Clostridial Anti-inflammatory effect clusters XIVa and IV (Decreases the expression of (i.e. Roseburia sp. and F. prausnitzii) proinflammatory cytokines) Protection against colitis, Butyrate producers that display Butyryl colorectal cancer and acetate CoA transferase activity ulcerative colitis (Induces apoptosis in tumor cells in vitro) Duncan et al., 2002 ULg – Faculté de Médecine Vétérinaire - FARAH Lopetuso et al., 2013 Food allergies Constant increase in infant since 15 years (about 10% population) Immune system tolerance state IgE mediated Gut microbiota allergy Food allergies is linked with dysbiosis in human and mice models Blazquez and Berin , 2017 ULg – Faculté de Médecine Vétérinaire - FARAH 11 Commensal Clostridia and host immune system Clostridia can promote the development of αβ T cell receptor intraepithelial lymphocytes (IEL) and IEL Immunoglobulin A (IgA)-producing cells in the large IgA intestine Key players in determining the nature of the immunological response to antigens or pathogens ingested Short chain fatty acids and secondary bili acids produce by Clostridia are associated with the initiation of immunological signaling Elevated levels of Clostridial clusters XIVa and IV in mice leads to resistance to allergy and intestinal inflammation in experimental models Clostridium spp. can induce the differentiation of naïve cells into antigen-specific colonic T regulatory cells ULg – Faculté de Médecine Vétérinaire - FARAH Atarashi t al., 2011 Lopetuso et al., 2013 Clostridia as probiotics for food allergies Commensal bacteria containing Stefka et al , 2014 Clostridia protect against food allergen sensitization in mice Oral administration of Clostridium butyricum CGMCC0313-1 inhibits Open Access Zhang et al. 2017 β-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy Promising studies that need to be exported in humans ULg – Faculté de Médecine Vétérinaire - FARAH 13 Improve microbiota knowledge METAGENETICS aka amplicon sequencing Establish the profile of target taxonomical identity in the sample 16S rRNA 26S rRNA or ITS Others Bacteria Micro-eucaryotes www.arb-silva.de https://unite.ut.ee/ http://fungene.cme.msu.edu/ Bioinformatics Vic$vallaceae) 100.000%$ Vibrionaceae) Verrucomicrobiaceae) Veillonellaceae) unclassified) 90.000%$ Synergistaceae) Streptococcaceae) Staphylococcaceae) Sphingomonadaceae) 80.000%$ Ruminococcaceae) Rikenellaceae) Rhizobiaceae) Pseudomonadaceae) 70.000%$ Pseudoalteromonadaceae) Propionibacteriaceae) Prevotellaceae) 60.000%$ Porphyromonadaceae) Peptostreptococcaceae* Pasteurellaceae) Oxalobacteraceae) 50.000%$ Moraxellaceae) Micrococcaceae) Microbacteriaceae) Lactobacillaceae) 40.000%$ Lachnospiraceae) Fusobacteriaceae) Flavobacteriaceae) Family_XIII_Incertae_Sedis) 30.000%$ Family_XII_Incertae_Sedis) P16_week_06 Family_XI_Incertae_Sedis) P5_week_01 Eubacteriaceae) P2_week_07 P2_week_01 Erysipelotrichaceae) P2_week_03 P2_week_05 20.000%$ Enterococcaceae) P2_week_09 Enterobacteriaceae) P2_week_11 Desulfovibrionaceae) P2_week_13 Corynebacteriaceae) P2_week_15 10.000%$ Coriobacteriaceae) P1_week_17 P1_week_10 P1_week_07 P1_week_04 Comamonadaceae) P2_week_17 P1_week_02 P1_week_08 Clostridiaceae) P1_week_12 P1_week_11 Carnobacteriaceae) P5_week_03 P1_week_01 0.000%$ Campylobacteraceae) P1_week_16 P5_week_12 P1_week_14 Bifidobacteriaceae) P1_week_05 Bacteroidaceae) P5_week_16 Alcaligenaceae) Ac$nomycetaceae) $P1_week01$ $P1_week05$ $P1_week07$ $P1_week08$ $P2_week01$ $P2_week05$ $P2_week07$ $P2_week09$ $P1_week02$ $P1_week04$ $P1_week10$ $P2_week03$ P17_week_05 P19_week_15 $P13_week01$ $P13_week02$ $P13_week03$ $P13_week04$ $P13_week06$ $P13_week08$ $P13_week10$ $P15_week01$ $P15_week02$ $P15_week03$ $P15_week04$ $P15_week06$ $P15_week07$ $P15_week08$ $P15_week09$ $P18_week05$ $P18_week07$ $P18_week09$ $P19_week01$ $P19_week02$ $P19_week03$ $P19_week07$ $P19_week09$ $P19_week10$ $P24_week03$ $P24_week05$ $P24_week06$ $P24_week08$ P17_week_06 P19_week_13 P19_week_10 P17_week_07 P19_week_07 P19_week_09 P17_week_08 P19_week_11 P19_week_01 P19_week_03 P15_week_08 P15_week_09 P24_week_17 P24_week_10 P15_week_07 P24_week_08 P15_week_01 P24_week_06 P24_week_05 P15_week_02 P24_week_03 P15_week_04 P15_week_03 P24_week_12 P15_week_06 P18_week_17 HTS P15_week_11 P18_week_15 P18_week_12 P15_week_12 P18_week_09 P18_week_07 P15_week_13 P18_week_05 P15_week_14 P12_week_11 P12_week_10 P15_week_17 P12_week_03 P12_week_07 P13_week_14 P13_week_10 P13_week_12 P19_week_02 P24_week_14 P13_week_01 P13_week_02 P13_week_03 P13_week_04 P13_week_06 P13_week_08 0.05 Group&young& Group&old,CT& Group&old,SP& NMDS2 NMDS3 16S rDNA Amplification NMDS1 LONGITUDINAL STUDY OF FECES MICROBIOTA IN SENIORS AND LINK WITH CLOSTRIDIUM DIFFICILE PRESENCE FOUR MONTHS FOLLOW-UP IN A SINGLE BELGIAN NURSING HOME Pr Georges Daube Pr Michel delmée Dr Bernard Taminiau Véronique Avesani Dr Cristina Rodriguez J. Van Broeck Dr Nicolas Korsak ULg – Faculté de Médecine Vétérinaire - FARAH 17 Objectives • To evaluate and follow the prevalence of C. difficile in a Belgian nursing home • To establish a relationship between other intestinal bacterial populations and C. difficile colonization • To evaluate the global evolutions of the total microflora and the relation with the C. difficile presence Study design WEEKLY stool samples recovery from a group of 13 >65 ears ol elderly care home residents C. Difficile detection Direct // enrichment Toxin detection Ribotyping Microbiota profiling V1V3 16S sequencing Community structure and composition Dynamics A 40 30 20 Bacterial Diversity 10 Inverse simpson biodiversity 0 Microbiota structure and composition P01 P02 400 P04 300 P05 200 P10 P12 100 Bacterial Richness residentP13 Chao1 richness index P15 0 P17 P01 P18 B P02 P19 0.4 P04 P21 0.3 P05 P24 P10 0.2 P12 Bacterial Evenness 0.1 residentP13 Simpson Evenness Index P15 0.0 P17 P01 P18 P02 P19 P04 P21 P05 P24 P10 P12 residentP13 P15 P17 P18 P19 ULg P21 P24 – Faculté de Médecine Vétérinaire Braycurtis