Variation in Thermoregulation and Linking Whole Organism Behavior to Thermosensory Neurophysiology in the Porcelain Crab, Petrolisthes Cinctipes
Total Page:16
File Type:pdf, Size:1020Kb
VARIATION IN THERMOREGULATION AND LINKING WHOLE ORGANISM BEHAVIOR TO THERMOSENSORY NEUROPHYSIOLOGY IN THE PORCELAIN CRAB, PETROLISTHES CINCTIPES A thesis submitted to the faculty of San Francisco State University ^ < In partial fulfillment of the requirements for the Degree < 2 o n * 0 Master of Science . L 3 G In Biology: Marine Science by Emily Kathryn Lam San Francisco, California Fall 2017 Copyright by Emily Kathryn Lam 2017 CERTIFICATION OF APPROVAL I certify that I have read Variation in Thermoregulation and Linking Whole Organism Behavior to Thermosensory Neurophysiology in the Porcelain Crab, Petrolisthes cinctipes by Emily Kathryn Lam, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Biology: Marine Science at San Francisco State University. Jonathon Stillman, Ph.D. Profes Robyn Croiok, Ph.D. Assistant Professor of Biology Andrew Zink, Ph.D. Associate Professor of Biology VARIATION IN THERMOREGULATION AND LINKING WHOLE ORGANISM BEHAVIOR TO THERMOSENSORY NEUROPHYSIOLOGY IN THE PORCELAIN CRAB, PETROLISTHES CINCTIPES Emily Kathryn Lam San Francisco, California 2017 Small-scale shifts in species distributions are expected to occur under future climate for many species. These shifts can have consequences as they alter population dynamics, and it is important to understand when and why they occur. The intertidal porcelain crab Petrolisthes cinctipes currently experiences temperatures that can reach near-lethal levels at low tide. However, the thermal thresholds that trigger migration to cooler microhabitats and the extent to which crabs move in response to temperature remain unknown. We tested for effects of body size and reproductive state on escape temperature ( T e s c ). In addition, we tested for the relationship between T eSc and the temperature of peak action potential firing frequency in nerve fibers. We found that both size and reproductive state influence behavioral sensitivity to temperature. Small crabs tolerate significantly higher temperatures before they move to cool refuges (a higher T eSc ) compared to large crabs. In addition, non-gravid crabs have significantly higher T eSc than gravid females. Tesc is positively correlated with peak neural performance of spontaneous action potentials. The vulnerability of marine organisms to global change is predicated by their ability to utilize and integrate physiological and behavioral strategies as a response to temperature, in order to maximize survival and reproductive fitness; understanding these strategies will allow predictions of species distributions under warming. I certify tha '' 1 ' ' ‘ ‘ ** intent of this thesis Chair, Thes Date ACKNOWLEDGEMENTS I would like to thank Dr. Jonathon Stillman for the opportunity to work in his lab and contribute to the field of biology. Thank you for your mentorship, guidance and friendship. I would like to acknowledge my committee members, Robyn Crook and Andrew Zink, for their expertise and thoughtful suggestions. I had endless valuable conversations with Dr. Alex Gunderson in the planning and execution of this project. Thank you for your leadership and insight. Technical expertise was provided by Adam Paganini, thank you for your advice, training and help in developing methods. I would like to thank all members of the Stillman Lab for their kindness and companionship. I am grateful to Richelle Tanner, Emily King, Metadel Abegz and Eric Armstrong for helpful comments, discussions and assistance with data analysis. Thanks to Kayley You Mak for collaborating on heart rate and initial escape experiments. Thank you to our collaborators in Dr. Brian Tsukamura’s lab. This work was supported by the National Science Foundation. Many thanks to the members of the RTC staff and faculty. Finally, thanks to my family for all of their love and support. TABLE OF CONTENTS List of Table..................................................................................................................... viii List of Figures.....................................................................................................................ix List of Appendices...............................................................................................................x 1.0 Introduction.................................................................................................................... 1 2.0 Methods.........................................................................................................................7 2.1 Porcelain crab collection and maintenance.........................................................7 2.2 Thermal tolerance in Cardiac CT max ................................................................7 2.3 Thermal preference............................................................................................8 2.4 Thermal escape behavior................................................................................ 9 2.5 Thermal escape behavior: size-dependent thermal sensitivity ..................... 10 2.6 Thermal escape behavior: thermal sensitivity after thermal acclimation 10 2.7 Thermal escape behavior: thermal sensitivity to gravid state................11 2.8 Thermosensory behavior................................................................................. 12 2.9 Neural thermal performance............................................................................ 13 2.10 Statistical Analyses........................................................................................ 15 3.0 Results.......................................................................................................................... 16 3.1 Thermal tolerance in Cardiac CTmax...............................................................16 3.2 Thermal preference.......................................................................................... 16 3.3 Thermal escape behavior...............................................................................16 TABLE OF CONTENTS CONTINUED 3.4 Thermal escape behavior: size-dependent thermal sensitivity........................17 3.5 Thermal escape behavior: thermal sensitivity after thermal acclimation.......17 3.6 Thermal escape behavior: thermal sensitivity to gravid state........................ 18 3.7 Thermosensory behavior................................................................................. 18 3.8 Neural thermal performance............................................................................ 18 4.0 Discussion..................................................................................................................20 4.1 Thermal tolerance in Cardiac CTmax......................................................................20 4.2 Thermal preference..........................................................................................21 4.3 Thermal escape behavior.................................................................................22 4.4 Thermal escape behavior: size-dependent thermal sensitivity .......................23 4.5 Thermal escape behavior: thermal sensitivity after thermal acclimation...... 24 4.6 Thermal escape behavior: thermal sensitivity to gravid state........................ 26 4.7 Thermosensory behavior.................................................................................27 4.8 Neural thermal performance...........................................................................28 References..........................................................................................................................49 Appendices........................................................................................................................55 LIST OF TABLES Table Page 1. Table 1.................................................................................................. 35 2. Table 2.................................................................................................. 37 3. Table 3.................................................................................................. 40 4. Table 4 .................................................................................................. 41 5. Table 5.................................................................................................. 44 6. Table 6.................................................................................................. 47 viii LIST OF FIGURES Figures Page 1. Figure 1................................................................................................... 30 2. Figure 2 ................................................................................................... 31 3. Figure!........................................................................................................ 32 4. Figure4......................................................................................................... 34 5. Figure 5..................................................................................................... 36 6. Figure 6..................................................................................................... 38 7. Figure 7..................................................................................................... 39 8. Figure 8..................................................................................................... 42 9. Figure 9 ...................................................................................................