Energy Efficiency Features of the Intel Skylake-SP Processor and Their

Total Page:16

File Type:pdf, Size:1020Kb

Energy Efficiency Features of the Intel Skylake-SP Processor and Their Energy Efficiency Features of the Intel Skylake-SP Processor and Their Impact on Performance Robert Schöne, Thomas Ilsche, Mario Bielert, Andreas Gocht, Daniel Hackenberg Center for Information Services and High Performance Computing (ZIH) Technische Universität Dresden – 01062 Dresden, Germany Email: {robert.schoene | thomas.ilsche | mario.bielert | andreas.gocht | daniel.hackenberg}@tu-dresden.de Abstract—The overwhelming majority of High Performance Therefore, they are using their systems as is, hoping that Computing (HPC) systems and server infrastructure uses Intel the applied settings will fit their purpose. High Performance x86 processors. This makes an architectural analysis of these Computing (HPC), however, has specific requirements because processors relevant for a wide audience of administrators and performance engineers. In this paper, we describe the effects a single wrongly-configured core in a highly parallel program of hardware controlled energy efficiency features for the Intel can lead to millions of cores waiting. Therefore, a detailed Skylake-SP processor. Due to the prolonged micro-architecture analysis and understanding of the possible impacts of power cycles, which extend the previous Tick-Tock scheme by Intel, our saving mechanisms is key to every performance and energy findings will also be relevant for succeeding architectures. The efficiency evaluation and optimization. findings of this paper include the following: C-state latencies increased significantly over the Haswell-EP processor generation. In this paper, we describe new features of Intel Skylake-SP The mechanism that controls the uncore frequency has a latency processors, which are likely also part of future processors. In of approximately 10 ms and it is not possible to truly fix the previous years, Intel followed a Tick-Tock scheme, where a uncore frequency to a specific level. The out-of-order throttling new architecture and a new process are introduced alternately. for workloads using 512 bit wide vectors also occurs at low Recently, this cycle has been extended with a third step where processor frequencies. Data has a significant impact on processor power consumption which causes a large error in energy models the architecture is slightly improved. This is a chance for relying only on instructions. software and performance engineers, because an adaption of Index Terms—Microprocessors, Performance analysis, Systems software for a specific hardware has now more time to be modeling, Dynamic voltage scaling worthwhile. This paper is structured as follows: Section II describes I. INTRODUCTION AND BACKGROUND relevant micro-architectural changes and energy efficiency In recent years, the number of energy efficiency features in features of the Intel Skylake-SP processor compared to the Intel processors increased significantly. Contemporary proces- predecessor generations. In Section III, we give an overview sors support Per-Core P-States (PCPs) [1], Uncore Frequency about the test system that we use for our experiments. A Scaling (UFS) [1], turbo frequencies [2, Section 14.3.3], core short analysis of standardized mechanisms described in the and package C-states [3], T-states [4], power capping [5], Advanced Configuration and Power Interface (ACPI) is given Energy-Performance-Bias (EPB) [2, Section 14.3.4], and in Section IV. Sections V-VIII present an analysis of hardware other mechanisms. While these features improved the energy- controlled energy efficiency mechanisms and their effect on proportionality significantly, they also have a major influence runtime and power consumption. We conclude our paper with on the performance of the processor. This can be seen when a summary and an outlook in Section IX. comparing the given system configuration for results submitted for the SPECpower_ssj [6] with those submitted to performance II. SKYLAKE-SP ARCHITECTURE AND ENERGY related benchmarks like SPEC CPU2017 [7]. While the former EFFICIENCY FEATURES results got more energy proportional within the last decade, The Skylake server processors introduce several new micro- the latter often disable power saving mechanisms to increase architectural features, which increase performance, scalability, performance and provide repeatable results. Furthermore, new and efficiency. Furthermore, they uphold energy efficiency architectural features, which boost performance, also influence features from older architectures and introduce new ones. the power consumption. One example is the introduction of AVX2 and FMA in Intel Haswell processors. Some workloads A. Microarchitecture using these features, would increase the power consumption On the core level, which is summarized in Table I, AVX- over the thermal design power (TDP) at nominal frequency. 512 (or AVX512F to be precise) is the most anticipated All of these power-related features span a huge design space feature for HPC. With AVX-512, an entire cache line (64 B, with conflicting optimization goals of performance, power one ZMM register) can now be used as input for vector capping, and energy efficiency. Users are often oblivious to the instructions. Furthermore, with the new EVEX prefix, the implications of these mechanisms which are typically controlled number of addressable SIMD registers doubled to 32. Therefore, by hardware, firmware and sometimes the operating system. 2 kiB of data can now be held in vector registers, compared © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works Microarchitecture Haswell-EP Skylake-SP 6100/8100 facilitates higher turbo frequencies on some cores and lower References [8], [9], [10], [11] [8], [11], [12], [13] on others, which in turn influences the performance of a Allocation queue 56/core 64/thread single thread depending on the hardware core that executes Execute 8 micro-ops/cycle 8 micro-ops/cycle Scheduler entries 60 97 it. However, currently none of the currently available Xeon ROB entries 192 224 Scalable Processors supports this feature. An anticipated INT/FP register file 168/168 180/168 feature of Skylake processors is Hardware Duty Cycling SIMD ISA AVX2 AVX-512 FPU width 2×256 Bit FMA 2×512 Bit FMA (HDC) [2, Section 14.5], also known as SoC Duty Cycling. FLOPS/cycle (double) 16 32 HDC implements a more coarse grained duty cycling in Load/store buffers 72/42 72/56 comparison to T-states. In contrast to clock gating, HDC uses L1D accesses 2×32 B load + 2×64 B load + per cycle 1×32 B store 1×64 B store C-states with power gating. However, this feature is targeted L2 B/cycle 64 64 at mobile and desktop processors and is not described in more Supported memory 4×DDR4-2133 6×DDR4-2666 detail in this document. DRAM bandwidth up to 68.2 GB/s up to 128 GB/s Table I: Comparison of Haswell-EP and Skylake-SP processors C. Hardware-Controlled P-States (HWP) to 512 B in Haswell and Broadwell architectures. The L1D Introduced with the Broadwell generation of Intel processors, cache bandwidth has been doubled while L2 cache bandwidth Hardware-Controlled P-States (alias Hardware Power Manage- is still limited to 64 B/cycle. The L2 cache size increased from ment (HWPM) or SpeedShift), move the decision of frequency 256 kiB to 1 MiB, whereas LLC slice sizes decreased from and C-state usage from the operating system to the processor [2, 2.5 MiB to 1.375 MiB. The increased number of store buffers Section 14.4]. This removes the perturbation of an OS control can lead to a faster streamed store throughput. In addition, all loop, which interrupts the workload regularly. Furthermore, it codes benefit from extended out-of-order features. increases the responsiveness because the hardware control loop The uncore also faced a major re-design. In previous can be executed more frequently without perturbation. While architectures (starting with Nehalem-EX), cores have been the Broadwell processors hardware acts mostly autonomously, connected by a ring network. The increased number of cores Skylake-SP processors provide interfaces for a collaboration in Haswell and Broadwell architectures led to the introduction with the OS through interrupts [2, Section 14.4.6]. With the of a second ring with connections between both. Skylake now HWP interface, the OS can define a performance and power introduces a mesh architecture, where each core, including its profile, and set a minimal, efficient, and maximal frequency. LLC slice, connects to a 2D mesh, as depicted in Figure 1. Under Linux, the tool x86_energy_policy can be used The external communication (PCIe, UPI) is placed on one side to interact directly with the hardware interface. HWP is of the mesh. Furthermore, two cores in the remaining mesh accompanied by an incremental counter register MSR_PPERF, are replaced by integrated memory controllers (iMCs), each which holds the Productive Performance Count (PCNT) that of which can host up to three DRAM channels. There are should increase only if a cycle has been used efficiently. multiple flavors of Skylake-SP based processors with varying external connections and numbers of cores. The cluster-on-die (CoD) feature is now called sub-NUMA clustering and enables dividing the cores into two NUMA PCIe UPI PCIe PCIe UPI PCIe domains. Cache coherence is implemented by MESIF and a DMI,CBDMA directory-based home snoop protocol. B. Energy Efficiency Mechanisms Core L3 Core L3 Core L3 Core L3 Core L3 Core L3 Like its predecessors, Skylake-SP processors support Per- DDR4 A DDR4 D DDR4 B DRAM Core L3 Core L3 Core L3 Core L3 DRAM DDR4 E Core P-States (PCPs) and Uncore Frequency Scaling (UFS). DDR4 C DDR4 F This enables fine-grained control over performance and energy efficiency decisions. The Energy Performance Bias (EPB) Core L3 Core L3 Core L3 Core L3 Core L3 Core L3 indicates, whether to balance the profile for runtime or power consumption or something in between.
Recommended publications
  • Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance
    White Paper Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance Ofri Wechsler Intel Fellow, Mobility Group Director, Mobility Microprocessor Architecture Intel Corporation White Paper Inside Intel®Core™ Microarchitecture Introduction Introduction 2 The Intel® Core™ microarchitecture is a new foundation for Intel®Core™ Microarchitecture Design Goals 3 Intel® architecture-based desktop, mobile, and mainstream server multi-core processors. This state-of-the-art multi-core optimized Delivering Energy-Efficient Performance 4 and power-efficient microarchitecture is designed to deliver Intel®Core™ Microarchitecture Innovations 5 increased performance and performance-per-watt—thus increasing Intel® Wide Dynamic Execution 6 overall energy efficiency. This new microarchitecture extends the energy efficient philosophy first delivered in Intel's mobile Intel® Intelligent Power Capability 8 microarchitecture found in the Intel® Pentium® M processor, and Intel® Advanced Smart Cache 8 greatly enhances it with many new and leading edge microar- Intel® Smart Memory Access 9 chitectural innovations as well as existing Intel NetBurst® microarchitecture features. What’s more, it incorporates many Intel® Advanced Digital Media Boost 10 new and significant innovations designed to optimize the Intel®Core™ Microarchitecture and Software 11 power, performance, and scalability of multi-core processors. Summary 12 The Intel Core microarchitecture shows Intel’s continued Learn More 12 innovation by delivering both greater energy efficiency Author Biographies 12 and compute capability required for the new workloads and usage models now making their way across computing. With its higher performance and low power, the new Intel Core microarchitecture will be the basis for many new solutions and form factors. In the home, these include higher performing, ultra-quiet, sleek and low-power computer designs, and new advances in more sophisticated, user-friendly entertainment systems.
    [Show full text]
  • Dual-Core Intel® Xeon® Processor 3100 Series Specification Update
    Dual-Core Intel® Xeon® Processor 3100 Series Specification Update — on 45 nm Process in the 775-land LGA Package December 2010 Notice: Dual-Core Intel® Xeon® Processor 3100 Series may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are documented in this Specification Update. Document Number: 319006-009 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system.
    [Show full text]
  • Microcode Revision Guidance August 31, 2019 MCU Recommendations
    microcode revision guidance August 31, 2019 MCU Recommendations Section 1 – Planned microcode updates • Provides details on Intel microcode updates currently planned or available and corresponding to Intel-SA-00233 published June 18, 2019. • Changes from prior revision(s) will be highlighted in yellow. Section 2 – No planned microcode updates • Products for which Intel does not plan to release microcode updates. This includes products previously identified as such. LEGEND: Production Status: • Planned – Intel is planning on releasing a MCU at a future date. • Beta – Intel has released this production signed MCU under NDA for all customers to validate. • Production – Intel has completed all validation and is authorizing customers to use this MCU in a production environment.
    [Show full text]
  • Single Board Computer
    Single Board Computer SBC with the Intel® 8th generation Core™/Xeon® (formerly Coffee Lake H) SBC-C66 and 9th generation Core™ / Xeon® / Pentium® / Celeron® (formerly Coffee Lake Refresh) CPUs High-performing, flexible solution for intelligence at the edge HIGHLIGHTS CONNECTIVITY CPU 2x USB 3.1; 4x USB 2.0; NVMe SSD Slot; PCI-e x8 Intel® 8th gen. Core™ / Xeon® and 9th gen. Core™ / port (PCI-e x16 mechanical slot); VPU High Speed Xeon® / Pentium® / Celeron® CPUs Connector with 4xUSB3.1 + 2x PCI-ex4 GRAPHICS MEMORY Intel® UHD Graphics 630/P630 architecture, up to 128GB DDR4 memory on 4x SO-DIMM Slots supports up to 3 independent displays (ECC supported) Available in Industrial Temperature Range MAIN FIELDS OF APPLICATION Biomedical/ Gaming Industrial Industrial Surveillance Medical devices Automation and Internet of Control Things FEATURES ® ™ ® Intel 8th generation Core /Xeon (formerly Coffee Lake H) CPUs: Max Cores 6 • Intel® Core™ i7-8850H, Six Core @ 2.6GHz (4.3GHz Max 1 Core Turbo), 9MB Cache, 45W TDP (35W cTDP), with Max Thread 12 HyperThreading • Intel® Core™ i5-8400H, Quad Core @ 2.5GHz (4.2GHz Intel® QM370, HM370 or CM246 Platform Controller Hub Chipset Max 1 Core Turbo), 8MB Cache, 45W TDP (35W cTDP), (PCH) with HyperThreading • Intel® Core™ i3-8100H, Quad Core @ 3.0GHz, 6MB 2x DDR4-2666 or 4x DDR4-2444 ECC SODIMM Slots, up to 128GB total (only with 4 SODIMM modules). Cache, 45W TDP (35W cTDP) Memory ® ™ ® ® ECC DDR4 memory modules supported only with Xeon Core Information subject to change. Please visit www.seco.com to find the latest version of this datasheet Information subject to change.
    [Show full text]
  • IBM Posts SPEC CPU2006 Scores for Quad-Core X3200 M2 X3200 M2 Achieves Leadership Specint2006 Score for a Single-Socket Server Using Intel Xeon X3370 Processor
    IBM posts SPEC CPU2006 scores for quad-core x3200 M2 x3200 M2 achieves leadership SPECint2006 score for a single-socket server using Intel Xeon X3370 processor August 12, 2008 ... IBM® System xTM 3200 M2 server is an affordable, single-socket tower server that has been optimized to provide outstanding availability, manageability, and performance features for small to medium-sized businesses, retail stores, or distributed enterprises. The x3200 M2 systems include features not typically seen in this class of system, such as standard, hardware-based RAID 0/1, 2.5-inch (SFF) hot-swap SAS drives, and redundant power supplies (on select models). The x3200 M2 includes quad- and dual-core Intel® Xeon® processors for applications that require performance and stability; the x3200 M2 also supports Intel Pentium® dual-core and Core 2 Duo processors for applications that require lower cost. In measurements with the SPEC CPU2006 benchmark suite, the x3200 M2 achieved a leadership SPECint2006 score for a system using the Intel Xeon X3370 processor and competitive scores on the other members of the benchmark suite. The x3200 M2 was configured with the Quad-Core Intel Xeon Processor X3370 (3.00GHz, 12MB L2 cache, and 1333 MHz front-side bus—1 processor/4 cores/4 threads) and 8GB of DDR2 PC2- 6400 memory, and ran SUSE Linux® Enterprise Server 10 SP1 x64. (1) The scores in the following tables are the first SPEC CPU2006 results published for this processor model. SPEC CPU2006 x3200 M2 – Quad-Core Intel Xeon Processor X3370 Benchmark (3.00GHz, 12MB L2 Cache, 1333 MHz FSB) SPECint2006 26.3 SPECint_rate2006 76.2 SPECint_rate_base2006 66.2 SPECfp2006 24.2 SPECfp_rate2006 51.8 SPECfp_rate_base2006 47.8 Results are current as of August 12, 2008.
    [Show full text]
  • The New Intel® Xeon® Processor Scalable Family
    Akhilesh Kumar Intel Corporation, 2017 Authors: Don Soltis, Irma Esmer, Adi Yoaz, Sailesh Kottapalli Notices and Disclaimers This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
    [Show full text]
  • Instruction Rate with Ivy Bridge Vs Haswell for Some Common Jobs
    Instruction rate with Ivy Bridge vs Haswell for some common jobs David Smith on behalf of IT-DI-LCG, UP team. 20 Oct 2016, ATLAS computing workflow performance meeting 20.10.16 Sandy Bridge / Haswell 1 Introduction • Get some insight about how the job’s code is interacting with the CPU while running by looking at Instructions per Cycle (IPC) • This is not our usual performance measure, but I hope this may let one more easily see how the cpu pipeline is handling the code, and to some extent compare microarchitectures 10/20/2016 Sandy Bridge / Haswell 2 IPC for some jobs • Ratio of retired instructions / unhalted clock cycles (most over whole job). Physical machine. • Atlas simu with single process athena, HT on, affinity fixed to 1 core. No other significant load. • Haswell was Xeon E5-2683 v3 (~3GHz); Ivy Bridge i7-3770k (~3.8GHz) • checked Ivy Bridge also on Xeon E5-2695 v2 (~3.1GHz) running ATLAS Sim (19.2) => 0.91 IPC • checked Atlas simu (19.2) with athenaMP (8) affinity to 4 cores on one socket => 1.58/0.97 IPC • ATLAS sim was job 2972328065 (19.2.4.9, slc6-gcc47-opt or 20.7.8.5, slc6-gcc49-opt; mc15_13TeV.362059.Sherpa_CT10_Znunu_Pt140_280_CFilterBVecto_fac4) • Looked up previous HS06 results; usually ~10% higher for Haswell (per job slot/per GHz) 10/20/2016 Sandy Bridge / Haswell 3 Which microarchitectures are used? • The above are usually classed as the intel microarchitectures: e.g. Ivy Bridge is the die shrink version of SB, and is classed as SB microarch. • This is the last 90 days of ATLAS jobs, raw data from elastic search (thanks Andrea) • Used wall clock time per cpu type, with classification based on type string, weighted by quoted cpu freq, and a rough weighting of x1.5 for Intel Core, as that microarch.
    [Show full text]
  • Intel's Core Microarchitecture Sets New Records in Performance and Energy Efficiency 23 May 2006
    Intel's Core Microarchitecture Sets New Records in Performance and Energy Efficiency 23 May 2006 Virtualization Technology (Intel VT), Intel Active Server Manager and Intel I/O Acceleration Technology. (Intel I/OAT)” Fully-buffered dual in-line memory (FB-DIMM) technology allows for better memory capacity, throughput and overall reliability. This is critical for creating balanced platforms using multiple cores and the latest technologies, such as virtualization, to meet the expanding demand for compute headroom. Shipping in Intel Xeon MP processors since last year, Intel Virtualization Technology (Intel VT) Dual-Core Intel Xeon processor 5000 series, previously provides silicon-level software support that codenamed "Dempsey." improves dependability and interoperability and is enabling faster industry innovation. Intel Active Server Manager integrates hardware, software and firmware to manage today’s complex datacenters Intel today disclosed record breaking results on 20 and enterprise environments. Intel I/O Acceleration key dual-processor (DP) server and workstation Technology (Intel I/OAT) improves application benchmarks. The first processor due to launch response time, server I/O performance and based on the new Intel Core microarchitecture — reliability. the Dual-Core Intel Xeon processor 5100 series, previously codenamed “Woodcrest” — delivers up Intel’s new server and workstation platforms, to 125 percent performance improvement over codenamed “Bensley” and “Glidewell” previous generation dual-core Intel Xeon respectively, are architected for today’s dual-core processors and up to 60 percent performance processors. They will also support dual- and quad- improvement over competing x86-based core processors built using Intel’s 65-nanometer architectures, whilst also delivering performance (nm) and future process technologies.
    [Show full text]
  • Product Brief: Intel® Xeon® Scalable Platform
    PRODUCT BRIEF Intel® Xeon® Scalable Platform The Future-Forward Platform Foundation for Agile Digital Services Empowering Transformation in a Digital World Across an evolving digital world, disruptive and emerging technology trends in business, industry, science, and entertainment increasingly impact the world’s economies. By 2020, the success of half of the world’s Global 2000 companies will depend on their abilities to create digitally enhanced products, services, and experiences,1 and large organizations expect to see an 80 percent increase in their digital revenues,2 all driven by advancements in technology and usage models they enable. This global transformation is rapidly scaling the demands for flexible compute, networking, and storage. Future workloads will necessitate infrastructures that can seamlessly scale to support immediate responsiveness and widely diverse performance requirements. The exponential growth of data generation and consumption, the rapid expansion of cloud-scale computing, emerging 5G networks, and the extension of high-performance computing (HPC) and artificial intelligence (AI) into new usages require that today’s data centers and networks urgently evolve—or be left behind in a highly competitive environment. These demands are driving the architecture of modernized, future-ready data centers and networks that can quickly flex and scale. The Intel® Xeon® Scalable platform provides the foundation for a powerful data center platform that creates an evolutionary leap in agility and scalability.3 Disruptive by design, this innovative processor sets a new level of platform convergence and capabilities across compute, storage, memory, network, and security. Enterprises and cloud and communications service providers can now drive forward their most ambitious digital initiatives with a feature-rich, highly versatile platform.
    [Show full text]
  • Download Datasheet
    COMe-bBD7 COM Express® basic Type 7 with Intel® Xeon® and Pentium® D-1500 SoC processor Server-grade platform Up to 64 GByte DDR4 ECC/non-ECC Dual 10GbE interfaces High-speed connectivity 24x PCIe 3.0 + 8x PCIe 2.0, 4x USB 3.0, 2x SATA3 Industrial grade versions TECHNICAL INFORMATION COMPLIANCE COM Express® Basic, Pin-out Type 7 DIMENSIONS (H x W x D) 95 x 125 mm CPU (SoC) Intel® Xeon® Processor D-1577, 16 C, 1.3 GHz, 24 MByte, 45 W, Intel® Xeon® Processor D-1548, 8 C, 2.0 GHz, 12 MByte, 45 W, Intel® Xeon® Processor D-1537, 8 C, 1.7 GHz, 12 MByte, 35 W, Intel® Xeon® Processor D-1528, 6 C, 1.9 GHz, 9 MByte, 35 W, Intel® Xeon® Processor D-1527, 4 C, 2.2 GHz, 6 MByte, 35 W, Intel® Pentium® Processor D1517, 4 C, 1.6 GHz, 6 MByte, 25 W, Intel® Pentium® Processor D1508, 2 C, 2.2 GHz, 3 MByte, 25 W, Intel® Xeon® Processor D-1559, 12 C, 1.5 GHz, 18 MByte, 45 W, ind. Temp Intel® Xeon® Processor D-1539, 8 C, 1.6 GHz, 12 MByte, 35 W, ind. Temp Intel® Pentium® Processor D1519, 4 C, 1.5 GHz, 6 MByte, 25 W, ind. Temp MAIN MEMORY 2x DDR4 SODIMM dual channel up to 64 GByte ECC or non ECC ETHERNET CONTROLLER Intel® I210IT (uses one lane of PCIe 2.0) Intel® Dual 10GbE LAN integrated in SoC ETHERNET 1x 10/100/1000 MBit Ethernet Dual 10GbE Interface (KR) and NC-SI STORAGE 2x SATA3, 6Gb/s FLASH ONBOARD SATA SSD up to 32 GByte (on request) PCI Express® 24x PCIe 3.0 (6 controllers, x4, x8, x16 configuration) 8x PCIe 2.0 (8 controllers, x1, x2, x4 configuration), one lane used by onboard 1 GbE LAN controller USB 4x USB 3.0/2.0 (3x USB 3.0/2.0 with APPROTECT
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.0
    The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • Ultimate Workstation Performance
    Product brief Intel® Xeon® Scalable Processors Intel® Xeon® W Processors Intel® Xeon® E Processors Ultimate Workstation Performance Intel® Xeon® Scalable Processors, Intel® Xeon® W Processors and Intel® Xeon® E Processors for Professional Workstations Optimized to Over-Deliver Designed for professionals, workstations powered by Intel® Xeon® processors are the trusted platform for the next generation of professional product designers, content creators, and data scientists. With the ideal combination of processor power, memory, and Intel® Optane™ storage, Intel Xeon processor-based workstations enable you to create, test, and deliver solutions faster than ever. Intel® Xeon® Processors provides maximum performance and uptimes for workstation workloads WHAT MATTERS? INTEL® XEON® PROCESSOR ADVANTAGES I can run applications Frequency optimized options easily and eciently from 4 to 28 core options, per without getting processor, mean you spend more PERFORMANCE bogged down time creating and less time waiting I can increase Professional-class processors productivity by designed and manufactured to minimizing system perform in always-on usage UPTIME downtown scenarios I can explore more Applications optimized for the vector possibilities by processing capabilities of Intel® AVX- designing in 3D 512 deliver signicantly increased virtual reality performance to drive complex, 3D CAD INNOVATION and content creation applications My designs and Error Correction Code (ECC) hardware simulations are circuitry built onto workstations powered accurate by Intel® Xeon® processor tests for and ACCURACY corrects errors in your data as it passes in and out of memory Pervasive, Breakthrough Performance From its new Intel® Mesh Architecture and widely expanded resources to its hardware-accelerating technologies like Intel® AVX-512, Intel® Xeon® Scalable and Intel® Xeon® W processor-based workstation platforms enable a new level of breakthrough performance.
    [Show full text]