Oil and Gas Fields
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
U.S. Energy in the 21St Century: a Primer
U.S. Energy in the 21st Century: A Primer March 16, 2021 Congressional Research Service https://crsreports.congress.gov R46723 SUMMARY R46723 U.S. Energy in the 21st Century: A Primer March 16, 2021 Since the start of the 21st century, the U.S. energy system has changed tremendously. Technological advances in energy production have driven changes in energy consumption, and Melissa N. Diaz, the United States has moved from being a net importer of most forms of energy to a declining Coordinator importer—and a net exporter in 2019. The United States remains the second largest producer and Analyst in Energy Policy consumer of energy in the world, behind China. Overall energy consumption in the United States has held relatively steady since 2000, while the mix of energy sources has changed. Between 2000 and 2019, consumption of natural gas and renewable energy increased, while oil and nuclear power were relatively flat and coal decreased. In the same period, production of oil, natural gas, and renewables increased, while nuclear power was relatively flat and coal decreased. Overall energy production increased by 42% over the same period. Increases in the production of oil and natural gas are due in part to technological improvements in hydraulic fracturing and horizontal drilling that have facilitated access to resources in unconventional formations (e.g., shale). U.S. oil production (including natural gas liquids and crude oil) and natural gas production hit record highs in 2019. The United States is the largest producer of natural gas, a net exporter, and the largest consumer. Oil, natural gas, and other liquid fuels depend on a network of over three million miles of pipeline infrastructure. -
Seismic Reflection Methods in Offshore Groundwater Research
geosciences Review Seismic Reflection Methods in Offshore Groundwater Research Claudia Bertoni 1,*, Johanna Lofi 2, Aaron Micallef 3,4 and Henning Moe 5 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK 2 Université de Montpellier, CNRS, Université des Antilles, Place E. Bataillon, 34095 Montpellier, France; johanna.lofi@gm.univ-montp2.fr 3 Helmholtz Centre for Ocean Research, GEOMAR, 24148 Kiel, Germany; [email protected] 4 Marine Geology & Seafloor Surveying, Department of Geosciences, University of Malta, MSD 2080 Msida, Malta 5 CDM Smith Ireland Ltd., D02 WK10 Dublin, Ireland; [email protected] * Correspondence: [email protected] Received: 8 April 2020; Accepted: 26 July 2020; Published: 5 August 2020 Abstract: There is growing evidence that passive margin sediments in offshore settings host large volumes of fresh and brackish water of meteoric origin in submarine sub-surface reservoirs. Marine geophysical methods, in particular seismic reflection data, can help characterize offshore hydrogeological systems and yet the existing global database of industrial basin wide surveys remains untapped in this context. In this paper we highlight the importance of these data in groundwater exploration, by reviewing existing studies that apply physical stratigraphy and morpho-structural interpretation techniques to provide important information on—reservoir (aquifer) properties and architecture, permeability barriers, paleo-continental environments, sea-level changes and shift of coastal facies through time and conduits for water flow. We then evaluate the scientific and applied relevance of such methodology within a holistic workflow for offshore groundwater research. Keywords: submarine groundwater; continental margins; offshore water resources; seismic reflection 1. -
Technical Barriers and R&D Opportunities for Offshore, Sub-Seabed Geologic Storage of Carbon Dioxide
Technical Barriers and R&D Opportunities for Offshore, Sub-Seabed Geologic Storage of Carbon Dioxide Report Prepared for the Carbon Sequestration Leadership Forum (CSLF) Technical Group By the Offshore Storage Technologies Task Force September 14, 2015 1 ACKNOWLEDGEMENTS This report was prepared by participants in the Offshore Storage Task Force: Mark Ackiewicz (United States, Chair); Katherine Romanak, Susan Hovorka, Ramon Trevino, Rebecca Smyth, Tip Meckel (all from the University of Texas at Austin, United States); Chris Consoli (Global CCS Institute, Australia); Di Zhou (South China Sea Institute of Oceanology, Chinese Academy of Sciences, China); Tim Dixon, James Craig (IEA Greenhouse Gas R&D Programme); Ryozo Tanaka, Ziqui Xue, Jun Kita (all from RITE, Japan); Henk Pagnier, Maurice Hanegraaf, Philippe Steeghs, Filip Neele, Jens Wollenweber (all from TNO, Netherlands); Philip Ringrose, Gelein Koeijer, Anne-Kari Furre, Frode Uriansrud (all from Statoil, Norway); Mona Molnvik, Sigurd Lovseth (both from SINTEF, Norway); Rolf Pedersen (University of Bergen, Norway); Pål Helge Nøkleby (Aker Solutions, Norway) Brian Allison (DECC, United Kingdom), Jonathan Pearce, Michelle, Bentham (both from the British Geological Survey, United Kingdom), Jeremy Blackford (Plymouth Marine Laboratory, United Kingdom). Each individual and their respective country has provided the necessary resources to enable the development of this work. The task force members would like to thank John Huston of Leonardo Technologies, Inc. (United States), for coordinating and managing the information contained in the report. i EXECUTIVE SUMMARY This report provides an overview of the current technology status, technical barriers, and research and development (R&D) opportunities associated with offshore, sub-seabed geologic storage of carbon dioxide (CO2). -
X Hydrogeologic Framework and Geochemistry of Ground Water
U.S. DEPARTMENT OF THE INTERIOR PREPARED IN COOPERATION WITH THE WATER-RESOURCES INVESTIGATIONS REPORT 02-4123 U.S. GEOLOGICAL SURVEY U.S. DEPARTMENT OF THE NAVY, SOUTHERN DIVISION, SHEET 1 of 3 NAVAL FACILITIES ENGINEERING COMMAND Taylor. C.J., and Hostettler, F.D., 2002, Hydrogeologic Framework and Geochemistry of Ground Water and Petroleum in the Silurian-Devonian Carbonate Aquifer, South-Central Louisville, Kentucky science USGSfor a changing world INTRODUCTION (A) (B) (C) (D) Previously published investigations concerning the ground-water resources HOLE DIAMETER, ACOUSTIC HOLE DIAMETER. ACOUSTIC HOLE DIAMETER. ACOUSTIC HOLE DIAMETER, ACOUSTIC of the city of Louisville and Jefferson County, Kentucky, have mostly focused on IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER the highly productive Ohio River alluvial aquifer (Rorabaugh, 1956; Walker, 1957; Bell. 1966: Unthank and others, 1995). In contrast, relatively little attention has been given to the Ordovician and Silurian-Devonian carbonate aquifers that 10h X 10.4 underlie much of the Louisville and Jefferson County area (fig. I) because of their limited potential for water-supply development (Palmquist and Hall, 1960). LLJ LU O O However, detailed information about the ground-water quality and hydrogeology of £ the carbonate aquifer is needed by State and Federal environmental regulators and o: a: ^ ID private consultants for planning and conducting local environmental t,ite 5% CO C/3 t. * assessments and ground-water remediation. The Silurian-Devonian carbonate Q Q aquifer is of particular interest because it underlies much of the urbanized and 40;: 72%- industrialized areas of the city of Louisville, exhibits moderately well-developed NF karst, and is potentially vulnerable to human-induced contamination. -
Natural Gas and Propane
Construction Concerns: Natural Gas and Propane Article by Gregory Havel September 28, 2015 For the purposes of this article, I will discuss the use of natural gas and propane [liquefied propane (LP)] gas in buildings under construction, in buildings undergoing renovation, and in the temporary structures that are found on construction job sites including scaffold enclosures. In permanent structures, natural gas is carried by pipe from the utility company meter to the location of the heating appliances. Natural gas from utility companies is lighter than air and is odorized. In temporary structures and in buildings under construction or renovation, the gas may be carried from the utility company meter by pipe or a hose rated for natural gas at the pressure to be used to the location of the heating appliances. These pipes and hoses must be properly supported and must be protected from damage including from foot and wheeled traffic. The hoses, pipes, and connections must be checked regularly for leaks. For permanent and temporary structures, LP gas is usually stored in horizontal tanks outside the structure (photo 1) at a distance from the structure. September 28, 2015 (1) In Photo 1, note the frost on the bottom third of the tank that indicates the approximate amount of LP that is left in the tank. LP gas for fuel is heavier than air and is odorized. It is carried from the tank to the heating appliances by pipe or hose rated for LP gas at the pressure to be used. As it is for natural gas, these pipes and hoses must be properly supported and protected from damage including from foot and wheeled traffic. -
Technical Report 08-05 Skb-Tr-98-05
SE9900011 TECHNICAL REPORT 08-05 SKB-TR-98-05 The Very Deep Hole Concept - Geoscientific appraisal of conditions at great depth C Juhlin1, T Wallroth2, J Smellie3, T Eliasson4, C Ljunggren5, B Leijon3, J Beswick6 1 Christopher Juhlin Consulting 2 Bergab Consulting Geologists 3 ConterraAB 4 Geological Survey of Sweden 5 Vattenfall Hydropower AB 6 EDECO Petroleum Services Ltd June 1998 30- 07 SVENSK KARNBRANSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO P.O.BOX 5864 S-102 40 STOCKHOLM SWEDEN PHONE +46 8 459 84 00 FAX+46 8 661 57 19 THE VERY DEEP HOLE CONCEPT • GEOSCIENTIFIC APPRAISAL OF CONDITIONS AT GREAT DEPTH CJuhlin1, T Wai froth2, J Smeflie3, TEIiasson4, C Ljunggren5, B Leijon3, J Beswick6 1 Christopher Juhlin Consulting 2 Bergab Consulting Geologists 3 Conterra AB 4 Geological Survey of Sweden 5 Vattenfall Hydropower AB 6 EDECO Petroleum Services Ltd. June 1998 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports froml 977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32), 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64), 1992 (TR 92-46), 1993 (TR 93-34), 1994 (TR 94-33), 1995 (TR 95-37) and 1996 (TR 96-25) is available through SKB. -
Geo V18i2 with Covers in Place.Indd
VOL. 18, NO. 2 – 2021 GEOSCIENCE & TECHNOLOGY EXPLAINED GEO EDUCATION Geoscientists for the Energy Transition INDUSTRY ISSUES Gas Flaring EXPLORATION Alaska Anxiously Awaits its Fate GEOPHYSICS Nimble Nodes ENERGY TRANSITION Increasing Energy While Decreasing Carbon geoexpro.com GEOExPro May 2021 1 Previous issues: www.geoexpro.com Contents Vol. 18 No. 2 This issue of GEO ExPro focuses on North GEOSCIENCE & TECHNOLOGY EXPLAINED America; New Technologies and the Future for Geoscientists. 30 West Texas! Land of longhorn cattle, 5 Editorial mesquite, and fiercely independent ranchers. It also happens to be the 6 Regional Update: The Third Growth location of an out-of-the-way desert gem, Big Bend National Park. Gary Prost Phase of the Haynesville Play takes us on a road trip and describes the 8 Licencing Update: PETRONAS geology of this beautiful area. Launches Malaysia Bid Round, 2021 48 10 A Minute to Read The effects of contourite systems on deep water 14 Cover Story: Gas Flaring sediments can be subtle or even cryptic. However, in recent years 20 Seismic Foldout: The Greater Orphan some significant discoveries and Basin the availability of high-quality regional scale seismic data, 26 Energy Transition: Critical Minerals has drawn attention to the from Petroleum Fields frequent presence of contourite dominated bedforms. 30 GEO Tourism: Big Bend Country 34 Energy Transition Update: Increasing Energy While Decreasing Carbon 36 Hot Spot: North America 52 Seismic node systems developed in the past 38 GEO Education: Geoscientists for the decade were not sufficiently compact to efficiently Energy Transition acquire dense seismic in any environment. To answer this challenge, BP, in collaboration 42 Seismic Foldout: Ultra-Long Offsets with Rosneft and Schlumberger, developed a new nimble node system, now being developed Signal a Bright Future for OBN commercially by STRYDE. -
Petroleum Reservoir Quality Prediction: Overview and Contrasting Approaches from Sandstone and Carbonate Communities
Downloaded from http://sp.lyellcollection.org/ by guest on October 8, 2021 Petroleum reservoir quality prediction: overview and contrasting approaches from sandstone and carbonate communities R. H. WORDEN1*, P. J. ARMITAGE2, A. R. BUTCHER3, J. M. CHURCHILL4, A. E. CSOMA5, C. HOLLIS6, R. H. LANDER7 &J.E.OMMA8 1Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L18 1LX, UK 2BP Upstream Technology, Chertsey Road, Sunbury, Middlesex TW16 7LN, UK 3Geological Survey of Finland, Espoo, 02151 Finland 4Shell UK Limited, 1 Altens Farm Road, Aberdeen AB12 3FY, UK 5MOL Group Exploration, Okto´ber Huszonharmadika u. 18, Budapest, H-1117, Hungary 6University of Manchester, Manchester, M13 9PL, UK 7Geocosm, Town Plaza 233, Durango, CO 81301, USA 8Rocktype, Oxford OX4 1LN, UK *Correspondence: [email protected] Abstract: The porosity and permeability of sandstone and carbonate reservoirs (known as reser- voir quality) are essential inputs for successful oil and gas resource exploration and exploitation. This chapter introduces basic concepts, analytical and modelling techniques and some of the key controversies to be discussed in 20 research papers that were initially presented at a Geological Society conference in 2014 titled ‘Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction’. Reservoir quality in both sandstones and carbonates is studied using a wide range of techniques: log analysis and petrophysical core analysis, core description, routine petrographic tools and, ideally, less routine techniques such as stable isotope analysis, fluid inclu- sion analysis and other geochemical approaches. Sandstone and carbonate reservoirs both benefit from the study of modern analogues to constrain the primary character of sediment before they become a hydrocarbon reservoir. -
Petroleum Geology of Northwest Europe: Proceedings of the 4Th Conference Volume 1 Petroleum Geology of Northwest Europe: Proceedings of the 4Th Conference
Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference Volume 1 Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference held at the Barbican Centre, London 29 March-1 April 1992 Volume 1 edited by J. R. Parker Shell UK Exploration and Production, London with I. D. Bartholomew Oryx UK Energy Company, Uxbridge W. G. Cordey Shell UK Exploration and Production, London R. E. Dunay Mobil North Sea Limited, London O. Eldholm University of Oslo A. J. Fleet BP Research, Sunbury A. J. Fraser BP Exploration, Glasgow K. W. Glennie Consultant, Ballater J. H. Martin Imperial College, London M. L. B. Miller Petroleum Science and Technology Institute, Edinburgh C. D. Oakman Reservoir Research Limited, Glasgow A. M. Spencer Statoil, Stavanger M. A. Stephenson Enterprise Oil, London B. A. Vining Esso Exploration and Production UK Limited, Leatherhead T. J. Wheatley Total Oil Marine pic, Aberdeen - 1993 Published by The Geological Society London THE GEOLOGICAL SOCIETY The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth'. The Society is Britain's national learned society for geology with a membership of 7500 (1992). It has countrywide coverage and approximately 1000 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house which produces the Society's international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists and the Geological Society of America. -
Integration of Seismic and Petrophysics to Characterize Reservoirs in ‘‘ALA’’ Oil Field, Niger Delta
Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 421720, 15 pages http://dx.doi.org/10.1155/2013/421720 Research Article Integration of Seismic and Petrophysics to Characterize Reservoirs in ‘‘ALA’’ Oil Field, Niger Delta P. A. Alao, S. O. Olabode, and S. A. Opeloye Department of Applied Geology, Federal University of Technology Akure, P.M.B 704 Akure, Ondo State, Nigeria Correspondence should be addressed to P. A. Alao; [email protected] Received 9 April 2013; Accepted 25 June 2013 Academic Editors: M. Faure and G.-L. Yuan Copyright © 2013 P. A. Alao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on “ALA” field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of −2,453 to −3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. -
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
energies Review Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State Stephanie Taboada 1,2, Lori Clark 2,3, Jake Lindberg 1,2, David J. Tonjes 2,3,4 and Devinder Mahajan 1,2,* 1 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; [email protected] (S.T.); [email protected] (J.L.) 2 Institute of Gas Innovation and Technology, Advanced Energy Research and Technology, Stony Brook, NY 11794, USA; [email protected] (L.C.); [email protected] (D.J.T.) 3 Department of Technology and Society, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA 4 Waste Data and Analysis Center, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA * Correspondence: [email protected] Abstract: Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid, used as a transportation fuel, or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals, such as methanol, dimethyl ether, and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e., Citation: Taboada, S.; Clark, L.; the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). -
Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions
Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks, W.C. Turkenburg Depanrnent of Science,Technology and Society University of Utrecht Oudegracht320, NL-351 1 PL Utrecht, The Netherlands R.H. Williams Center for Energy and Environmental Studies Princeton University Princeton, New Jersey08544, USA June 1991 Abstract. New energy technologies are needed to limit CO2 emissions and the detrimental effects of global warming. In this article we describe a process which produces a low-carbon gaseousfuel from coal. Synthesis gas from a coal gasifier is shifted to a gas mixture consisting mainly of H2 and CO2. The CO2 is isolated by a physical absorption process, compressed,and transported by pipeline to a depleted natural gas field where it is injected. What remains is a gaseousfuel consisting mainly of hydrogen. We describe two applications of this fuel. The first involves a combined cycle power plant integrated with the coal gasifier, the shift reactor and the CO2 recovery units. CO2 recovery and storage will increase the electricity production cost by one third. The secondprovides hydrogen or a hydrogen-rich fuel gas for distributed applications, including transportation; it is shown that the fuel can be produced at a cost comparable to projected costs for gasoline. A preliminary analysis reveals that all components of the process described here are in such a phase of development that the proposed technology is ready for demonstration. ~'> --. ~'"' .,.,""~ 0\ ~ 0\0 ;.., ::::. ~ ~ -.., 01) §~ .5~ c0 ~.., ~'> '" .~ ~ ..::. ~ ~ "'~'" '" 0\00--. ~~ ""00 Q....~~ '- ~~ --. ~.., ~ ~ ""~ 0000 .00 t¥") $ ~ .9 ~~~ .- ..~ c ~ ~ ~ .~ O"Oe) """1;3 .0 .-> ...~ 0 ~ ,9 u u "0 ...~ --.