The Design and Implementation of a Spectrally Tuneable LED-Based Light Source: Towards a New Era of Intelligent Illumination

Total Page:16

File Type:pdf, Size:1020Kb

The Design and Implementation of a Spectrally Tuneable LED-Based Light Source: Towards a New Era of Intelligent Illumination The design and implementation of a spectrally tuneable LED-based light source: towards a new era of intelligent illumination Wim Hertog A thesis presented for the degree of Doctor of Philosophy in Optical Engineering at the Department of Optics and Optometry of the Universitat Politècnica de Catalunya Thesis Supervisor Internal Examiner Dr. Josep Maria Carreras Molins Dr. José Arasa Martí Barcelona, December 2016 i Acknowledgements I still remember my first torch: a yellow Playskool flashlight with a built-in red-green colour filter. It was my absolute favourite toy as a toddler. The love for lights did not let go. From scrounging around markets in far-away countries to setting up a lighting company, illumination has always been a fervent hobby. At the end of my studies, this hobby turned into a full time job that, later on, led to the start of this PhD. Thanks, mom, dad and Joachim for the years and years of encouragement that fuelled my passion. Without you I would not be where I am now. My sincere gratitude goes towards Dr. Carreras, whom I met for the first time during a CIE conference in Gent, Belgium. Thank you, Josep, for introducing me in IREC, accepting me as your PhD student and giving me the chance to meet countless like-minded people all over the world. Charles, Francisco, Jordi, Jorge, Oscar, Mariano and especially Jesús: thanks for being such helpful colleagues and more importantly, good friends. Didem, keeping the most important one for the end, thank you for sharing all my happy and sad moments. Thank you for all those far-away adventures. Our time together is my number one energy resource. Wim Hertog Barcelona, 2015 ii Abstract Rising population numbers place ever increasing demands on energy resources. A large percentage of the worldwide energy production is reserved for the generation of electricity and a significant portion of the electrical energy generation is used for illumination purposes. At the same time, people demand brighter light sources that provide better light quality. The luminaire of today is not just a simple lamp, but a complex, intelligent piece of technology designed for a specific purpose. This doctoral dissertation aims to provide a link between the theoretical universe surrounding the physics of electromagnetic radiation and the practical illumination world. A theoretical framework presents the physical properties of light and connects, through the human visual system, to a number of perceptual models. Based on these perceptual models, the colourimetric qualities of an illumination spectrum are analysed and a theoretical framework that aims to optimise the balance between colour fidelity and energy efficiency is proposed. The result of this optimisation is a spectrum that needs to be implemented into a light source. Recent advancements in semiconductor technology led to the development of highly efficient light emitting diodes. The monochromatic nature of these light sources offers the possibility of creating a spectrally tuneable luminaire that is able to reproduce these optimised illumination spectra. A fully integrated spectrally tuneable light engine combines knowledge on characterising and driving LEDs, optical design and thermal management. Each group of monochromatic LEDs needs a variable current source that ensures predictable behaviour regardless of their dimming level or temperature. An advanced optical solution enables efficient light extraction from the LEDs, provides excellent luminance and chroma homogenisation and, finally, delivers a suitable beam pattern for the intended illumination application. Proper thermal management establishes sufficient heat extraction to guarantee low semiconductor temperatures. Finally, the LED light engines created during this doctoral research are incorporated into three spectrally tuneable illumination devices, each designed for a specific purpose. A set of spectrally tuneable downlights installed in the laboratories of the lighting group of the Catalonia Institute for Energy Research (IREC) in Barcelona, Spain and the department of neuroscience of the University of Newcastle in the United Kingdom serves as a valuable tool for experiments that evaluate both physical and psychovisual properties of selected illumination spectra. A compact spotlight, used during the “Making Colour” exhibition of the National Gallery in London, is optimised to provide a set of specific illumination spectra to illuminate art reproductions. Lastly, a high power luminaire was designed to generate specialised spectra to irradiate greenhouse plants, steering their morphology and the production of plant-specific compounds. iii List of abbreviations and symbols AC Alternating Current irradiance in watt per square metre radiant intensity in watt per solid angle radiance in watt per solid angle . surface area radiant exitance in watt per square metre sensitivity function of the rods of the human eye Boltzmann´s constant radiant flux in watt colour difference / energy difference temperature difference A amplitude a* a* coordinate of the CIELAB colour space AIC Association Internationale de Couleur AM Amplitude Modulation B magnetic field in teslas b* b* coordinate of the CIELAB colour space BC Before Christ BDI Beck Depression Inventory C capacitance in farads / celsius, a unit of measurement for temperature c speed of light in metres per second / impact of surrounding in CIECAM02 CAD Computer Aided Design CAM Colour Appearance Model CAT Chromatic Adaptation Transform CBE Chemical Beam Epitaxy CCD Charge-Coupled Device CCFL Cold-Cathode Fluorescent Lamp CCR Constant Current Reduction CCT Correlated Colour Temperature cd candela, SI unit of luminous intensity CDI Colour Discrimination Index CFL Compact Fluorescent Lamp CMF Colour Matching Function CGL Charge Generation Layer CIE Commission Internationale de l’Eclairage CMS Colour Matching System CMYK Cyan, Magenta, Yellow, Black COB Chip On Board CQS Colour Quality Scale CRC Colour Rendering Capacity CRI Colour Rendering Index CRM Colour Rendering Map CT Colour Temperature D diode / degree of chromatic adaptation to the reference white in CIECAM02 D65 CIE standard illuminant D65 iv DALI Digital Addressable Lighting Interface DC Direct Current / chromaticity distance DE Germany DH Double Heterojunction E electric field in newtons per coulomb / flux in watt EBL Electron Blocking Layer EL Electroluminescence EMI ElectroMagnetic Interference EML Emission Layer ErP Energy related Products ES España Esp electric field generated by the space charge ETL Electron Transport Layer eV electronvolt, a unit of energy Ev illuminance in lux F factor determining the degree of adaptation in CIECAM02 f frequency in hertz FCI Feeling of Contrast Index FET Field-Effect Transistor FM Frequency Modulation FP7 Seventh Framework Programme for Research and Technological Development FSCI Full Spectrum Colour Index FWHM Full Width at Half Maximum GSM Global System for Mobile communications hamiltonian operator HBL Hole Blocking Layer HID High Intensity Discharge HIL Hole Injection Layer HI-LED Human – centric Intelligent LED engines for the take up of SSL in Europe HPS High Pressure Sodium HTL Hole Transport Layer I current in amperes i(t) induced current in amperes IC Integrated Circuit IES Illuminating Engineering Society If forward current of an LED in amperes ipRGC Intrinsically Photosensitive Ganglion Cell IR Infrared IRC Infrared Coated IREC Institut de Recerca en Energia de Catalunya IRTA Institut de Recerca i Tecnologia Agroalimentàries Is source current / reverse bias saturation current in amperes ISBN International Standard Book Number ITO Indium Tin Oxide Iv luminous intensity in candela J current density in amperes per square metre JND Just Noticeable Difference K kelvin, SI unit of temperature v KSS Karolinska Sleepiness Scale L inductance in henries L* L* coordinate of the CIELUV and CIELAB colour space LA absolute luminance of the adapting field in CIECAM02 LCD Liquid Crystal Display LED Light Emitting Diode LER Luminous Efficacy of Radiation Lmes Luminance under mesopic conditions in candela per square metre LPS Low Pressure Sodium LTE Long Term Evolution Lv luminance in candela per square metre lx lux, SI unit of illuminance MBE Molecular Beam Epitaxy MCPCB Metal Core Printed Circuit Board MCRI Memory Colour Rendering Index MEQ Morningness – Eveningness Questionnaire MH Metal Halide MOVCD Metalorganic Vapour Deposition MQW Multiple Quantum Well MV Mercury Vapour n index of refraction Nc chromatic induction factor in CIECAM02 NHC N-Heterocyclic Carbenes º symbol for degree OLED Organic Light Emitting Diode OSA The Optical Society p purity of a spectrum PANAS Positive and Negative Affect Scale PAR Photosynthetically Active Radiation PC Phosphor Converted / Polycarbonate PCB Printed Circuit Board PD power dissipation in watt PET Polyethylene Terephthalate PLED Polymer Organic Light Emitting Diode PMMA Poly(Methyl Methacrylate) POF Plastic Fibre Optic Popc flux of a phosphor-converted LED in watt Popp flux of a phosphor pump in watt PSQI Pittsburgh Sleep Quality Index PSU Power Supply Unit PVN Paraventricular Nucleus PWM Pulse Width Modulation Q thermal flux in watt Qe radiant energy in joule Qv luminous energy in lumen . seconds qVa electrostatic potential energy of a charge q in point a R resistance in ohms Ra the CIE general colour rendering index vi RAM Random Access Memory RCRI Rank-order Colour Rendering Index Rf feedback resistance in ohms RGB(W) Red, Green, Blue(, White) RHT Retinalhypothalamic Tract Ri colour rendering
Recommended publications
  • Understanding Color and Gamut Poster
    Understanding Colors and Gamut www.tektronix.com/video Contact Tektronix: ASEAN / Australasia (65) 6356 3900 Austria* 00800 2255 4835 Understanding High Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Definition Video Poster Belgium* 00800 2255 4835 Brazil +55 (11) 3759 7627 This poster provides graphical Canada 1 (800) 833-9200 reference to understanding Central East Europe and the Baltics +41 52 675 3777 high definition video. Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France* 00800 2255 4835 To order your free copy of this poster, please visit: Germany* 00800 2255 4835 www.tek.com/poster/understanding-hd-and-3g-sdi-video-poster Hong Kong 400-820-5835 India 000-800-650-1835 Italy* 00800 2255 4835 Japan 81 (3) 6714-3010 Luxembourg +41 52 675 3777 MPEG-2 Transport Stream Advanced Television Systems Committee (ATSC) Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 ISO/IEC 13818-1 International Standard Program and System Information Protocol (PSIP) for Terrestrial Broadcast and cable (Doc. A//65B and A/69) System Time Table (STT) Rating Region Table (RRT) Direct Channel Change Table (DCCT) ISO/IEC 13818-2 Video Levels and Profiles MPEG Poster ISO/IEC 13818-1 Transport Packet PES PACKET SYNTAX DIAGRAM 24 bits 8 bits 16 bits Syntax Bits Format Syntax Bits Format Syntax Bits Format 4:2:0 4:2:2 4:2:0, 4:2:2 1920x1152 1920x1088 1920x1152 Packet PES Optional system_time_table_section(){ rating_region_table_section(){ directed_channel_change_table_section(){ High Syntax
    [Show full text]
  • Applications of High Dynamic Range Imaging Stereo Matching and Mesopic Rendering
    Applications of High Dynamic Range Imaging Stereo Matching and Mesopic Rendering PhD THESIS submitted in partial fulfillment of the requirements for the degree of Doctor of Technical Sciences within the Vienna PhD School of Informatics by Eng. Tara Akhavan Registration Number 1128895 to the Faculty of Informatics at the Vienna University of Technology Advisor: Assoc. Prof. Mag. Dr. Hannes Kaufmann External reviewers: . Alan Chalmers, WMG, University of Warwick, United Kingdom. Kadi Bouatouch, ISTIC, University of Rennes I, France. Vienna, 8th April, 2017 Tara Akhavan Hannes Kaufmann Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Declaration of Authorship Eng. Tara Akhavan Address I hereby declare that I have written this Doctoral Thesis independently, that I have completely specified the utilized sources and resources and that I have definitely marked all parts of the work - including tables, maps and figures - which belong to other works or to the internet, literally or extracted, by referencing the source as borrowed. Vienna, 8th April, 2017 Tara Akhavan iii Acknowledgements Firstly, I would like to express my deepest gratitude to my supervisor Hannes Kaufmann for his unlimited support, inspiration, motivation, belief, and guidance. My special thanks to Christian Breiteneder who was always there to help resolving hardest problems with wisdom and vision. I am very thankful to Alan Chalmers and Kadi Bouatouch who agreed to be my thesis external reviewers but most importantly planned valuable workshops through the course of my PhD and invited me to network with and learn from the experts in the field. Part of my PhD research was conducted at Tandemlaunch Inc.
    [Show full text]
  • Open Access Proceedings Journal of Physics: Conference Series
    IOP Conference Series: Earth and Environmental Science PAPER • OPEN ACCESS Development of utilization of electrical lamp for fixed lift net (bagan) in Makassar Strait To cite this article: Sudirman et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 253 012026 View the article online for updates and enhancements. This content was downloaded from IP address 60.205.159.195 on 26/09/2019 at 12:21 MarSave IOP Publishing IOP Conf. Series: Earth and Environmental Science 253 (2019) 012026 doi:10.1088/1755-1315/253/1/012026 Development of utilization of electrical lamp for fixed lift net (bagan) in Makassar Strait Sudirman, Najamuddin, M Palo, Musbir, M Kurnia and A Nelwan Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia Email: [email protected] Abstract. The use of light in some types of fisheries has been one of the most advanced and successful methods to control fish for capture purposes. The use of electrical lamps has been developed as a method of attracting small pelagic fish in Indonesia. Fixed lift nets (bagan tancap) are a fishing gear type categorized as lift nets with fine meshed (0.5 cm mesh size) box-shaped netting, operated using lamps to attract pelagic fish. Several studies on fixed lift nets (bagan) were conducted in Makassar Strait, South Sulawesi, Indonesia from 2012 -2017. These studies used various types of electric lamps, such as halogen lamps, mercury lamps, incandescent lamps and light emitting diodes (LEDs). The fishing process was analysed through on-board observation during fishing operations and interviews with fixed lift net fishermen.
    [Show full text]
  • Leds Magazine Is Published by IOP Publishing Ltd and Cabot Media Ltd
    www.ledsmagazine.com Technology and applications of light emitting diodes LEDS Issue 1 MAGAZINE April 2005 Editor: Tim Whitaker [email protected] Tel. +44 (0)117 930 1233 Advertising sales: [email protected] Tel. +44 (0)117 930 1030 LEDS IN ARCHITECTURE Escaping the bulb culture: the future of LEDs in architectural illumination The real value proposition for LEDs lies in the transformation from bulb culture to digital light, says Sheila Kennedy. p13 LEDs find their niche in architectural lighting Lighting designer Iain Ruxton thinks that LEDs are “still a bit of a gimmick” although the technology has great potential. p23 STANDARDS Industry alliance proposes standard definition for LED life “Ultimately, the successful adoption of LEDs by the lighting community will depend upon a consistent and accurate presentation of life data.” p9 VEHICLES Solid-state lighting in the automobile: concepts, market timing and performance Turner Field, Atlanta, is now home to the world’s largest high-definition television screen. p5 LEDs are not a “plug and play” replacement for other technologies in automotive front lighting. p25 MARKETS The LED market grew 37% to reach $3.7 billion in 2004 p18 ANALYSIS Color Kinetics and Super Vision move towards their day in court p3 LEDs Magazine is published by IOP Publishing Ltd and Cabot Media Ltd. Contact address: Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. Copyright © 2005 IOP Publishing and Cabot Media Ltd. Many factors have to be taken into consideration when The Chinese government is funding All rights reserved. designing LED flash units for camera phones.
    [Show full text]
  • Accessories & Hardware Contents
    Accessories & Hardware Toggles Contents Rockers Part Number Page Pushbuttons AT001s .....................................................................Y4 AT100s .....................................................................Y6 Illuminated PB AT200s .....................................................................Y7 Programmable AT400s .....................................................................Y9 Keylocks AT500s ...................................................................Y14 AT600s ...................................................................Y17 Rotaries AT700s ...................................................................Y19 Slides AT2100s .................................................................Y19 AT3000s .................................................................Y20 Tactiles Tilt AT4000s .................................................................Y23 AT4100s .................................................................Y27 Touch AT9000s .................................................................Y34 Indicators Y Accessories Supplement Y2 www.nkk.com Accessories & Hardware Toggles Rockers Color Codes A Black F Green Pushbuttons B White G Blue C Red H Gray D Amber J Clear E S Illuminated PB Yellow Metallic Silver Programmable Hardware Threading Keylocks Many hardware pieces are available in both metric and inch threading, and in such cases M (metric) and H (inch) are noted in the descriptions. The customer must select threading by placing an M or H after the basic AT
    [Show full text]
  • Creating 4K/UHD Content Poster
    Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display.
    [Show full text]
  • Monitoring of Surge-Protective Devices in Low-Voltage Power Distribution Systems
    Monitoring of Surge-Protective Devices in Low-Voltage Power Distribution Systems James Funke François Martzloff EATON Electrical Surges Happen! Reprinted from Conference Record, Power Quality Exhibition and Conference, Chicago, November 16-18, 2004 Significance Part 7 – Mitigation techniques A review paper on how the industry has developed monitoring method to indicate the “health” of permanently-connected surge-protective devices (SPDs) typically installed at industrial or commercial facilities. These SPDs can be located anywhere in the electrical distribution system. Because these devices are primarily connected in parallel (the so-called “one port” type), failure of the SPD does not necessarily cause any immediately noticeable symptoms for the user. Many of these devices are not inspected once they are installed and the user is not aware of their operating status. Therefore monitoring becomes essential in maintaining the surge protection within the facilities. MONITORING OF SURGE-PROTECTIVE DEVICES IN LOW-VOLTAGE POWER DISTRIBUTION SYSTEMS by James Funke François Martzloff Chief Engineer Principal Eaton/Cutler-Hammer Surges Happen! 1. Introduction Surge-protective devices (SPDs) are installed at most industrial or commercial facilities to protect equipment against transient events. These SPDs can be located anywhere in the electrical distribution system. Because these devices are primarily connected in parallel (the so-called “one port” type), failure of the SPD does not necessarily cause any immediately noticeable symptoms for the user. Many of these devices are not inspected once they are installed and the user is not aware of their operating status. Therefore monitoring becomes essential in maintaining the surge protection within the facilities. There is a lack of thorough information on monitoring of SPDs, especially if looking beyond the visual indicators.
    [Show full text]
  • Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs
    sustainability Article Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs Enrique Navarrete-de Galvez 1 , Alfonso Gago-Calderon 1,* , Luz Garcia-Ceballos 2, Miguel Angel Contreras-Lopez 2 and Jose Ramon Andres-Diaz 1 1 Proyectos de Ingeniería, Departamento de Expresión Gráfica Diseño y Proyectos, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (E.N.-d.G.); [email protected] (J.R.A.-D.) 2 Expresión Gráfica en la Ingeniería, Departamento de Expresión Gráfica Diseño y Proyectos, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (L.G.-C.); [email protected] (M.A.C.-L.) * Correspondence: [email protected]; Tel.: +34-951-952-268 Abstract: The sensitivity of the human eye varies with the different lighting conditions to which it is exposed. The cone photoreceptors perceive the color and work for illuminance conditions greater than 3.00 cd/m2 (photopic vision). Below 0.01 cd/m2, the rods are the cells that assume this function (scotopic vision). Both types of photoreceptors work coordinately in the interval between these values (mesopic vision). Each mechanism generates a different spectral sensibility. In this work, Citation: Navarrete-de Galvez, E.; the emission spectra of common sources in present public lighting installations are analyzed and Gago-Calderon, A.; Garcia-Ceballos, their normative photopic values translated to the corresponding mesopic condition, which more L.; Contreras-Lopez, M.A.; faithfully represents the vision mechanism of our eyes in these conditions. Based on a common Andres-Diaz, J.R. Adjustment of street urban configuration (ME6), we generated a large set of simulations to determine the ideal light Lighting Parameters from Photopic to point setup configuration (luminance and light point height vs.
    [Show full text]
  • Detecting and Characterizing Nighttime Lighting Using Multispectral and Hyperspectral Imaging
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2012-12 Detecting and characterizing nighttime lighting using multispectral and hyperspectral imaging Metcalf, Jeremy P. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/27869 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DETECTING AND CHARACTERIZING NIGHTTIME LIGHTING USING MULTISPECTRAL AND HYPERSPECTRAL IMAGING by Jeremy Paul Metcalf December 2012 Thesis Advisor: Fred A. Kruse Second Reader: Chris D. Elvidge Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 2012 Master’s Thesis 4. TITLE AND SUBTITLE DETECTING AND CHARACTERIZING 5. FUNDING NUMBERS NIGHTTIME LIGHTING USING MULTISPECTRAL AND HYPERSPECTRAL IMAGING 6. AUTHOR(S) Jeremy P. Metcalf 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943–5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING N/A AGENCY REPORT NUMBER 11.
    [Show full text]
  • Converting Fluorescent Or Neon Signs to Energy-Efficient LED Illumination
    A brighter idea? Converting fluorescent or neon signs to energy-efficient LED illumination epending on the type of your interior or exterior lighted sign, it may very Dwell pay to update its illumination to energy-efficient light-emitting diodes or LED LEDs. Thousands have found the value in retrofitting, including one nationwide chain of thousands of convenience stores. But is it right for you? Here are some considerations. LED advantages over fluorescent lighting and able to withstand shock and vibration. In contrast, neon, which is encased in glass, breaks relatively easily Some estimate that illumination via light-emitting diodes during transportation and installation, and is subject to the over fluorescent bulbs can reduce sign maintenance and same hazards of wind and weather as fluorescent bulbs. energy costs by up to 80 percent. Disposal, too, may be a concern. Neon signs contain Begin by considering the expenses of repairs. As solid- mercury, which is hazardous to the environment. state devices with no moving parts, filaments or glass, LEDs are remarkably durable and maintenance-free. Not Then there’s energy use, which favors light-emitting so with fluorescent bulbs. They are significantly more diodes hands down. LEDs have a lifetime energy savings fragile than LEDs—making them prone to breakage during of up to 40 percent over neon! transportation and installation or when exposed to strong One other factor gives the nod to light-emitting diodes winds or heavy storms. over neon, and that’s cold-weather performance. LED While the cost of a replacement fluorescent light is minimal, modules stay brighter in cold weather, where neon sign the sign owner must often not only pay for a service call and brightness can drop dramatically when temperatures fall perhaps a bucket truck, but also for the environmentally safe below 35 degrees Fahrenheit, thereby negating much of disposal of the bulb, which contains toxic mercury.
    [Show full text]
  • S Selection of Intraocular Lens on the Basis of Light Transmittance Properties
    Eye (2017) 31, 258–272 OPEN Official journal of The Royal College of Ophthalmologists www.nature.com/eye 1 2 2 2 REVIEW The evidence informing XLi, D Kelly , JM Nolan , JL Dennison and S Beatty2,3 the surgeon’s selection of intraocular lens on the basis of light transmittance properties Abstract In recent years, manufacturers and distributors surgical procedure worldwide,1 and the need have promoted commercially available intrao- for such surgery is likely to rise because cular lenses (IOLs) with transmittance proper- of increasing longevity.2 Commercially fi ties that lter visible short-wavelength (blue) available IOLs can vary in terms of material light on the basis of a putative photoprotective (polymethylmethacrylate, polymers, silicone effect. Systematic literature review. Out of or acrylic),3,4 hydrophobicity (hydrophobic vs 21 studies reporting on outcomes following hydrophilic),5 sphericity (aspheric vs spheric)6 implantation of blue-light-filtering IOLs (invol- 1 and light-filtering properties. In this paper, Pharmaceutical & ving 8914 patients and 12 919 study eyes Molecular Biotechnology undergoing cataract surgery), the primary out- we review the evidence germane to the Research Centre, fi come was vision, sleep pattern, and photopro- putative and relative risks and/or bene ts of Department of Chemical & fi Life Sciences, Waterford tection in 9 (42.9%), 9 (42.9%), and 3 (14.2%) implanting IOLs that lter visible short- Institute of Technology, respectively, and, of these, only 7 (33.3%) can be wavelength light (ie, o500 nm), referred to as Waterford, Ireland classed as high as level 2b (individual cohort blue-light-filtering IOLs for the purpose of this study/low-quality randomized controlled trials), review.
    [Show full text]
  • Spectral Primary Decomposition for Rendering with RGB Reflectance
    Eurographics Symposium on Rendering (DL-only Track) (2019) T. Boubekeur and P. Sen (Editors) Spectral Primary Decomposition for Rendering with sRGB Reflectance Ian Mallett1 and Cem Yuksel1 1University of Utah Ground Truth Our Method Meng et al. 2015 D65 Environment 35 Error (Noise & Imprecision) Error (Color Distortion) E D CIE76 0:0 Lambertian Plane Figure 1: Spectral rendering of a texture containing the entire sRGB gamut as the Lambertian albedo for a plane under a D65 environment. In this configuration, ideally, rendered sRGB pixels should match the texture’s values. Prior work by Meng et al. [MSHD15] produces noticeable color distortion, whereas our method produces no error beyond numerical precision and Monte Carlo sampling noise (the magnitude of the DE induced by this noise varies with the image because sRGB is perceptually nonlinear). Contemporary work [JH19] is also nearly able to achieve this, but at a significant implementation and memory cost. Abstract Spectral renderers, as-compared to RGB renderers, are able to simulate light transport that is closer to reality, capturing light behavior that is impossible to simulate with any three-primary decomposition. However, spectral rendering requires spectral scene data (e.g. textures and material properties), which is not widely available, severely limiting the practicality of spectral rendering. Unfortunately, producing a physically valid reflectance spectrum from a given sRGB triple has been a challenging problem, and indeed until very recently constructing a spectrum without colorimetric round-trip error was thought to be impos- sible. In this paper, we introduce a new procedure for efficiently generating a reflectance spectrum from any given sRGB input data.
    [Show full text]