70-08-Littke-Editor.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Contents 1 Characteristics of complex intracontinental sedimentary basins (U. Bayer' H.-i. Brink· D. Gajewski . R. Uttke) 1.1 Introduction 3 1.2 Classifications of basin complexity 3 1.3 Summary 12 2 The Central European Basin System - an Overview 15 (Y Maystrenko . U. Bayer' H.-i. Brink· R. Uttke) 2.1 Introduction 17 2.2 Crustal association 19 2.3 Permian Basin formation and subsequent subsidence 22 2.4 Subsequent formation of sub-basins 25 2.5 Sedimentary history 26 2.6 Fluids within the Central European Basin System 30 2.7 The Central European Basin System - prototype of a complex sedimentary basin 34 3 Strain and temperature in space and time 35 3.1 Driving mechanisms for basin formation and evolution 37 (M. Cacace . U. Bayer' A.M. Marotta . C. Lempp) 3.1.1 Driving mechanisms for basin evolution 37 3.1.2 IGnematic models for basin formation 37 3.1.3 Rheological models 50 3.1.4 Modelling complex basins 66 3.2 Crustal structures and properties in the Central European Basin System from geophysical evidence 67 (C.M. Krawczyk . W Rabbel . S. Willert . F. Hese . H.-i. Götze· D. Gajewski & the SPP-Geophysics Group) 3.2.1 Introduction 67 3.2.2 Structural inventor)' and physical properties from seismic observations 68 3.2.3 Conductive layers and bodies from magnetotelluric observations 82 3.2.4 Rock properties and density structure from potential field investigations 85 3.2.5 Summary 94 3.3 Strain and Stress 97 (i. Kley . H.-i. Franzke . F. lähne . C. Krawczyk . T. Lohr . K. Reicherter .M. Scheck Wenderoth . i. Sippel . D. Tanner' H. van Gent - the SPP Structural Geology Group) 3.3.1 Introduction 97 3.3.2 Structural framework of the Central European Basin System 102 3.3.3 Structural analysis and quantification of strain 105 3.3.4 Stress history 116 3.3.5 The Central European Basin Systems structural evolution 121 X Contents 3.4 Subsidence, inversion and evolution of the thermal field 125 (R. Uttke . M Scheck-Wenderoth . MR. Brix . S. Nelskamp) 3.4.1 Introduction 125 3.4.2 The Central European Basin System as example of regional subsidence models 125 3.4.3 Temperature in sedimentary basins 133 3.4.4 Maturity and temperature parameters in sedimentary basins 137 3.4.5 Variability of palaeotemperature fields in the Central European Basin System 141 4 Basin fill 155 4.1 Depositional history and sedimentary cycles in the Central European Basin System 157 (G.H. Bachmann . T. Voigt . U. Bayer' H. von Eynatten . B. Legler . R. Uttke) 4.1.1 Palaeoclimate, palaeogeography and palaeoenvironment 157 4.1.2 Sedimentary cycles 161 4.1.3 Provenance of sediments in the Central European Basin 169 4.2 Basin initiation: Volcanism and sedimentation 173 (Ch. Breitkreuz . M Geißler' J. Schneider' H. Kiersnowski) 4.2.1 Late Palaeozoic basins in central Europe - distribution, volcanic activity and magmagenetic aspects 173 4.2.2 Data base, distribution and volumes of Late Palaeozoic volcanics in the Central European Basin System 173 4.2.3 Stratigraphy and geochronology of volcanic successions in the Southern Permian Basin 175 4.2.4 Volcanic facies in the Southern Permian Basin 176 4.2.5 Syn- to postvolcanic sedimentation during the Lower Rotliegend and Upper Rotliegend I 178 4.2.6 Landscape evolution during the initial phase of the Southern Permian Basin 179 4.3 Upper Rotliegend to Early Cretaceous basin development 181 (H. Siollhofen' GH. Bachmann .1. Barnasch . U. Bayer· G. Beutler· M Franz M Kästner . B. Legter' 1. Mutterlose· D. Radies) 4.3.1 Introduction 181 4.3.2 Upper Rotliegend II 182 4.3.3 Zechstein 185 4.3.4 Buntsandstein 188 4.3.5 Muschelkalk 191 4.3.6 Keuper 194 4.3.7 Jurassic 199 4.3.8 Early Cretaceous 207 4.4 Sedimentation during basin inversion 211 (T. Voigt . K. Reicherter . H. von Eynatten . R. Uttke . S. Voigt . 1. Ktey) 4.4.1 Introduction 211 4.4.2 Basin formation 211 4.4.3 Effects of basin inversion on deposition 215 4.4.4 Sedimentation during inversion in the Central European Basin 220 4.4.5 The North German Basin during the Tertiary 228 4.5 Glaciation, salt and the present landscape 233 (F Sirocko . K. Reicherter . R. Lehne· Ch. Hübscher' 1. Winsemann . W Stackebrandt) 4.5.1 Introduction 233 4.5.2 Modern topography and glacial isostasy 233 4.5.3 Crustal movements, seismicity and landscape formation 236 " ti Fr X Contents 3.4 Subsidence, inversion and evolution of the thermal field 125 (R. Littke . M. Scheck-Wellderoth . M.R. Brix . S. Nelskamp) 3.4.1 Introduction 125 3.4.2 The Central European Basin System as example of regional subsidence models 125 3.4.3 Temperature in sedimentary basins 133 3.4.4 Maturity and temperature parameters in sedimentary ba~il1s 137 3.4.5 Variability of palaeotemperature fields in the Central European Basin System 141 4 Basin fill 155 4.1 Depositional history and sedimentary cycles in the Central European Basin System 157 (G.H. Bachmal1ll . T. voigt· U. Bayer' H. von Eynatten . B. LegleI' . R. Littke) 4.1.1 Palaeoclimate. palaeogeography and palaeoenvironmt:nt 157 4.1.2 Sedimentary cycles 161 4.1.3 Provenance of sediments in the Central European Basin 169 4.2 Basin initiation: Volcanism and sedimentation 173 (Ch. Breitkreu::, . M. Geißler' J. Schneider· H. Kiersnowskil 4.2.1 Late Palaeozoic basins in central Europe distribution, vokanic acti\'ity and magmagenetic aspects 173 4.2.2 Data base. distribution and volumes of Late Palaeozoic vokanics in the Central European Basin System 173 4.2.3 Stratigraphy and geochronology of vokanic successions in the Southem Permian Basin 175 4.2.4 Volcanic facies in the Southern Permian Basin 176 4.2.5 Syn- to postvolcanic sedimentation during the Lower Rotliegend and Upper Rotliegend I 178 4.2.6 Landscape evolution during the initial phase of the Southem Perrnian Basin 179 4.3 Upper Rotliegend to Early Cretaceous basin development 181 (H. Stollhotim' G.H. Bachmann . J. Bamasch . U. Bayer' G. Beutler' M. Pranz M. Kiistner . B. Legier' J. Mutterlose' D. Radiesj 4.3.1 Introduction 181 4,3.:: lpper Rotliegencl Jl 182 4.3.3 Zechstein 185 4.3.4 Buntsand,tcin 188 4.3.5 :VIu,cht:lkalk 191 4.3.6 K<.'uper 194 4.3.7 Juras,ic 199 4.3.8 Earl) Cretaccou, 207 4.4 Sedimentation during basin inversion 211 (r. Voigt· K. Reichene,. H. l'Iill E\'!lillltl1 . R. Lilll.:c .Ii, Illi(?1 . J. Kle\') 4.4.1 Introduction :: 11 4.4.2 Basin formation 211 4.4.3 Effects of basin inversion on depo,iuon 215 4.4.4 Sedimentation during inversion in the C<.'lltral European Ba,in 220 4.4.5 The North German Basin during the Tertiar: 228 4.5 Glaciation, salt and the present landscape 233 (F. Sirocko . K. Reicherter . R. Lehne' eh, Hühscher ' J. H'ill,\tIllWlII ' IV, Stackehrandt) 4.5.1 Introduction 233 4.5.2 Modem topography and glacial isostas) 233 4.5.3 Crustal movements, seismicity and landscape formation 236 XII Contents 6.2 Transport processes 367 (J.L. Urai· G. Nova' C. Zwach . R. Ondrak· R. Schöner· B.M. Krooss) 6.2.1 lntroduction 367 6.2.2 Physical mechanisms and concepts 367 6.2.3 Fault seals and top seals 372 6.2.4 Geological aspects of fluid transport 386 6.3 Fluid-rock interactions 389 (R. Schöner' V. Lüders . R. Ondrak . R. Gaupp' P. Möller) 6.3.1 Introduction 389 6.3.2 Evolution of deep brines 389 6.3.3 Palaeo-fluid reconstruction 391 6.3.4 Organic-inorganic interactions 401 6.3.5 Modelling Huid-rock interaetions 404 6.3.6 Geological applications 408 6.4 Petroleum systems 411 (R. di Primio . B. eramer . C. Zwach . B.M. Krooss . R. Littke) 6.4.1 Concepts of petroleum system modelling 411 6.4.2 Petroleum source rocks 413 6.4.3 Shallow and microbial gas 418 6.4.4 Sources of deep gas 422 6.4.5 Petroleum alteration biodegradation 425 6.4.6 Overpressured reservoirs 428 6.4.7 Effects of glaciation on petroleum systems 430 6.5 Origin and distribution of non-hydroearbon gases 433 (B.M. Krooss . B. Plessen . H.G. Machel . V. Lüders . R. Littke) 6.5.1 Introduction 433 6.5.2 Nitrogen 433 6.5.3 Carbon dioxide 443 6.5.4 Hydrogen sulfide 447 6.5.5 Evidence from vein mineralisation and Huid inclusions 457 References 459 Subject Index 507 --------------------............ 4.5 .1': :',:: :~~::[,t1 '. C:. :'lC>C Glaciation, salt and the present landscape F. Sirocko . K. Reicherter . R. Lehne' eh. Hübscher· J. Winsemann . W. Stackebrandt 4.5.1 Introduction iee sheets deep tunnel valleys were formed by subglacial meltwater erosion. The modem topography of the Central European Basin System (CEBS) is not only eaused by the morphologieal The lithospheric forebulge formed in the periglacial shape of glaeiallandforrns, e.g., moraines and iee-marginal regions, where permafrost reached depths of > 170 m. valleys, and subsequent fluvial erosion, but clearly also re However. cnhaneed he at flow over the salt diapirs caused fleets the pattern of the teetonie struetures at depth, indi shallow permafrost depth compared to the surrounding cated by the preferred orientation of coastlines and rivers sediments. Soils and unconsolidated Quaternary sedi with three major tectonic strike directions: NW-SE, NNE ments of the subsurface were thus frozen into an SSW and NE-SW (Fig. 4.5.1). Most likely. these pre-ex lar polygonal permafrost pattern with brittle (frozen) and isting tectonic fault zones have fragmented the crost and plastic (unfrozen) patches with ice wedges, which must lithosphere of the CEBS into distinet fault-bounded bloeks.