Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2008

AFLP fingerprint analysis of hybrid salamanders in the Missouri Caverns section of Onondaga Cave

Maria Louise Potter

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Mechanical Engineering Commons Department:

Recommended Citation Potter, Maria Louise, "AFLP fingerprint analysis of hybrid salamanders in the Missouri Caverns section of Onondaga Cave" (2008). Masters Theses. 4676. https://scholarsmine.mst.edu/masters_theses/4676

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. i

AFLP FINGERPRINT ANALYSIS OF HYBRID SALAMANDERS IN THE

MISSOURI CAVERNS SECTION OF ONONDAGA CAVE

by

MARIA LOUISE POTTER

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN APPLIED AND ENVIRONMENTAL BIOLOGY

2008

Approved by

Anne Maglia, Advisor Ronald Frank James Vandike

ii

iii

ABSTRACT

Two species and one subspecies of salamander in the genus Eurycea , two species of Plethodon and one species of Typhlotriton (recently considered to be Eurycea) salamander currently reside in an area of Onondaga Cave known as the Missouri Caverns section. Due to the presence of two known interbreeding subspecies of salamanders,

Eurycea longicauda (Long-tailed salamander) and Eurycea longicauda melanopleura

(Dark-sided salamander), the possibility may exist for interbreeding of one or all of these taxa. Specifically, it is hypothesized that the two species of Eurycea longicauda may interbreed with Eurycea lucifuga (Cave salamander). Through visual assessment and phenotypic analysis, all known species were identified. Tissue samples were used to identify any undiagnosed specimens through DNA fingerprinting, also known as

Amplified Fragment Length Polymorphism (AFLP), a method measuring genotypic differences. This information was used to support evidence of hybridization among the co-existing species. Evidence of hybridization may indicate that the removal of human disturbance in this area may have had a prominent impact on multiple salamander species and their willingness to compete for food and other precious resources. iv

ACKNOWLEDGMENTS

First I have to thank my advisor, Dr. Anne Maglia. She has been one of the most helpful and courteous individuals that I have ever encountered. Returning to school later in life provided me an opportunity to deal with situations from a better time management perspective and see things from a much more adult point of view. However, returning to campus twenty years later was a little intimidating to say the least. Dr. Maglia never hesitated to help me find what I needed, whether it was resources on campus or just answering what one might have been considered to be superfluous questions. She took a genuine interest in my project and, 100 percent of the time, pointed me in the right direction. I feel significantly more intelligent for having been exposed to her expertise.

Thanks to Dr. Frank for stepping in “at the last minute.” Dr. Niyogi was an original committee member, but having taken a position at another university just prior to my graduation, he was no longer available to see this through to fruition. A big thank you goes to James Vandike, a current colleague in my employment who also happens to be a professor at the university. Being able to converse with him both during classes and at work has been an asset. I must also say thank you to Dr. Aronstam, who at every encounter, never hesitated to ask me how my work was going. I say thank you to my computer savvy colleagues, Tiffani Martin and Ben Miller. And, Adam Martin the cDNA lab supervisor; I’m certain I was one of his most remedial students. And last but not least, I have to thank my husband for listening to me ramble on and on each time I learned about a new biological process. If it weren’t for his encouragement, I may not have gotten this far.

v

TABLE OF CONTENTS

Page ABSTRACT ...... iii ACKNOWLEDGMENTS ...... iv LIST OF ILLUSTRATIONS ...... vii LIST OF TABLES ...... viii SECTION 1. INTRODUCTION ...... 1 1.1. BACKGROUND ...... 1 1.1.2. Overview of Cave Ecosystems ...... 3 1.1.2.1 Caves as an ecological subsection ...... 6 1.1.2.2 Salamanders and cave ecosystems ...... 7 1.1.2.3 Extreme environments: studying cave biota ...... 7 1.1.3. Onondaga Cave History ...... 8 1.1.4. Missouri Caverns History ...... 14 1.2. GOALS AND OBJECTIVES ...... 18 2. REVIEW OF LITERATURE ...... 21 2.1. CAVE MANAGEMENT AND RESTORATION ...... 21 2.2. HUMAN IMPACT ON CAVES ...... 25 2.3. REVERSING HUMAN IMPACT ...... 27 2.4. PHENOTYPIC EVIDENCE ...... 29 2.5. GENOMIC MOLECULAR EVIDENCE ...... 30 2.5.1. Polymorphic Banding Patterns ...... 30 2.5.2. Limitations Associated with Banding Patterns ...... 31 2.6. SUMMARY ...... 34 3. MATERIALS AND METHODS ...... 35 3.1. SAMPLING METHODS ...... 36 3.1.1. Species Selection ...... 36 3.1.2. Photographic and Whole Vouchers ...... 37 3.1.3. Tissue Sampling...... 38 vi

3.2. PHENOTYPIC ANALYSIS ...... 39 3.3. WHOLE GENOMIC EXTRACTION ...... 40 3.3.1. Extraction of DNA from Whole Tissue ...... 40 3.3.2. Optimizing the Extraction Method ...... 41 3.4. AMPLIFIED FRAGMENT LENGTH POYLMORPHISM (AFLP) ...... 42 3.4.1. Summarization of the Technique ...... 42 3.4.2. Optimization and Adaptation of Procedure ...... 43 3.4.3. Visualization of Results ...... 55 3.5. AMPLIFIED FRAGMENT LENGTH POYLMORPHISM ANALYSIS ...... 56 3.6. STATISITICAL ANALYSIS ...... 58 4. RESULTS ...... 59 4.1. PHENOTYPIC ANALYSIS ...... 59 4.1.1. Overview of Data Collection ...... 59 4.1.2. Scatterplots ...... 60 4.1.3. Regression Analysis...... 63 4.2. MOLECULAR ANALYSIS ...... 68 4.3. COMPARISON OF PHENOTYPIC AND MOLECULAR METHODS ...... 74 5. DISCUSSION ...... 77 5.1. HYBRIDIZATION ...... 77 5.2. APPLICATION OF RESULTS ...... 85 5.3. CONCLUSIONS ...... 87 APPENDICES A. STANDARD OPERATING PROCEDURES ...... 90 B. AFLP OPERATING PROCEDURE ...... 93 C. AFLP ELECTROPHEROGRAMS...... 98 D. PHYLOGENETIC DISTANCE TREE-1 ...... 101 E. PHYLOGENETIC DISTANCE TREE-2 ...... 103 F. PHYLOGENETIC DISTANCE TREE-3 ...... 105 BIBLIOGRAPHY ...... 107 VITA ...... 112

vii

LIST OF ILLUSTRATIONS

Figure Page 1.1. Geological Stratigraphic Section ...... 4 1.2. Karst and Cave Formation...... 6 1.3. Natural Divisions of Missouri ...... 10 1.4. Missouri Cave Density Map ...... 11 1.5. Onondaga Cave Map-Missouri Caverns Section ...... 16 1.6. Manmade Missouri Caverns Entrance ...... 17 3.1. Topographic Map of Onondaga Cave ...... 35 3.2. Cave Salamander ...... 38 3.3. Unusual Specimen ...... 38 4.1. Scatterplot—Femur Length vs. Head Width vs. Total Length ...... 61 4.2. Scatterplot—Head Width vs. Head Length vs. Weight ...... 61 4.3. Scatterplot—Total Length vs. Head Width vs. Weight ...... 62 4.4. Scatterplot—Weight vs. Head Width vs. Femur Length ...... 62

viii

LIST OF TABLES

Table Page 1.1. Biodiversity ...... 12 3.1. Sampling Dates ...... 37 3.2. Sample Salamander Data ...... 39 3.3. Maize Control Samples ...... 47 3.4. 600 Liz Size Standard Test...... 48 3.5. Replacement of Liz Standard ...... 48 3.6. Optimizing Reagents for Sequencer ...... 49 3.7. Optimizing the Eco Primer ...... 51 3.8. DNA Dilution Factors in AFLP ...... 52 3.9. Optimizing Genomic DNA ...... 53 3.10. Optimal Mse Primer for Study ...... 54 3.11. AFLP Primers for this Project ...... 57 4.1. Summary of t-test Values ...... 66 4.2. Summary of Regression Statistics ...... 67 4.3. Data Set from the Q5 M se3 Binset...... 70

1

1. INTRODUCTION

1.1. BACKGROUND

Untilrecently,cavesandtheirinhabitantshavenotnecessarybeenofgenuine interesttoindividualsotherthanactualcaveenthusiasts.Researchersarebeginningto realizethatundergroundhabitatsmightbeofsomescientificsignificance.Therefore, managementpracticesareturningmoretowardresourcestewardship.Inthepast, caveswereconsideredtobequiteliterally,aholeintheground.Whatcould possiblybelivinginthemthatwouldbeadvantageoustoknowabout,studyor understand?Afterafewseriouscaveenthusiasts/researchersbegantofindunusual speciessurvivinginsuchextremeenvironments,investigationsofthesemicrobes promptedthedevelopmentofprecautionstominimizetheimpactonmicrobial communities(Werker,1997).Sincethen,severalunusualspeciesaswellasuseful bacteriahavebeenfound.And,studyingthisextremeenvironmentisleadingtoa betterunderstandingofsurfacewatercontamination,hydrology,andurbanrunoff. Thepurposeofthisprojectfocuswastwofold.First,toprovidean overviewofcavesandcaveecosystemsanddiscusshowcavesareformed,outline theiruses,inthepastandpresent,describethehumanimpactonthesesystemsand provideanintroductiontomystudy,focusingonthepotentialhybridizationof salamanderslivinginasectionofOnondagaCavethatisnolongerimpactedby humans(andhasnotbeenfornearlysixtyyears).Second,tofocusondetermining ifhybridizationofthesalamandersintheMissouriCavernssectionoccurred.Idetail theuseofAFLP,AmplifiedFragmentLengthPolymorphism,andphenotypeanalysis 2

fordeterminingifhybridizationhasoccurred.Ishowsupportingevidencethat reversinghumanimpactremovesthestressorsthatmightlimitthereproductionofa speciesofamphibianthat,likesomanyotheramphibians,isanindicatorspeciesfor thequalityoftheenvironmentinwhichtheylive.

Cavesandcavesystemshavebeenaroundformillionsofyears.Untilrecently, thepotentialasanaturalresearchfacilityforgroundwatermovement,uniquehabitats andunusualandendangeredspecieswasnotfullyrealized.Missouricurrentlyhas morethan5,700mappedcavesystemsdeepbeneathitsmanyterrestrialhabitats.

Thesecavesystemsboastmorethan800recordedanimalspecies,64ofwhicharetruly troglobitic(permanentcavedwellers)vertebratesandinvertebrates

(MoDNR,2002).

Therecentpasthasbroughtwithitafewcaveexplorersthatwantedtolearn moreaboutthisimportantnaturalresource.Manyofthesespecieswerestumbled ontowhilemappinganewcavesystem.Withoutthegenuineinterestofafew individuals,thebiologyandgeologyassociatedwithMissouricavesystemswouldbe farlessunderstood.

MissouriisoneofthefewMidwesternstatesthatcanclaimmagnificent variationinitshabitatsandnaturaldivisions.Whereonestatelaysclaimtojustone typeofhabitatacrosstheirentireexpanse,Missourihassixdifferentnaturaldivisions housingwithinthemninedifferentnaturalcommunities(Nelson,2005).Eachharbors amassivearrayofnativeplants,andmicroorganisms.Theseassemblagesof biotaoccupydifferentecologicalregionsthatsubsequentlyshapethestructureand compositionofnaturalcommunities.Thediversecommunitiesthatmakeup 3

Missouri’slandscaperangefromtheGlaciatedPlainstotheNorth,theBigRivers sectionencompassingtheMissouriandMississippiRiversandtheOzarkborder regionlocatedoneithersideoftheriversystemsinthecenterofthestate.The

OzarkHighlandsareaislocatedinthecentralandsouthernportionofstateandthe

MississippiLowlandscomprisesthebootheelsectionofMissouri.Whilethe geographical,ecologicalandgeologicaspectsoftheseareascouldbediscussedin detailindefinitely,thispaperfocusesononenaturalcommunityorecological subsectionoftheOzarkHighlandregion,thecaveecosystems.

1.1.2. Overview of Cave Ecosystems .MostofMissouri’scavesdeveloped indolomiteandlimestoneandrangefromtheMississippiantotheOrdovician geologictimeperiod,approximately310500millionyearsago.Themajorityof solutioncavescanbefoundinwhatisreferredtoasthekarsttopographyoftheOzark region.Thistypeoflandscapeisusuallycharacteristicofsolublerockfoundator neartheground’ssurfaceandisunusuallysusceptibletowaterflow.Boththe dolomiteandlimestoneofthisregionareprimeexamples.

Karstcanbedeceiving.Groundwaterpercolatesswiftlythroughthistypeof topography.Theintegrityoftheecosystemcanbequicklyviolatedbyanytypeof contaminantfindingitswayintothegroundwater.Gasolineorothervolatiles permeatingthecaveenvironmentcouldbedevastatingtothefragileorganismsthat residethere.

NotethetimelineillustratedinFigure1.1.Overpastmillennia,erosionhas removedrock,leavinglayers500to280millionyearsoldexposedatthesurface.The oldestexposedrocksareinthebottomofOnondagaCavetheEminenceDolomite. 4

Figure 1.1. Geological Stratigraphic Section

5

AllcaveslocatedwithintheconfinesofOnondagaCaveStateParklieentirely withintheOrdovicianGasconadeDolomiteformation.TheGasconadeDolomiteis mediumtocoarselycrystallinedolomitewithnumerousinterspersedchertbeds throughouttheunit(Thompson,1995).TheGasconadeformationiscommonly separatedintothreesomewhatdistinctportions;theUpperGasconade,theLower

Gasconade,andtheGunterSandstone . Eachoftheseportionsoftheformationvaries basedongrainsize,percentageofchert,andmineralcompositionasinthecaseofthe

GunterSandstone.TheGasconadeformationisoverlainunconformablybythe

Roubidouxformation,apredominantlysandstoneunitwithmanyinterbedsof dolomiteandchert.

Whatactuallycontrolsthedevelopmentofthesecaves?Becausetheporosity ofDolomiteislesssolublethanLimestone,chemicalcomposition,solubilityofthe limestoneanddepositionofmaterialsallplayanimportantroleinhowcracksand crevicesfirstdeveloptoeventuallyformacave.Achemicalreactionineffectoccurs thatfirstdissolvesthelimestonetodevelopthesecracksandcrevices.Thischemical reactionoccurswhenrainwaterpassesthroughtheorganicmaterialontheground’s surfacepickingupcarbondioxide.Thecarbondioxidereactswiththewaterand createsweakacidicwater.Thissolutiondissolvesthemineralslockedwithinthe

Limestone.Thecracksandcrevicesenlargeandbecomewaterfilled.Oncean openingappears,eitherbywatercuttingorperhapsasinkhole,thewaterdrainsout andacaveisformed.Thissameacidwaterorcarbonicacidcarryingmineralsin solution,cannowdeposittheminsidethecaveopening.NoteFigure1.2.below.

6

Figure 1.2. Karst and Cave Formation

Figure1.2depictshowwaterpercolatesthroughtheground’ssurfacemaking itswaytothewatertable.Asitmakesitsdecent,thechemicalreactionmentioned previouslyCaCO3+H+HCO3>Ca²+2HCO3dissolvesthelimestoneanddolomite, increasingthemineralsinsolutionproducingacidicwater.Thisacidicwaterhasthe abilitytoeatawayatthebedrockandcreatesinkholesandcaves.Forthisreason,itis imperativethatsubstancesintroducedontheground’ssurfacebenontoxic.

1.1.2.1. Caves as an ecological subsection .Cavesshareaspecificsymbiotic relationshipwiththesoilabovethemandthegroundwaterthatpassesthroughthem.

Theyserveasconduitsforourdrinkingwater.Butmostimportantly,theyprovidea uniquehabitatforaverydistinctivegroupofspeciesthatrarelyutilizeanyofthe 7 othercommunitiesthatMissourihastooffer.Sincecavesofferamoist,darkand humidenvironment,manyuniquespeciescallthisexclusivehabitathome.Thereare moreinterestingly“exclusive”habitatswithinthecaveecosystemthanonemight think.Theseelusivespeciesmakeuseofwallsandceilings,cracksandcrevices,tight holesandevenbatguanoastheirdomicile.

1.1.2.2. Salamanders and cave ecosystems .Missouriishometoavarietyof amphibiansandreptiles.Severalspeciesoffrogs,toads,salamanders,lizardsand snakesutilizeallofMissouri’shabitatsbutmaynotalwaysbeseenfrequentlybythe passerby.And,sometimespeoplearescaredofthingstheyknowlittleabout especiallywhentheyhavegrownupwiththeadagethat“slimycreaturesarescary creatures.”Salamandersinparticularareaspeciesnotcommonlyseenoutinopen areasandarefairlydocileduringthewintermonths.Becauseofthis,itrequiresthe diligentstudentorscientisttotakeaneededinterestintheminordertobetter understandthemandconveytheirknowledgeforimprovedresourcemanagement practices.Whilesalamanderscaninhabitbothterrestrialcavesandaquaticcaves, theyrequirewatertoreproduceandlayeggs.Theaquaticcaveenvironmentismore conducivetothesalamander’sentirelifecycle.Theyutilizefreshwaterpoolsand verymoistareasofthecaveinordertolaytheeggsandthusstartthelarvaecycle.

1.1.2.3. Extreme environments: studying cave biota.Whatisthe futureexistenceonaplanetthatitsinhabitantshavesogreedilytakenadvantageof?

Wherewouldwegofromhereiftherewerenosustainableresourcestomorrow?

Whatkindsofresearchcanbedonenowtobenefithumankindingenerationsto come? 8

Theairwebreatheandthewaterwedrinkareresourcesthatare not endless.

Today’strendlooksnotonlyforalternativeapproachestoconservingourresources butalsoalternativeenvironmentsinwhichtolive.Researchmustfocusonfinding reliablewatersourcesandlifeforms(ortheabilityforlifetoform)onotherplanets andplanetarybodies.Tothatend,researcheffortscanfocusrighthereEarth, examiningsomeofthisplanet’sextremeenvironments.

StudyingtheextremeenvironmentsthatexistonEarthallarounduscould provideapreludeofoptionswithaplethoraofopportunitytoanswerquestionsabout ourcontinuedexistence.Caveecosystemsspecificallyprovideinterestedresearchers alivingexperimentwithinalivinglaboratorytoinvestigateprocessessuchas interbreeding,hybridization,competition,stressfactors,etc.

1.1.3. Onondaga Cave History. Missourihosts20showcaves,openfor guidedtours.Quiteoften,thesecavesofferthevisitingpublicawealthofknowledge abouttheculturalhistoryoftheareaandthecolorfulpeoplethatoncelivedthere.

Fortunately,thequestforfurtherknowledgeassociatedwiththenaturalresourcehas promptedcaveownerstoallowstudentstodoamyriadofresearchprojectstogaina betterunderstandingoftherelationshipsbetweenthesurfaceenvironmentandthe sensitiveenvironmentbeneathourfeet.

OnondagaCavehasbecomeonesuchshowcave.Accommodatingthemany facetsofongoingresearchplaysakeyroleinobtainingnewandinterestinginsightto theprehistoric,geologic,andbiologicalworldthathasamusedvisitorsforsomany decades.Muchofwhatisseenonthesurfaceinashowcavedoesn’tcomecloseto what“liesbeyondthewalkway.”Passagesofabsolutedarknessbecomehometo 9 manycreaturesneverexposedtothepublic.Becausemanyhavelosttheireyesasa resultofadaptation,theyrelyontheirauditoryandsensorysystemstonavigatethe terrestrialandaquaticworldsdeepwithinthecave.Watersystemsmeandering throughtheseareasincreaseorientationbarriersthatvertebratesandinvertebratesalike mustovercome.

OnondagaCavehaspassedthroughthehandsofmanyownersanddeveloped astoriedhistoryoverthecourseofthelast125years.Firstdiscoveredin1886byway ofboat,itsdiscoverersattemptedtobecomethefirstownersbyquietlypurchasingall ofthepropertyabovethecave.Theirintentwastodevelopthecaveforcommercial tours.

Unfortunateforthem,theyspentalloftheirfundsbuyingproperty.Asa result,theywereunabletoexecutetheirplanandhadtosellouttoindividualsactually interestedinminingthecalciteasabuildingmaterialforstructuresatthe1904

World’sFair.Afterrunningintoissueswithfinancesandcalciteextraction,itwas discoveredthatthecalcite,onceexposedtotheoutsideenvironment,becamevery brittleandwasessentiallyworthlessasabuildingmaterial.

So,inanattempttorecoupsomeoftheirlosses,theownersopenedthecave fortoursattheWorld’sFair.Theyheldacavenamingcontestandassignedthe winningname,andthecommercialdwellingknownasOnondagaCave(namedforthe

OnondagaIndians)wasborn.Aninterestingsidenote:TheOnondagaIndiansarea

NorthernNewYorktribethathasneverbeenknowntoresideinMissouri.Referto

Figure1.3below.

10

Figure 1.3. Natural Divisions of Missouri

Figure1.3showsOnondagaCave(stilloperatingasashowcave)locatedat

OnondagaCaveStateParkinCrawfordCountyspecificallyatLeasburg,Missouri.

CrawfordCountyislocatedintheNortheasternportionoftheUpperOzark

Highlands.Thisstateparkhouses27knowncavesonits1,316acres.Severalare significantlysmallerinsizethanOnondagabutaidinthedocumentationofKarst topographyanddensitiesforthegeographicregion.Justslightlywestoftheparkis theHuzzahWildlifeConservationAreaownedbytheMissouriDepartmentof

Conservation.Withina5kilometerradiusoftheparkandtheconservationarea,over 11

60caveswithlengthrangingfrom15.2meterstomorethan2,743metersinlength havebeendocumented.NoteFigure1.4below.

Figure 1.4. Missouri Cave Density Map

Incomparisontoothercounties,Figure1.4,Crawfordranksasoneofthe higherincavedensityforanycountyinthestate.OnondagaCaveisnotedasacave systemcontainingsuperiorwaterqualityandexceptionalbiodiversity.Onondaga

CaveiscurrentlyownedbytheMissouriDepartmentofNaturalResourcesandis administeredbythedepartment’sDivisionofStateParks.

Becauseofitsexceptionalwaterquality,itisusedasacontrolcavebythe 12

MissouriDepartmentofNaturalResourcesDivisionofEnvironmentalQualitywhentesting waterqualityacrossthestate.Thewaterqualityisnearpristine,assistingthecaveinits richbiodiversity,seeTable1.1.Becausethisunspoiledfoundationhasbeenlaid,six differentspeciesandonesubspeciesofsalamandersregularlyinhabittheconfinesof

OnondagaCave.

Table 1.1. Biodiversity Onondaga Cave State Park Cave Dwelling Species Scientific Name Common Name Class Amphibians Eurycea longicauda melanopleura Dark-sided Salamander Amphibia Eurycea lucifuga Cave Salamander Amphibia Eurycea longicauda longicauda Long tail Salamander Amphibia Notophthalmus viridescens Central Newt/Red Eft Amphibia Plethodon glutinosus glutinosus Slimy Salamander Amphibia Plethodon serratus Southern Red-backed Salamander Amphibia Rana palustris Pickerel Frog Amphibia Typhlotriton spelaeus Grotto Salamander Amphibia Birds Saornis phoebe Eastern Phoebe Aves Stelgidopteryx serripennis Northern Rough-winged Swallow Aves Cathartes aura Turkey Vulture Aves Mammals Eptesicus fuscus Big Brown Bat Mammalia Myotis grisescens Gray Bat Mammalia Myotis leibii Small-footed Bat Mammalia Myotis lucifugus Little Brown Bat Mammalia Myotis septentrionalis Northern Long-eared Bat Mammalia Myotis sodalis Indiana Bat Mammalia Neotoma floridana Eastern Wood Rat Mammalia Peromyscus leucopus White-footed Mouse Mammalia Peromyscus maniculatus Deer Mouse Mammalia Pipistrellus subflavus Eastern Pipistrelle Mammalia Procyon lotor Raccoon Mammalia Snails and Fontigens aldrichi Cave Snail Glyphyalinia indentata Snail (trogloxene) Gastropoda Megapallifera ragsdalei Snail Gastropoda Mesodon inflectus Snail (troglophile) Gastropoda sp. Snail (troglophile) Gastropoda Zonitoides arboreus Land Snail Gastropoda 13

Table 1.1. Biodiversity (cont.) Insects Arrhopalites pygmaeus Springtail (troglophile) Hexapoda Atheta sp. Rove Beetle (troglophile) Hexapoda Cantharis sp. Soldier Beetle Hexapoda Ceuthophilus gracilipes Camel Cricket (trogloxene) Hexapoda Ceuthophilus seclusus Camel Cricket (trogloxene) Hexapoda Ceuthophilus silvestris Camel Cricket Hexapoda Ceuthophilus unleri Camel Cricket (trogloxene) Hexapoda Ceuthophilus williamsoni Williamson's Camel Cricket Hexapoda Chlaenius brevilabris Ground Beetle Hexapoda Dicaelius ambiguus Ground Beetle (troglophile) Hexapoda Dicyyrtoma marmorata Springtail Hexapoda Folsomia candida Springtail (troglophile) Hexapoda Halpalus fulgens Ground Beetle (troglophile) Hexapoda Hesperus baltimorensis Rove Beetle (trogloxene) Hexapoda Lepidocyrtus sp. Springtail Hexapoda Insects Cont. Macrocera nobilis Webworm Hexapoda Onychiurus encarpatus Springtail (trogloxene/troglophile) Hexapoda Onychiurus reluctus Springtail (troglophile) Hexapoda Onychiurus sp. Springtail (troglophile) Hexapoda Philonothus sp. Rove Beetle (troglophile) Hexapoda Ptomaphagus cavernicola Round Fungus Beetle (troglophile) Hexapoda Ptomaphagus sp. Round Fungus Beetle Hexapoda Quedius erythrogaster Rove Beetle (troglophile) Hexapoda Rimulincola divalis Rove Beetle (troglophile) Hexapoda Sinella caeca Springtail (troglophile) Hexapoda Staphylinus cinnamopterus Rove Beetle (troglophile) Hexapoda Tachyura ferrunginea Ground Beetle (troglophile) Hexapoda Tomocerus elongatus Springtail (troglophile) Hexapoda Tomocerus flavescens Springtail (troglophile) Hexapoda Centipedes Lithobius atkinsoni Centipede Chilopoda Scutigera coleoptrata Common Scutigera Chilopoda Millipedes Cleidonogona sp. Millipede (troglophile) Diplopoda Pseudopolydesmus sp. Millipede Diplopoda Tingupa pallida Cave Millipede Diplopoda Crustaceans Armadillidium nasatum Pillbug Malacostraca Caecidotea antricola Isopod Malacostraca Caecidotea fustis Cave Isopod Malacostraca Crangonyx forbesi Amphipod Malacostraca Gammarus fustis Scud (trogloxene/troglophile) Malacostraca Gammarus minus Scud Malacostraca Gammarus pseudolimnaeus Scud (trogloxene) Malacostraca Orconectes punctimanus Spothanded Crayfish Malacostraca Orconectes luteus Golden Crayfish Malacostraca Stygobromus gardneri Gardner's Amphipod Malacostraca 14

Table 1.1. Biodiversity (cont.) Spiders and Mites Stygobromus onondagaensis Onondaga Cave Amphipod Malacostraca Cicurina cavealis Funnel Weaver Arachnida Hesperochernes occidentalis Troglobitic Pseudoscorpion Arachnida Nesticus pallidus Cave Spider Arachnida Rhagidia whartoni Mite Arachnida Vonones ornata Harvestmen Arachnida Annelids Lumbricidae (family) Earthworm Clitellata 1.1.4. Missouri Caverns History

MissouriCaverns,thesiteoftheproject,isactuallypartoftheOnondaga

Cavesystem.Thissectionwasonlygivenitsownnameafteralandfeudthatoccurred duringthe1930’s.Forabrieftime,thereweretwoprivateownersofthecave offeringseparatecavetourstothepublicthroughtwoseparateentrances.Fora numberofreasonsfrombothaculturalandnaturalhistoryperspective,thissection ofthecaveisveryimportanttoprovidingcluesaboutthepastaswellasaglance atthefuturedirectionofshowcavemanagementpractices.

Typically,mostenvironmentalcavestudiestodayfocusonhumanimpact mainlybecauseofanincreasinginterestintherestorationofcavehabitats(Lewis,

1993).Inmostcases,pressureonplantandanimalspeciesforcethemtochangeand adapttothatchangingenvironment.Unbeknownsttothematthetime,byclosing thissection,thepreviouscaveownersmayhaveremovedtheimpedimentthatthe manyspeciesofsalamanderslivingtherewereonceexposedtoonaregularbasis.

Now,thedirectionstheytakeinadaptationandsurvivalbecomequitedifferent.

Manyyearsago,thispassagewasteemingwithdailyvisitorsastheytoured

OnondagaCave.ThefeudamongsttheownersofthecavealongwithWorldWarII 15 placedadamperontourismandtravelintothissectionwasthwarted.Eventually,that portionofthecavewasnolongeropentothepublic.

Now,morethan60yearshaspassedsincethefootprintsofregularvisitors havetouchedthefloorofthepassage.Duetothisunusualcircumstance,itis reasonabletoquestionwhetherremovingthehumanimpactmightinsomeway reversetheenvironmentalpressurescausedbydisturbance.

ManycommercialcavescurrentlyexistinMissourithathavebeenusedfor manyyears.Thousandsofvisitorseachyearpayafeetoseetheseunique undergroundwonders.Eachvisitorbringswiththemamyriadofcontaminantsthat definehumandisturbanceasaseriousthreattotheecosystem.Lintfromclothing, hairfollicles,skincells,foreignmaterialtransportedinonshoesandbodilyfluidsall becomean“introduced”foodsourcethatattractinvertebratesandothersmall organismsintothisecosystemthattheywouldn’tnormallyinhabitotherwise.The devastationthatthisimpactcancausesometimeseasilygoesunnoticedtothe untrainedlayman.Entirepopulationsofinvertebratescanbewipedoutjustby disturbingtheareatheyinhabit.Newexoticpopulationscanresultwhenthose introducedfoodsourcesmentionedpreviouslyareleftbehind.Thosenew populations,inturn,candecimatethenativepopulationsandtakeovertheirhabitat.

Thetrendinmanyofthesecavesnowistoattempttoreturnthecaveorareas withinthembacktopresettlementtimes,beforecommercializationofthemtook place.ThisisthecasewiththeMissouriCavernssectionofOnondagaCave.See

Figure1.5below.

16

Figure 1.5. Onondaga Cave Map-Missouri Caverns Section 17

Figure1.5showsadetailoftheMissouriCavernsarea.Travelingfromthe

OnondagaCaveentrancenowusedfordailytours,itisapproximatelyonehalfmile tothepointwherevisitorsturnaroundandapproximatelyonequarterofamile furtherintothepassagetoreachthesamplingarealocatedjustinsidethedoorofthe oldMissouriCavernsentrance.SeeFigure1.6below.

Figure 1.6. Manmade Missouri Caverns Entrance

ThisistheremainsoftheculturaliconthathousedtheMissouriCaverns entrance.Justbeyondthisdoorliestheplaceparkemployeeshavedeemed

“SalamanderHeaven”asafehavenforavarietyofsalamanders,bothcaveand terrestrial.Currently,theMissouriCavernsentranceisnowsecuredwithasteel doorthatallowsfortheentryandexitoffaunasuchassalamandersandbatsbut requiresmonumentaleffortinitsremovalforhumanuse. 18

1.2. GOALS AND OBJECTIVES

Theprimarygoalofthisstudyistofocusonthelackofhumandisturbancein thisparticularareaandrelateittothebreedinghabitsofthesalamandersspecies foundwithinthispassage.Thisstudymayassistinprovidingabetterunderstanding oftherelationshipofhumandisturbancetospeciationandspeciationingeneral throughoutthecavesystem.Additionally,documentationofthespeciescurrently residingintheareaandidentificationofpotentiallyinterbreedingpopulationswill assistinthedevelopmentofmanagementplansthataddresspreviouslyalteredcave ecosystemsandthemanifestationsthereof.

Objective 1: Thepurposeofthisstudyistousesalamandersasamodelto testformultiplehypotheses.Typically,allspeciesofsalamandersreactvery negativelytoadisturbedenvironment.Oneinparticular,theCaveSalamanderis extremelysusceptibletochangeintheecologicalbalanceofafragilecaveecosystem

(Johnson,2000).“SalamanderHeaven”isanarealocatedintheMissouriCaverns sectionofOnondagaCavethatappearstoprovideidealhabitatforsalamanders.This hasnotalwaysbeenthecase.Thestudyconductedherewilladdressthetheorythat removalofadispersalbarrier,inthiscasehumanintervention,fromthisareamight havereassignedanecologicalbalancethatwasoncetotallydestroyedbydailyhuman activity.Andindoingso,ithasleadtopossibleinterbreedinghabitsinthisregionof thecave.Anyresultsgleanedfromthisstudybenefitcavemanagementpracticesnot justfortheDepartmentofNaturalResourcesbutotheragencies.Examiningthe salamandersinhabitingthisareabothmorphologicallyandgeneticallycouldprovide cluesthatsupporttheideaofinterbreedingorpotentiallyanewspeciesthatmay 19 neverhadexistedifhumanscontinuedtodegradetheirhabitat.Thequestionlooms, hasthestabilityofthelastsixtyyearshadsuchaneffectthatmultiplespecieswithin thesamegenusarewillingtointerbreed,potentiallyasaresultofalimitedhabitat andarestrictedfoodsource?

Method One: Phenotypic Analysis: Severaltreksweremadetothe samplingsiteinordertogatherthemorphologicaldatanecessarytoconducta phenotypicvisualassessmentofthepopulationschosenforthisstudy: Euryrea lucifuga, Eurycea longicauda and Eurycea longicauda longicauda .Specifically,these visualswereusedasacomparisontechniquetoestablishthepresenceof questionable,possiblyhybridspecies.Aseriesofmeasurementsweretakenandeach specimenwasphotographed.Analysesofthesedatathroughregressionanalysiswere usedtocomparethedifferentspecies,lookingspecificallyfortherelatednessofthose ofquestionableorigintothoseofknownorigin.

Sincephenotypeistheoverallinteractiveexpressionofthegenotypeofthe individualwithitsgivenenvironment,itispossibletoseeagreatdealofphenotypic variationamongindividualsinsomeareas.Yet,thisvariationmayfallshortin comparisontotheamountthatwouldbeevidentwhenusingasimplemethodof examiningthegenotypesofindividuals.Conversely,highamountsofphenotypic variationwithinthepopulationcouldbetheresultofenvironmentaleffectsongene expression,andmaynotbeaccompaniedbysimilargeneticvariability(Martin,

2004).Inordertoassessanygeneticvariabilitytosupportinterbreeding,asecond methodwasemployed. 20

Method Two: Genotypic Analysis: Amolecularmeansofassessing variationwasusedtoanalyzethegeneticinformationthatwasgathered;Amplified

FragmentLengthPolymorphismoriginallydevelopedbyVosetal(1995).Amplified

FragmentLengthPolymorphismorAFLPgeneratesbandingpatternsthatcanbeused toexaminevariation.ItisarecenttechniqueusingaPolymeraseChainReactionor

PCRthatcanbeutilizedtocompareseveralindividualDNAsamplesinquestof similarordissimilarrepeatsinthealleles.Thetechniquehasbecomeapopular methodofanalysisforseveralreasons.Itislessexpensivethanpreviousformsofthe technique,thedataisgeneratedfromasequencerratherthanapolyacrylamidegel andthatdatacanbeeasilyincorporatedintosoftwarepackagesthatgenerate phylogeneticdistancetreestodeterminetheextentofvariation.Tissuesampleswere collectedfromeachofthethreespeciesthoughttobeinvolvedintheinterbreeding andsampleswerecollectedfromfourspecimensthatappearedtobesomeformof,or acombinationofall,ofthethreeknownspecies.

Hypotheses: Thethreespeciesof Eurycea showsignsofinterbreeding, evidencedbyphenotypicandgenotypicdata.Thequestionablespecimensmaybea newdistinctspeciesof Eurycea andcessationofhumaninteraction(removinga dispersalbarrier)inthisareaplayedaroleinthisinterbreeding.

21

2. REVIEW OF LITERATURE

2.1. CAVE MANAGEMENT AND RESTORATION

Caveshavealwaysbeenagreatplacetofindhistoricalartifacts,especially anysystemsthathadoncebeenutilizedbyhumansforshelter.Sadly,theimpact laterhumanshadonthesefindscanneverbereversed.Manycavesarenow protected,though,inanattempttoprotectthefewartifactsthatremain.Once researcherscametotherealizationthattheycontainedarcheologicalmaterials,new waysofmanagingthecavesneededtobeaddressed(Brown,1986).Humanimpactin theformofvandalismwasoccurring.Artifactsofsignificanthistoricalvaluewere beingstolenordestroyedandcaveecosystemsarebeingdecimated.

Anincreasedinterestincaverestorationhasdevelopedoverthepastseveral yearsandpeoplewithagenuineinterestinpreservingtheseenvironmentsbecame moreagitatedwithvandalsbreakingoffandstealingspeleothemsfrompristine passagesincaves.Inaddition,anawarenesstoaddresscavehabitatsinconjunction withaccommodatingman’sneedswasheightened.Restorationofcavehabitatsin

Karsttopographygenerallypiquestheinterestofdedicatedcavers.Oftentimes,small townshavebeenincorporatedintoareaswithcaves,sinkholesandlosingstreams.

Dealingwithrestorationissuessuchastouristroutes,sewagedisposalandeffluent discharge,trashremovalfromsinkholes,bootprintsincavepassagesandremovalof exoticdebrisareimportantaspectsoftheirrestorationefforts(Lewis,1993).

Sometimes,though,caverestorationeffortscanproduceatotallydifferenteffectthan onemighthaveanticipated.Nothingcanbeassumedinanenvironmentwhereso littleisknown.AssomeindividualsatMammothCavefound,sometimesdealing 22 withtheseissuesinthenameofrestorationproduceatotallydifferentaffecthabitat thathasbasicallyalreadyadaptedtoconditionsintroducedbymanneedn’tbealtered

(Lewis,1993).ItwasintheCathedralDomessectionthatadeterminationwasmade toactuallyleavewoodendebristhatwouldhavenormallybeenremovedfor restorationpurposes.Afterinvestigationandcensussurveys,itwasdiscoveredthat thedebrishadprovidedafoodsourcelargeenoughtosupportaverydiverse communityofaquaticfauna.Removingitwouldputthistroglobiticcommunityin jeopardy.Unfortunately,miscommunicationduringthesummermonthsalloweda continuedcleanupintheseareas.Inadditiontophysicaldamagetothearea,the streamandtheanimals,withinmonths,theamphipodpopulationhaddecreased significantly.Nowdisturbeddebrisblanketedthestreambedandprovidedanutrient windfallforthemicrobesinthewater.Leftundisturbed,thewoodmostlikelywould haveprovidedanutrientsourceslowtoreleasefortheaquaticcommunity.

Attemptstorestoretheseenvironmentstopresettlementtimesaredirectly proportionatetotheenthusiasmgeneratedbydoingso.Restoringasubterranean environmentsuchasthiscouldprovidecluestoextantlife,recentlifeformsand previouslifeformsasitoffersasubsurfaceviewofplaceslikenoother.Those interestedincaverestorationconsideranumberoffactorsbasedontheparticular needsofthesystem.Somecaveshaveoldrustyhandrailsthatneedtoberemoved,as inthecaseofOnondagaCave,whileothershaveseverealgaegrowthproblemsasa resultoftoomuchartificiallighting.CarlsbadCavernsunderwentextensive restorationseveralyearsagoandthefocuswasnotonlytoemploycarefulcave 23 restorativetechniquesbuttoalsoensurethatthesetechniqueswereincorporatedinto athoroughcavemanagementplan(Rohde,1981).

However,allactionshavesomesortofconsequence.Eachmanagement actionshouldbecarefullyadministeredandmonitoredashumanuseofanarea,while sometimesdestructive,canalsobedeterminedbeneficial.Therecanbeadelicate balancebetweenuseandhealing.

Inadditiontotheseaspects,itisimportanttogainacomprehensiveawareness ofhumanimpactonthesepristineenvironments.Everythingwedoonthesurfaceof thegroundaffectswhatgoesonbeneathit.Landdevelopment,chemical contaminants,sewersystems,andlanddisturbancecanhavemonumentalimpactson cavesystems.

Contributingtosedimentationandnutrientloadingorlosswithinasystemcan haveahugeimpactonthetypesoforganismsthatlivethereandtheirpopulation densities.Introducedfoodsourcesinaverylimitedenvironmentcanchangetheway theinhabitantsutilizetheresource.Manyoftheseecosystemshaveendemicspecies.

Alterationscouldhavedevastatingimpacts.

Cavemanagementhasbecomeanintegralpartofresearchincavesystems throughouttheworld.Asmentionedpreviously,cavesarehiddenbeneathourfeet.

Theoldadagegoeswithoutsaying,“outofsightoutofmind.”Increasinghuman impactisdecreasingtheexistenceofthisunspoiledenvironment.Asitstands,there arenoreallawsgoverningtheuseandabuseofcavesortheendemicspeciesor microbesthatlivethere.Researchershaverecentlycometorealizethatweshouldbe 24 doingsomethingtoidentify,quantifyandprotectthemicrobes,invertebrates,and otherspeciesthatcouldpotentiallybethekeytothefutureexistenceofmankind.

Showcavestendtoseethemostneedforgood,qualitycavemanagementto minimizehumanimpact(Gurnee,1991).Severalaspectsoftheenvironmentcould easilybealteredforthesakeofcommercialization.Inspectingeachoftheseaspects priortotheconversionofanaturalcavetoashowcaveisvital.Inadditionto understandingthenaturalaspects,theymustalsoinvestigatemorespecificquestions astheypertaintocommercialuse.Isthecavesafeanddoesitprovideaquality educationalexperience?And,siteaccessibilityandlocationareimportantfactors,too.

Implementingaplantominimizetheimpactofjustonepersonvisitingashowcave oranycavecanbeimportantaswell(Stitt,1978).Stitt(1978)tookinto consideration several internalandexternalfactorsforimpact.Astudyconductedat

OnondagaCavealsoaddressedtheneedforlimitingpublicaccessandtodevelopa plansupplementingtheneedtominimizeimpactduringcertaintimesoftheseason.

Italsoaddressedastaffingplanandageneralideaofattendanceforbudgeting purposes(Vale,1997).Theneedtoutilizeprofessionalassistancefortrialdesignand lightingmustalsobeconsidered,especiallyiftheownerevenremotelycaresabout theecosystemtheyarepreparingtodisturb.

Unfortunately,privateownershipsometimeshinderstheseconcepts,asthe revenuegeneratedfromthesecavesissomeone’slivelihood.Toadmitthathumans mighthaveasignificantimpactonthecaveecosystemequatestocommitting financialsuicide.Privatelyownedcavessometimesfallpreytothislackofcave managementaswell.Oftentimes,thepropertyownereitherdoesnotknowthatacave 25 islocatedontheirpropertyortheyhavedifficultyenforcingtrespass.Amazingly enough,thoseinquestofcavedenigrationknowwherethecavesarebetterthanthose committedtopreservingthem.Theseharmfulhumanactivitiesarethreateningthe diversityofmanyofthespecieswithincaveecosystems.And,becauseofshocking declinesinamphibianpopulations,researchisfocusingmoreonsalamander,frogand toadpopulations(Rileyetal.2003).

Byemployingreasonableandlogicalcavemanagementpracticeshoused withinwellwrittenmanagementplans,education,entertainmentandresearchwill complementeachotherandcanbemaintainedallthewhilestillpreserving, conservingandprotectingthisuniqueundergroundworld.

2.2. HUMAN IMPACT ON CAVES

Thelasttwentytothirtyyearshavebroughtwiththemanurgencytomore effectivelyunderstandallpreservationaspectsofcaveecosystems,bothwildand showcavesalike.Becausethecaveenvironmentisbasicallynonrenewableinnature, mostactionsareirreversibleandirretrievable(Stitt,1978).

Severalstudiesofvaryingdegreeshavebeenconductedtogainuseful knowledgeforbettermanagementofthesefragileecosystems.Scientistshavebeen investigatingamyriadofreasonsastohowhumanimpact,inparticular,hasaffected thesecaveenvironments.Thecurrentfocusseemstobeleaningtowarddifferent stylesofcavemanagement(Buecher,1993).Moreimportantly,thethoroughnessof managingeveryaspectofhumanimpactisparamountpriortopermittinganyimpact tooccur. 26

Bettercavemanagementbringswithitaregulatoryaspectcrucialtofuture development.Predevelopmentstudiescanprovidebetterfocusonseveralaspectsof caveenvironmentssuchasthegeology,biologyandhydrologyofthesystemin question.In1993,Buecherpublishedfindingsofapredevelopmentstudyof

KartchnerCavernsthatidentifiedseveraloftheseaspects.Thestudysurroundedthe ideathatacavethathadbeenkeptsecretformanyyearswasabouttobeopentothe publicandeveryaspectofthiscaveenvironmentneededtobestudiedand documentedbeforesignificanthumanimpactwouldtakeplace.

Foryears,caveecosystemshavenotbeentakenseriously.Researchersare beginningtoseeashiftintheattentionpaidtothistypeofenvironment.Withthe recentdiscoveryofcavesonMars,forinstance,theyareredirectingtheirattentionto thesepristineandextremeenvironments(Malik,2005).Studyingthedelicate ecosystem,thebiodiversityandthemicrobesthatlivetherecanleadtoanenhanced understandingofsurvivalinextremeconditions.Morespecifically,studyingthe chemoautotrophicmicroorganismsthatexistintheseenvironmentscouldleadtoa keenunderstandingofhowotherorganismsmightsurviveinsuchunorthodox surroundings.

Intheshorttimethatanyseriousresearchhasbeentakingplaceincaves, literallyhundredsofnewspeciesofsubsurfacedwellersandinvertebrateshavebeen identified.Caveshavebecomeagreatresearchgroundforthemillionsof microorganismsyettobediscovered.Developingandfollowingsoundcave managementplansincorporatingregulatoryconditionswouldplayakeyrolein implementingresearchwithprovenresults. 27

Allaspectsofresearchundoubtedlywillprovideimportantinsightonnotonly ourcurrentenvironmentalstate,buttheecosystemsthathavebeenabusedandthe onesthatwemustmovetoprotect.Thescientificcommunitycanillaffordtoturn theirheadsawayfromthestudyofcavesasanextremeenvironmentatthisjuncture inourexistence.

2.3. REVERSING HUMAN IMPACT

OnondagaCavewastransferredtotheStateofMissourinearly25yearsago.

Inthattime,unfortunately,onlyminordocumentedresearchofthecavesystemhas beendonewithlittlecomparisontoothercavesystems.Thefortunateaspect,though, isthatthenaturalresourcehasbeenwellprotectedduringthistimeperiod.Just recently,haspreliminaryresearchbeenconductedthatwillbegintorevealmore aboutthisparticularcavesystem.Conductingstudiesofvaryingparametersandthen usingthemincomparisonresearchmustleadtosomenewconclusions.Findinga newspeciescouldbemonumentalintheefforttounderstandingwhatmighthave influencedthischangeovertime.Studyingtheremovalofthehumanfactorinthese areasandcomparingthistoareaswherepeopleinhabitregularly,willleadtoabetter understandingofthechangesthathaveoccurredandmaystillbeoccurringtothe ecosystem.

AsreferencedearlierinTable1.1,thebiotaofOnondagaCaveis extraordinarilydiversified.Notallcavescanboastthisfact.Thereisadefinite symbioticrelationshipwithcavedwellerandenvironment.Themorehuman disturbancethatoccursinacave’sfragileecosystem,lessandlesscavedwelling specieswillbefoundthere.ManycavesinMissourihavebeenabusedbeyondrepair. 28

Anydamagethatoccurredwilltakehundredsofyearstobeginthereversalprocess.

OnondagaCavewaswellusedasacommercialcaveformanyyears,however,many ofthepassageswereconsideredofflimitstoregularvisitors.Byallowingonly individualswithalegitimateinterestinthecavetoentertheseareas,theimpactwas kepttoaminimum.

OncetheStateofMissouritookpossessionofallthecavesystemsin

OnondagaCaveStatePark,accesstomostbecamerestrictedandseveralareclosedto humanactivityintotality(Miller,2005).Notonlyisenteringmanypassages prohibited,allcommercialevidencehasbeenremoved,returningthepassagestoa naturalstatethatcomparedtotheiroriginalexistence.TheMissouriCavernssection isaperfectexampleofapassagebeingallowedtostartthereversalprocess.

Theironyofthishumaninterventionisthatitagaintakeshumanintervention topreserveaveryunusualhabitatthatmayexistnowhereelseinthestate. Further studycouldleadtoacloserlookatotherbiotasosensitivetoachanging environment.Apurposeofstudiessuchasthisonemightpotentiallyconvincecave ownerswithasincereinterestinpreservation,totakeasecondlookattheapproach takentoprotectingtheseuniqueandfragileenvironments.

Recentresearchconductedthroughouttheseextremeenvironmentshas uncoveredmorethanjustafewanimalsinhabitingthesewellkeptsecrets.Bacteria, fungusandalgaethrivinginadark,coolandverydampenvironmentareproviding cluestoresearchersthatcouldonedayenhancehumansurvival.Protectingand preservingnowcouldliterallyleadtoimportantscientificdiscoveriesextending man’sinhabitationoftheearth(Boston,2000). 29

Findingthatremovingthehumanbarrierisbeneficialinthepreservationof cavedwellersandadvantageousintheiradaptationtothatchangemightaltertheway thecavesystemisutilizedandhowmanagementplansareimplemented.Promoting themostpristineenvironmentshould,theoretically,promotethrivingcommunitiesof biota.

2.4. PHENOTYPIC EVIDENCE

Aphenotypeillustratesanobservedqualityinorganisms.Itcanrefertothe organism’smorphology,theirdevelopmentortheirbehavior,however,incontrast, phenotypedoesnotrefertothegenotypetheinheritedinstructionsthattheorganism carries.ThiscomparedandcontrastedconceptwasproposedbyWilhelmJohannsen in1911toclearlydifferentiatebetweenanorganism’sheredityandwhatthatheredity actuallyproduces(Churchill,1974).

Thephenotypeisnotjustaproductofgenotype,itisinfluencedbythe environmentmoreorless.Phenotypesareaframeworkoftraitsorcharacteristics.

Somearecontrolledbytheindividual’sgenesbutothersarecontrolledbygenesthat aresubstantiallyaffectedby“extragenetic”orenvironmentalfactors(Brenner,etal

2002).

Asdetectablecharacteristics,variationinobservedgenotypescouldbeasa resultofsilentmutationsthat,duetosomesimplechangeinaminoacidbasepair frequencywithoutchangingthesequence,mightprovidetheorganismaselective advantage.

Untilfairlyrecently,visualphenotypicanalysiswastheprimarytoolandan adequatemethodfordeterminingconclusionsinscientificstudiesofhybridization, 30 speciationandpopulationvariation.Researcherssimplydidnothavethenecessary moleculartoolsattheirdisposalandwhattheydidhavewaslimited.Now,several triedandtruemoleculargenotypicmethodshavebeendevelopedformoreconclusive analysis.

2.5. GENOMIC MOLECULAR EVIDENCE

2.5.1. Polymorphic Banding Patterns. Thereareseveraldifferent techniquesthatcanbeusedtodeterminegeneticdifferences.Thesetechniques producegeneticfingerprintsorpolymorphicbandingpatterns.Several variationsofthistechniquecurrentlyexistforexample,RandomAmplified PolymorphicDNA(RAPD),RandomFragmentLengthPolymorphism(RFLP), andAmplifiedFragmentLengthPolymorphism(AFLP). AmplifiedFragmentLengthPolymorphism,orAFLP,wasdevelopedbyVos etal.(1995),andproducesthepolymorphicbandingpatternsimilartothatseenin

RAPDorRFLPprocedures,butwithlessprimercombinations.AFLPhasalsobeen successfullyusedtocomparegroupsatspeciesandpopulationlevelsinbothfloraand fauna.OnemajoradvantagetousingtheAFLPfingerprintingtechnique,in particular,isthelargenumberofpolymorphismsthattheprocesscangenerate.The techniqueisalsocapableofdifferentiatingindividualsinapopulationandexamining geneticdiversity.Maughanetal.(1998)foundthatAFLPproducedmore polymorphiclociperprimerthaneitherRFLPorRADPintheirstudyofSoybean diversity( Glycine Max and Glycine soja Leguminosae).

TheAmplifiedFragmentLengthPolymorphismtechniquehasbeenappliedto avarietyofdifferentplantandanimalstudies.Lawetal.(1998)haveutilizedthe 31 techniqueforPlantVarietyRegistrations.Barkeretal.(1999)throughinvestigation ofgeneticdiversityinSalix(Salicacaee)found645polymorphicbandswithprimers usingAFLPasopposedto170bandsusing20RAPDprimers.Riesebergetal.(1999) lookedatintrogressionbetweencultivatedsunflowersandasympatricwildflower.

Beismannetal.(1997)studiedthedistributionoftwoSalixspeciesandtheirhybrid.

Themorelocithatisavailableforcomparisoninanindividualanalysisthebetterthe accuracyandsignificanceoftheresults(GormanandRenzi,1979;viaMartin,2004).

Inreviewingliterature,itappearsthatAFLPhasbeenappliedtoplant materialsmoresothananimals.However,thisalsoappearstobechanging.

Inacomparisonoftechniquesstudy,Robinsonetal.(1999)identifyother

advantagesofusingtheAFLPprocesstoincludethatnosequencinginformationis

required,thePCRtechniqueisrelativelyfastandahighmultiplexratioispossible.

AmongseveralreasonsAFLPwaschosenforthisstudywasthefactthat

individualssampleddidnothavetobedestroyedintheprocess.Thismeanttaking

onlyaminuteDNAsamplefromeachspecimen.Onlyafewvoucherspecimens

weretakenforthestudy;thoseofquestionableorigin.Thisallowedthemajorityof

thespecimensusedinthisstudy,forthemostpart,tobeleftintact.

2.5.2. Limitations Associated with Banding Patterns. Incontrasttothe

advantages,Robinsonetal.(1999)alsoindicatedpotentialproblemswithusingthe

technique.Onesuchproblemconsistsofusershavingproficientknowledgeand

skilltoutilizetheprocess.WhileAFLPisnotadifficulttechnique,itisatedious

processwithspecificstepsrequiringgoodpipettingandmixingskills.These

specificstepsmustbefolloweddiligently. 32

Anotherissueisthatthecostsassociatedwiththeprojecttendtobe

expensive.Also,theenzymeandprimerselectioncanhaveanimpactonthe

productionofreliablebandingpatternsandthenumberofpolymorphismsdetected.

RidoutandDonini(1999)foundthatbychangingtheenzymecombinationfrom

EcoR1/Mse1toPst1/Mse1severalmorepolymorphismsweredetectedinbarley.

So,thechoiceofenzymeandprimercombinationscanplayamajorroleinthe

amountandqualityofvariationrevealed.

Robinsonetal.alsoindicatedthatpartialdigestionandpooramplificationcan

affectreproducibility.Thistakesusbacktotheuserandtheprocess.Missingastep,

repeatingastepormixingingredientsduringastepcanhavedevastatingeffectson

theresults.Thesemistakescanleadtoanumberofissuesforexample,toomany

bandstoscore,nobandsatall,orthenumberofbandsactuallyamplified.

PreliminaryscreeningofprimercombinationsisstronglysuggestedbyHartland

Seefelder(1998).Aftertheyevaluated60primercombinationsfortheiranalysisof

hop,theyfoundthatonlyeightofthecombinationsactuallyprovidedreliable

bandingpatterns.Itiswelldocumentedinotherliteraturethattestingmultiple

primercombinationspriortoanalysisproducedonlyafractionofcombinationsthat

resultedinbandingpatternsconducivetoreliablescoring.

IthasbeenfoundaswellthatRAPDanalysisrequiresthatanumberof

randomprimersalsobetested.Commonly,over50differentprimercombinations

mustbetestedinordertoproducejust10to20strongprimercombinationsthat

providethelargenumbersofpolymorphism(Kimberlingetal.1996,Evansetal.

1997,andRitlandetal.2000)neededforconsiderationofmanyloci.Again,the 33

morelocithatisavailableforcomparisoninanindividualanalysis,thebetterthe

accuracyandsignificanceoftheresults(GormanandRenzi,1979).

AFLPproducesmorerepeatableandreliableresultsthanRAPDanalysis requiringfewerprimerstoproducesimilarresults(Vosetal.1995).Becausethereis lesstimeinvestedintheprocessoverall,ithasbeenfoundthatAFLPhasbeenthe favoredmethodofanalysisoverRAPDinthepastfewyears,andthereforewillbe themethodIusedforthisstudy.

TheadvantagesandproblemsIencounteredwhileusingtheAFLPtechnique

willbeaddressedindetailinthesectionthatdiscussesoptimizingtheprocess.

Throughouttheentireprocess,whenproblemswereencountered,theyhadtobe

immediatelycorrectedpriortomovingforwardwiththenextstep.Sinceeachstep

ofthisprocessreliesonthepreviousstep,anymistakesmadewithinonestepwill

eventuatethemselvesineachandeverysubsequentstep.

Alloftheprocessesmentionedabovetaketimetoproduceviableresults.

Witheachiterationofthisfingerprintingprocedure,sometimeisbeingtakenoutof

theoverallequation.Asresearchersrefinetheprocessanddocumenttheirfindings,

futureusesofthetechniquebecomeslightlyeasier.But,forthemostpart,ittakes

notonlytimebutalsopatienceandfocustoutilizetheproceduretoyouradvantage.

Byfirstoptimizingtheprocess,timecanalsobesavedthroughouttheproject.A

largesectionofthisthesisisdedicatedtooptimizingthisprocesssothathopefully,

thenextindividualusingthistechniqueinasimilarstudymightfindthistobe

usefulandtimesavinginformation.

34

2.6. SUMMARY

Asstatedpreviously,ithasonlybeeninrecentyearsthatconcerned individualshavebeguntoidentifythedevastatingconsequencesofhumanimpactto caveecosystems.Cavemanagementplansandrestorationeffortstoreversethese deleteriouseffectsaremerelyintheirinfancy.

Restorationeffortshavemainlyfocusedonremovingmaterialitemsthatman hasdepositedintothecavesystems.And,mostofthestudiesthathavebeendoneto datesurroundthehumanimpacton,specifically,batpopulationsmainlythosewith roostingmaternitycolonies.Thesestudiesarewarrantedbecauseevidenceindicates thathumanactivityincavesadverselyaffectsbatpopulations(Mannetal.2002).

Mannetal.specificallystudiedtheeffectsofcavetourson Myotis velifer .They focusedonaspectssuchaslightintensity,timeofday,sizeoftour,noisinessofthe groupandtheseasonitself.Mainly,theywereidentifyingthemanagement implicationsassociatedwithconstanthumanactivity.

Mystudystandstoaccomplishasimilarobjectivebyidentifyinga managementimplicationfromadifferentperspective;lookingattheremovalof humanactivityinagivenareathroughtheuseofslightlydifferentmethods.They usedanumberofvisualtechniques.Otherstudieshaveusedphenotypicvisual techniques.But,becausegenotypictechniquesweren’treadilyavailable,many studiesthatcouldhaveusedthemwerelimitedasaresult.Inaddition,thisstudywill furtherenhancetheuseofAFLPanalysisinrelationtoamphibiansandthepossible implicationsofinterbreeding.

35

3. MATERIALS AND METHODS

TheMissouriCavernssectionofOnondagaCaveislocatedattheEastern mostendoftheOnondagaCavesystem.Becauseafeudbetweenlandownersoccurred, asecondentrancewasexcavatedinthe1930’stoaccommodatevisitorstothatsection ofthecave.RefertoFigure3.1.Thesectioninquestionexistsatanelevationof725ft. alongthelongitude121°13’46.719”Wandlatitude38°3’35.589”N.

Figure 3.1. Topographic Map of Onondaga Cave

NoteinFigure3.1ofthetopographicmapthattheMissouriCavernssectionis thepassageextendingnorthandsouth.Itisapproximatelythreequartersofamilein length. 36

3.1. SAMPLING METHODS

3.1.1. Species Selection. Becausetwospeciesandonesubspeciesalready knowntointerbreedexistinOnondagaCave, Eurycea longicauda longicauda (Long tailedSalamander)and Eurycea l. melanopleura (DarksidedSalamander),data collectionandsubsequentDNAanalysiscouldprovideinformationthatwillsupport thetheorythatoneorbothofthe E. longicauda speciesmightbebreedingwith

Eurycea lucifuga (CaveSalamander).Visualassessmentsofthephysical characteristicsofseveralofthespecimensutilizingtheareaprovidetheimpression thatsomesortofinterbreedingisoccurringamongthethreespecies.

CaveSalamanderswithunusuallylongtails,CaveSalamandersthatare visiblyshorterthantheircommonlength,andCaveSalamanderswithtailmarkings oftheDarksidedSalamanderarejustafewoftheoddphysical characteristics observed . Table3.1referencesthedatesthatsampleswereidentified,measuredand photographed.Severaltripsweremadetothesamplingsitewhereunfortunately, eithertherewerenosalamandersatallorspeciesthatutilizethecaveentrancebut werenotusedinthisstudy.Treksweremadeatdifferenttimesoftheday,different daysoftheweekandduringdifferentweatherconditions.Treksweremadeduring differentseasonsaswell.Quiteoften,therewasnorhymeorreasontowhenthey werethereandhowmanywouldbethere.Moreaboutthisrandomnessisdiscussed inthediscussionandconclusionsectionsofthisthesis.

37

Table 3.1. Sampling Dates

Sample Samples Sample Samples Date taken Date taken 09/05/05 8 07/07/07 6 01/07/06 0 08/13/07 3 03/15/06 0 08/20/07 4 05/11/07 16 08/25/07 1 06/18/07 7 08/28/07 2 06/25/07 2 09/07/07 1 07/02/07 1 10/04/07 2

3.1.2. Photographic and Whole Animal Vouchers. Photographs weretakeninthenaturalsetting.Mentionedpreviously,disturbingsalamanderstoo muchintheirenvironmentcanhaveadverseeffects.Allphotographsweresavedtoa

CDforfuturereference.Athumbnailprintoftheirheadwasdevelopedforusein identificationduringsubsequentvisitstothesamplingsiteinordertoavoid duplicationofsampling.

Ideally,forAFLPanalysisofpotentialinterbreeding,severalsamplesfrom eachspeciesshouldbetakenandthreetofivesamplesfromanyunusualspecimens mustbetakenforconsideration.Toallowforstatisticalevaluationofphenotypicdata anattempttocapture30samplesfromeachspeciesatthesamplingsitewasmade.

Ideally,atailsamplewastobetakenfromatleast10individualsineachofthethirty samplesets.RefertoFigure3.2.and3.3.below.

38

Figure 3.2. Cave Salamander Figure 3.3. Unusual Specimen

Onlyfourvouchersweretakenfromthesamplingsite.Eachofthese individualshadsomesortofcharacteristicthatdefineditasaquestionablespecimen.

Voucherspecimenswillbedepositedintheherpetologicalcollectionsofthe

UniversityofKansasNaturalHistoryMuseumandBiodiversityResearchCenter.

Voucherswereeuthanizedina1:1000solutionofMS222,fixedinformalin,and preservedin70%ethanol.

3.1.3. Tissue Sampling. ProceduresoutlinedintheUSGSNational

WildlifeHealthCenter“StandardOperatingProceduresAnesthesiaofAmphibiansin theField”(2001)werefollowed.Thetipofthetailwasremovedfromsomeofthe specimensexaminedrepresentingeachofthe Eurycea groups.Anewrazorblade wasusedforthetissueremovalofeachanimaltoeliminatesamplecontamination.

ThetailofeachanimalwasthentreatedwithBactine©tothwartinfection.Thetail samplesfromeachanimalwereplacedinaonemlmicrocentrifugetubeand 39 suspendedin0.75mlof70%ethanol.Eachvialwasmarkedwiththespecimen numberandtransferredfromthecavesamplingsiteandstoredat4 °Cforlaterusein molecularanalysis.

3.2. PHENOTYPIC ANALYSIS

Asetcriterionofdatawascollectedfrom eachofthespecieslistedabove. Thissamesetofdatawasalsocollectedfromfoursalamandersthatexhibitedanyof theunusualcharacteristicsstatedaboveoracombinationthereof.Allmeasurements werecapturedinmillimeters.Thecharacteristicschosenforthisstudyincludedhead width,headlength,totallength,femurlength,costalgroovecount,weight,andona fewspecimens,snouttoventlength.SeeTable3.2belowforasamplefromeach species.

Table 3.2. Sample Salamander Data MeansPhenotypicmeasurementsforSalamandersstudied Species Measurementsinmm TLHLHWFLCGWSV Cave 162.0 17.0 11.4 8.4 11 5 87.2 Dark 118.5 9.1 8.1 5.6 10 2 69.8 sided Long 130.1 12.7 8.9 5.6 14 3 76.6 tailed Odd 142.2 14.0 9.5 6.3 11 5 72.3

40

3.3. WHOLE GENOMIC EXTRACTION

3.3.1. Extraction of DNA from Whole Tissue. Extractionwasdone throughtheuseoftheREDExtractNAmp TM TissuePCRKitprovidedbySIGMA.

Theprotocolprovidedwiththekitsuggeststhatthemixtureshouldbeincubatedat roomtemperaturefor10minutesbeforeadditionofafinalreagentthatrendersthe tissuepartiallydigestedbutreleasesalargeamountofgenomicDNAfromthe sample.Thedocumentationalsostatesthatamorecompletedigestioncanbe achievedbyincubatingthesampleat55 oCfor10minutesinsteadofatroom temperature.

AfterconsultationwithAdamMartin,theMissouriS&TcDNACenter’s

LaboratorySupervisor,Ifoundthissuggestiontobeusefulforallsamplesinthis study,especiallythosethathadbeenstoredat4 oCforalongperiodoftime.

Therefore,thesamplesinthisstudywereincubatedat55°Cfor10minutes(Martin,

2004).Itispossiblethatatroomtemperature,anyagedsamplescouldbemore resistanttoenzymeactivityandmaynotprovidethenecessaryamountsofgenomic

DNAforlaterapplications.Butatthehighertemperatures,ampleamountsofDNA couldbeextractedfromtheagedsamples.Alistofcompleteprotocolsusedinthis studyisfoundinAppendixB.

3.3.2. Optimizing the Extraction Method. TheAFLPreactioncallsfor highqualityaswellasalargequantityofDNAtobedigestedandanalyzed.This couldhaveposedaproblembecauseoftheenzymerichreactionusedtoextractthe genomicDNAfromthetissuesample.Todeterminewhichprocedureswouldresult 41

inthebestAFLPreaction,twotissuesamplesweresacrificedinordertofindthe optimumtechniquestosatisfybothrequirementsoftheAFLPreaction.

OnevariabletoconsideristheconcentrationofDNA.Theamountoftissue availablefordigestionwaslimitedinordertoensureminimumimpactonthe organism(i.e.,onlytailtipswereused).ThisresultsinarestrictedamountofDNA availableforextraction.Iftheprocedureasoutlinedbytheextractionkitdidnot produceDNAofahighenoughconcentration,apossiblechangeintheprotocol mightincreasetheconcentrations.

Again,becauselabsupervisorAdamMartinhadalreadytestedthis assumption,Iwasabletoproceedunderthepremisethatthattheprotocolprovided withthekitwouldproduceanampleamountofDNAforanalysispurposes(Martin,

2004).Largeamountsofproteinsandothermoleculespresentinthesamplecan affecttheAFLPdigestionprocess(Vosetal.1996).Asecondsamplewasusedin theextractionprocedureasdescribedinAppendixA,thistimetestingthequalityof thesample.Afterthereactionwascomplete,thissecondsamplewasinapartially digestedstate,similartothefirstsample.Thissamplewasthensubjectedtoa columnbindingpurificationprocessattemptingtodetermineifthesamplewould produceanampleamountofpurified,higherqualityDNAfortheAFLPreaction process.Itwasdeterminedthatthepurificationtestdidnotprovideanenhancedor purifiedDNAsampleadequateenoughforthestudy.Itwasthendeterminedthatthe procedureoutlinedintheextractionkitwouldsuffice.Manyaspectsoftheprotocol thatcomeswiththekitareveryusefulandwilllikelybetheonetouse.

42

3.4. AMPLIFIED FRAGMENT LENGTH POLYMORPHISM (AFLP)

3.4.1. Summarization of Technique. TheAFLPtechniqueconsists offourspecificsteps.Thefirstisthedigestionstage,inwhichwholegenomicDNA iscutbytworestrictionenzymes(6baserestrictionsite). Mse1 isthefrequentcutter usedand EcoR1 theinfrequent,respectively.Table3.12detailstheprimersusedin thisstudy.

Inthesecondstepoftheprocess,anamountofdoublestrandedDNA,with knownsequencesandoverlapsequencesfortherestrictionsitesoftheenzymes,is introducedintothemixture.Thisissentthroughaligationreactiontofusetheknown sequences,oradapters,totheunknownfragmentscreatedbytherestrictionreaction.

Ineachstep,thesamplesspendaspecifiedtimeinthethermocycler.

Inthethirdstep,adilutedsampleofthenewlyligatedmixtureissentthroughapre amplificationtechnique.ThisissimilartoastandardPCR;thegeneralprotocolfor thisreactionislistedinAppendixB.Thisreactionincludescomplimentaryprimers totheknownsequenceofnucleotidesintheadapters,withtheadditionofasingle nucleotideoverlappingtheunknownsequenceofeachfragment.Thisprocess servestoincreaseonlythefragmentsthatcontaintheadditionalnucleotideatthe beginningoftheirunknownsequenceonbothends.Thiseffectivelycutsthenumber offragmentstoberesolvedbyafactorof16.Thisnecessarystepisimportantwhen dealingwithlargegenomestoensureeffectiveamplificationofthefinalproduct duringthenextstepofthereaction.Oncethisreactionisfinishedandgonethrough thethermocyclerphaseofthestep,aportionofthemixtureisagaindilutedandused inthenextstepoftheprocedure. 43

ThefinalstageoftheAFLPtechniqueiscalledselectiveamplification.Thisis anotherstandard“stepdown”PCRreactionthatusesprimerscomplimentarytothe adaptersusedduringtheinitialligationreactionandaddednucleotidesfromthepre amplificationreaction.Thedifferencethough,istheadditionoftwomorenucleotides onbothprimers,againcuttingtheamplifiedbandsbutthistimebyafactorof256.

This,plustheadditionofaflorescentlabelononeoftheprimers,producesaproduct thatcontainsarandomsamplebasedontheselectionofadditionalnucleotidesduring theentireinitialrestrictionreaction.Oncemixed,thisfinalstepissentthroughthe stepdownthermocyclerprocess.

Thelaststepincludesaddingabuffer,usuallyFormamideanda600Lizsize standardtoadilutionofthefinalstep(whatevertheresearcherdeemsnecessary).

Thismixtureislightlyvortexedandthenloadedintothesequencingmachineforan analysisthatwillproducetheuniquebandingpatterncharacteristicofAFLP.

3.4.2. Optimization and Adaptation of Procedure. SeeAppendixAfor detailedprotocolsofthefollowingprocedures.TheAFLPprocedurewascarriedout throughtheuseofreagentsfoundintheIRDyeFluorescentAFLP RTemplate

PreparationKitforLargePlantGenomeAnalysisprovidedbyLICOR.Thiskitis actuallyintendedforuseintheanalysisofplantgenomes.However,withsome modification,itcaneasilybeadaptedtouseinotherorganisms,including salamanders.TheTemplatePreparationKitdoesnotcomewithselective amplificationprimers.Therefore,theresearchermustalsopurchasetheAFLP

SelectiveAmplificationKitwhichincludesmultiplefinalprimersetsorpurchasethe 44 amplificationprimersseparateoftheset.Somestepsarenotnecessaryifafew changestotheprocedurearemade,mainlyintheformofalterationsintheamounts ofprimersandreagentsusedduringthefinalstages.Thesefewstepscangreatly decreasetheoverallcostofthetechnique.

Theinitialdigestionandligationreactionproceedsasdirectedbythe instructionswiththereagentsprovidedwiththeAFLPkit,withonlyminor differences.Itisindicatedthatthereactionistoincludeapproximately100ngof

DNAinatotalof9Lofwater.Inordertoapproachthisvalue,theentire9L shouldbetakenfromtheextractionsolutiongainedfromthetissuesample.With onlythisminoradjustment,theuseofsynthesizedoligonucleotidesandrunningthe annealingreactionindependentlyarenotrequired.Again,becausethelabsupervisor hadalreadyencounteredthisdilemma,Iwasabletoproceedaccordingly.Thisextra reactionwouldhavebeennecessarytoleavetheadaptersinaformthatwouldreadily ligatetotherestrictionsites.Thissimpleadjustmentcutstheextractiontimeinhalf.

Thiswouldalsobenecessaryifthekitdidnotcomewithstandardadaptersforwhich thesequencescanbefoundeasilyonline.LICORdoesnotpublishthesequences themselves.

Alsoincludedwiththekitisasupplyofpreamplificationprimersthatare alreadymixedwiththeotherreagentsforthereaction.Thedilutedmixturefromthe priorligationreactionisaddedandrunthroughthethermalcyclerassuggested.The useoftheprimersprovidedforthisstepwastheeasiestapproachratherthanan attempttodeveloppreamplificationprimersindependentlyandoptimizingreagent amountsforthereaction. 45

Anumberofmodificationswereneededforthefinalselectiveamplification stage.Thepurchaseofthefluorescentlabeledprimerscanbeexpensiveandthe sequencingserviceoftheprovidingcompanycanbeaswell.Incombination,they wouldhavemadethetotalcostofthismethodwelloutoftherangenecessaryforitto beaviablemethodforuseincavemanagementstudies.Aninexpensivealternativeis theproductionofuniqueoligonucleotidesthatcontainthesamesequenceasthepre amplificationprimerswiththeadditionofthedesirednucleotidepairs.

Forthisstudy,thelabsupervisorwasabletoprovidethesepreproduced oligonucleotidesduetohisinvolvementwithasimilarstudyconductedonthe

Blanchard’sCricketFrog, Acris crepitans blanchardi (Martin,2004). Adescription oftheoptimizationisprovidedbelow.

Optimizationmustbedoneonthereagentsinvolvedinthefinalreaction.LI

CORsuggeststheuseofaduplexprimermethodinvolvingboththeirIRDye700and

IRDye800labeledEcoR1primers,whichcomewiththesuiteofdioxyphosphates alreadyaddedwithinthereagent.Asmentionedpreviously,theseitemswerepartof thepreamplificationkitthatmustbepurchasedseparately.Theabsenceofthese productsrequireseitherdevelopinganewprotocolortheuseofamanufacturedmix.

Giventhelargenumbersofsamplestobeanalyzed,thecreationofabulkworking mixturefortheselectiveamplificationcouldbedevelopedortheuseofAccuprime

PFXSupermix,aproductpremixedbyInvitrogencouldbeused.Forthesamples associatedwiththisproject,theSupermixoptionwaschosen.Ifthebulkmixture optionischosen,themixturecontains237LofddH20,60Lof10xreactionbuffer specifictotheTaqpolymeraseused,50Lofeachprimer( EcoR1 and Mse1 )and50 46

Lofanequalmixtureofdioxyphosphates.Oncethismixtureiscompletedand thepreamplificationsolutionsareready,afinaladditionof3LofTaqpolymerase

(5unitsperL)shouldbepipettedinandvortexedtoensurehomogeneity.Thetotal mixturewillbesufficienttoperform50selectiveamplificationreactions,minusany pipettingerror.TheSupermixprovidesapremixedsolutionofmostoftheingredients foundinthebulkmixture,againsavingmixingtimeandreducingthechancefor pipetteerror.Thefinalreactiontookplacein26.5 µLofsolution.Thisincluded22.5

µLoftheSupermixcombinedwith2.0 µLofMSEPrimer,1.0 µLof5’6FAM iridescentdyeand1.0 µLofthedilutedDNAsolution.

Thepresequencertraysolutioncontainedatotalof11Lofsolution;9Lof theFormamideand1LGenScan600Lizsizestandardsolutionand1Lofthe dilutedpreamplificationsolutioncontainingtheselectionoffragmentsdoneinthe finalstep.Theinstructionssuggestthatdilutionvaluesforeachstepmayneedto varydependingontheorganismused.Thegivenamountswerefoundtobeeffective forthisstudyafterrunningaseriesofthreetestsolutions.

RefertotheTables3.3.through3.10listedbelowforeachoftheoptimization techniquesusedpriortodoingtheactualanalysisofallofthesamples.When workingwithlimitedamountsofgenomicDNA,itisparamounttoconservethat quantitysothattherearesufficientamountsfortheactualfinalrun.Forthisparticular project,itwouldhavebeendifficulttoretrievemoretailsamplesatthelastminute becausetheprocesswasshortofextractedDNA.Itwasdifficultenoughtogetthe originalsamplesduetothesheerrandomnessoftheiravailability.

47

Table 3.3. Maize Control Samples Reagentsin MaizeControlSamples L Control1Control2Control3Control4

DNASample 1.0 1.0 1.0 1.0 LizSize Standard 2.0 2.0 2.0 2.0 Formamide 17.0 17.0 17.0 17.0

Maizecomeswiththekitandisrecommendedtoruntheprocesstoensure thattheallkitingredientswereinworkingorder.TheMaizewasrunthroughthe entireAFLPprocess.Theonlyissueresultedatthesequencertraystepwhere ingredientsareaddedwiththecompletedDNAsampleforanalysis.Table3.3depicts theprocessusedtotestissueswiththesizestandard.ImixedControl sample#1and

#2myself.Controlsample#3wassizestandardthathadbefrozenasopposedto refrigeratedandControlsample#4wasmixedbythelabsupervisorasheiswell versedinlabmixingtechniques.IaskedforhisinvolvementasIfeltthatmymixing techniqueinaprevioustestmightbeposingaproblem.Thiswas,perhaps,thecaseas

Controlsample#4yieldedthebestresults.Controlsample#3,asanticipated,had issuesasitishighlyrecommendedthatthesizestandardberefrigeratedandnever frozen.And,ascanbeseenfromthisexample,itneverhurtstoinvolveafewothers inthemixingtechniquejusttoensurethatitisbeingmixedwellandproperly.

48

Table 3.4. 600 Liz Size Standard Test

Reagentsin l DS1tailsampletestingvaryingamountsofdilutedDNA DNA 1.0 2.0 3.0 4.0 sample

LizSize 2.0 2.0 2.0 2.0 Standard

Formamide 17.0 16.0 15.0 14.0

SincetherewerequestionsastotheviabilityoftheLizsizestandard,atest wasperformedwiththeLizsizestandardonhandtoseeifitworkedandatwhat intensityofDNAitwouldworkthebesttogiveoptimalpeakintensity,Table3.4 above.Newproductwaspurchasedandthetestwasrepeatedonthisnewshipment ofLizsizestandardaswell.Theconclusionwasthatbothingredientswereviable.

Table 3.5. Replacement of Liz Size Standard

Reagents ReplacementofLizSizeStandardwithEDTA

Inl Control#1Control#2MaizeDSTail

Liz 0.5 0.5 0.5 0.5 Standard EDTA 19.5 19.5 18.5 18.5

DNA 0 0 1.0 1.0 Sample 49

However,justtobesure,atestwasalsoconductedreplacingtheFormamide withEDTAtheorizingthattheFormamidemightbedegradingtheLizsizestandard.

Table3.5,identifiestheingredientsinvolved.Thesesampleswererunthroughthe sequencer.TheresultsindicatedthattheFormamidewasnotdegradingtheLizasthe sizepeakswereclearlyvisibleincontrolsample#2andboththemaizeandthetail sample,onlyabsentincontrolsample#1.Thisstronglyindicatesthattherewasjusta mixingorpipettingproblem.Workingwithsuchsmallamountsofreagentsincreases theseriskfactors.Totestthesequencerfourcontrolswereused;twowithamixof

LizsizestandardandFormamideandtwowithamixofLizsizestandardandEDTA.

Table 3.6. Optimizing Reagents for Sequencer

Samplestesttodetermineaccuracyofsequencer

Reagents C1 C2 C3 C4 M1 M2 M3 M4 T1 T2 T3 T4 Inl

9.0 9.0 9.0 9.0 9.0 9.0 Formamide

EDTA 9.0 9.0 9.0 9.0 9.0 9.0

Liz 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DNA AFLP 1.0 0.5 1.0 0.5 recommend ed DNA1:10 Dilutionof 1.00.5 1.0 0.5 recommend ed

50

Basically,thetestdetailedintable3.6woulddetermineifthecapillariesinthe sequencerwereworkingproperlyastheydooccasionallyhavetobereplaced.The

DNAwastestedattheratespecifiedintheAFLPstep4processanditwasalso dilutedtoa1:10solutionandmixedwithEDTA/Lizmixasopposedtoa

Formamide/Lizmix.Afterrunningitthroughthesequencertheresultsconcluded thatthecapillarieswereworkingfine,againgoodsizingpeakswerereportedwithall controls.ItappearedthatdilutingtheDNAhadnoaffectonthepeakintensityandit wasdecidedtostickwithusingtherecommended1.0lamountasindicatedinthe

AFLPprotocol.

AftertheAFLPprocesswasdoneusingtheMaizecontrolsandtheissueswith thesizingstandardwereresolved,onetailsamplewasrandomlyselected,inthiscase labeledDS1(DarksidedSalamandersample#1of9)andrunthroughtheentire

AFLPprocessinordertoascertainanyissuesthatmightbeassociatedwiththe salamanderDNA.Subsequently,anysamplesinthetablesabovedenotedasatail samplewerefromthissampleaftercompletionoftheAFLPanalysis.Somecontrol andtailsampletestswerecombinedtocutdownontablesthatwouldhaveultimately appearedrepetitive.Tables3.7through3.9belowdescribehowthedifferent techniqueswereoptimizedpriortothefullsamplerun.Itisimportanttotestthisas havingtoomuchofthedyecanoveramplifytheresultsandtherefore,notnecessarily givetrueprimerpeaks.Keepinmindthough,thattheelectropherogramsproduced fromthesequencerafteranalysisareverydetailedandprovideseveralpiecesof informationthatmayormaynotbebeneficialontheanalysis.Therefore,a few over amplifiedpeakswillnotimpedetheoverallresults. 51

Table 3.7. Optimizing the Eco primer Reagents MaizeControlsampleandDS4tailsamplesubjectedtovaryingamountsof inl 56FamEcoprimer

MaizeControlSample#4 DS1TailSample

Sample Sample#1 Sample#2 Sample#1 #2 Supermix 22.5 22.5 22.5 22.5 Mse1 2.0 2.0 2.0 2.0 56Fam Ecoprimer 1.0 0.5 1.0 0.5 PreAmp DNA 1.0 1.0 1.0 1.0

Thepointofthistestdepictedintable3.7wastodecreasetheamountof primerinordertoincreasethesignalintensity.Afteranalysis,boththesampleswith

1.0lprimerwerethemostoptimal.Thisisstep4,theselectiveamplification process.Problemsoccurredwiththerandomlyselectedtail,whereinitially2.0lof the5’6FamEcoprimerwasaddedtothemixproducingpeakssointensemanywere offthescale.Therefore,thetestwasrunwith0.5land1.0lonboththeMaizeand thetailwhichresultedinthe1.0lmixasthemostoptimalinbothcases.Inthiscase, sinceseveralwereoffscale,itmadeitimpossibletoaccuratelyanalyzetheoverall results.Oncetheamountwasdecreasedandanewsampletestwasrun,manyof thoseoffthescalepeakswerethenwithintheacceptablerange.

52

Table 3.8. DNA Dilution Factors in AFLP

OptimizingAFLPsteponeusingdifferingdilutionsofaDS1 Reagentsinl TailSample

ExtractedDNASample .5 1.0 2.0 4.0 6.0 8.0

5Xreactionbuffer 5.0 5.0 5.0 5.0 5.0 5.0

EcoR1/Mse1primer 2.0 2.0 2.0 2.0 2.0 2.0

DeionizedWaterto25 17.5 17.0 16.0 14.0 12.0 10.0 l

Oncesomeoftheindividualreagentswereoptimized,oneofthenextsteps wastolookatthebestamountofgenomicDNAforthecleanest,strongestsignal.

Bothofthehighlightedsamplesintable3.8wereoptimal.Butinordertodetermine whichwouldbethebestoverallamount,anexperimentwasperformedonjustthe highlightedsampleschangingtheamountsof5’6FamEcoprimer.Again,thebest peakintensityisthedesiredresult.Also,asmentionedpreviously,optimizingeach stepofthisprocessbenefitstheresearcherinthelongrun.LimitedamountsofDNA willlikelybeavailableduringtheactualcomparisonsotestrunsareveryimportantto theoverallsuccessoftheprocedure.Someofthereagentspurchasedforthisanalysis comeinsmallquantitiesandcanbeexpensive.Unless,severalhundreddollarsare allottedtopurchasetheseitems,beingconservativewillsavebothtimeandfunding.

53

Table 3.9. Optimizing Genomic DNA

Optimizingthe6FamEcoprimerdyeusingDS1tailsatboth the6landthe8ldilutionrates DA1Tailatthe8ldilution Reagents DS1Tailat6ldilutionrate rate 6Fam 0.5 1.0 0.5 1.0 EcoPrimer Supermix 22.5 22.5 22.5 22.5

Mse1 2.0 2.0 2.0 2.0 Preamp 1.0 1.0 1.0 1.0 dilution

Aftergeneratingthistestandobtainingthesequencerresults,thehighlighted columnintable3.9wasthemostoptimalcombinationtousefortheentireseries.

Fromtable3.8,atestwasperformedonthetailsamples4.0landthe6.0l solutionsfirstattherecommendeddilutionaccordingtotheprotocolof1:40andthen thatwasalsodilutedbyafactorof1:10.Bothofthesewerethentestedusingthree differentM se Iprimers.Severalprimercombinationscouldbeusedtodothis research.Subsequently,alargeamountoftimeandeffortcouldbeinvestedinthis process.ReferringtoTable3.10below,itcanbeseenthatasignificantamountof effortwentintotestingjustthreeprimers.Luckwouldhaveitthattwooutofthethree wereoptimal,however,havingassistancefromthelabsupervisorandhisprevious workwentalongwaytosavingtimeinitially.

54

Table 3.10. Optimal M se Primer for Study

ComparingMseprimers

Tailsample@4.0lsolution Tailsample@6.0lsolution Reagents 1:40dilution 1:10of1:40 1:40dilution 1:10of1:40 inl 123 123 123 123 Supermix 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 Ecoprimer 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DNA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Mse 1 2.0 2.0 2.0 2.0

Mse 2 2.0 2.0 2.0 2.0

Mse 3 2.0 2.0 2.0 2.0

Afteranalysis,referringtotable3.10,itwasdeterminedthatthetwobest

primerswereM se I1andM se I3associatedwiththe6.0l1:40dilutionoverall.

Theyproducedhighlyvisibleallelepeaksasopposedto Mse 2.The Mse 2primer

producedincrediblyaveragepeakscomparedtotheothertwoprimersinboththe

1:40dilutionandthe1:10dilutionofthe1:40dilution.Nottosaythatthesearethe

verybesttwoprimersoverall,butforthistesttheyprovedbetter.Severalprimer

combinationscouldbetested.ReferringbacktoSection2.5.3Limitationsof

Polymorphicbanding,themostoptimalprimerstoproducethebestresultscouldbe

identifiedandtheenzymeandprimerselectioncanhaveanimpactonthe

productionofreliablebandingpatternsandthenumberofpolymorphisms. 55

Again,thechoiceofenzymeandprimercombinationscanplayamajorroleinthe

amountandqualityofvariationrevealed.

3.4.3. Visualization of Results. Thesequencerproducesviable resultsinjustamatterofafewhours.GeneMapperversion3.7(2003),wasthe softwarepackagechosentoanalyzetheresultsoncethedatawasrunthroughthe sequencer.Theinitialresultidentifiesthepresenceofandtheamountsofallelesbut assignsawidevariationofnumberstothem.Thesoftwaremustbecalibratedsothat theresultisanoutputofthenumbers0and1indicatingthepresenceorabsenceof allelepeaksamongstthesamplestested.Notealsothatthereportdisplaysthe intensityofthepeakaswell.

Thereportinitiallygeneratedmustbeconvertedintoatextfileandimported intoExcelformatforuseinotheranalysisprograms.SeeTable3.11inthenext section.Oncethisinformationhasbeenreformattedasadatasetforanumberof taxa,itwillbeimportedintoPAUP4.0(Swofford,2002)asoftwareprogramusedto analyzetheinformationandproduceaphlyogeneticdistancetree.Thetreescanbe visualizedthroughtheuseofanothersoftwareprogram,Treeviewer(2001).

Basically,thisanalysiswillproduceaminimumevolution“score”tomeasure evolutionarychangebasedonthedifferencesortransformationofcharacters.

Essentially,thedistanceiscalculatedbetweentheobservedsequencesbasedonthe observeddifferencesandthenthesedistancesbecomethebasisforthecriterioninthe analysisprogramthatassignaminimumevolutionscore. 56

3.5. AMPLIFIED FRAGEMENT LENGTH POLYMORPHISM (AFLP)

Eventhoughtheoptimizationandadaptationtablesseemsuperfluous,it cannotbestressedenoughtheimportanceofoptimizingtheproceduresbefore sacrificingtheextractedDNAsamples.Alimitedamountisavailableandonecould easilyusemost,ifnotall,oftheextractedDNAina“learnbydoing”approachto performingthisanalysis.

Ideally,theactualreactionsweretobeperformedon10tailsamplesfrom eachofthethreespeciesstudiedandanyofthequestionablespecimensthatwere collected.Inthisstudy,tensampleswerecollectedfromtheCaveSalamander,nine samplesfromtheDarksidedSalamander,onlythreesamplesfromtheLongtailed

Salamanderandfoursamplesfromthefourquestionablespecimens;onefromeach specimen.Theanalysiscouldactuallybedonewithjustonesamplefromeach species.However,themoresamplesthatcanbecollectedforanalysis,themoreloci thatcanbecompared,themoreenhancedtheresults.Itwasrelativelysimpleto collectalltheCaveSalamanderspecimensnecessaryforthestudy.TheCave

Salamanderpreferstobewithinthecavedwelling,henceitsname.Itwasslightly moredifficulttocollecttheDarksidedSalamanderspecimensastheytendtogoback andforthbetweenterrestrialandundergroundhabitats(Lannoo,2005).TheLong tailedSalamanderwasparticularlydifficulttocollectspecimensforthestudy.This salamanderisactuallylistedasfoundincavesinCrawfordCounty(Johnson,2000).

However,OnondagaCaveexistsintheNorthernmostsectionofthecountyandthe rangefortheLongtailedSalamanderendsinthesouthernmostpartofthecounty accordingtoJohnson(2000).Overthetwoyearsamplingperiod,onlythreeLong 57 tailedspecimenswereactuallycapturedformeasurements.Thisspeciesprefersthe leafyforestfloorandoldlogs,butwilloccupycavesduringthefallandwinter months.Duringallvisitstothesamplingsitefew,ifany,wereobserved.But,those thatwerecapturedwereincludedintheanalysissincetheDarksidedSalamanderisa subspeciesoftheLongtailedSalamander.Itwasthoughtgatheringsomegenomic

DNAfromthelimitedLongtailedspecimensmightprovidesomeinteresting informationthatcouldaddtotheanalysis.

AFLPwasperformedontheentiresetoftailsamplesfollowingtheprotocols listedinAppendixB.Refertotable3.11foracompletelistoftheprimersusedinthe reactions.

Table 3.11. AFLP Primers for this Project

Step Primers Sequencesforeachprimer 4 Preamp EcoR1 5’-GAC TGC GTA CCA ATT CA-3’ Mse 5’-GAT GAG TCC TGA GTA AC-3’

5 Selective EcoR1 5’-/6-FAM/ACT GCG TAC CAA TTC AGG -3’ amp Mse 1 5’-GAG TCC TGA GTA ACA T-3’ Mse 2 5’-GAG TCC TGA GTA ACT A-3’ Mse 3 5’-GAG TCC TGA GTA ACT T-3’

58

NotethattheM se I2primerwaslistedbutonlytestedduringoptimization.

Theprimerpeaksitproducedprovedpathetic;therefore,itwasnotusedinthestudy.

Oncethereactionswererunwithasizestandardandpaneltocompletethe sequencerstep,theywereinitiallyanalyzedusingGeneMapper3.7(2003).The softwareconvertsaseriesofthetailsampledatadetailingthepresenceand/or absenceofallelesandtowhatextentintoanelectropherogram.Thischartshowsthe peakintensitiesfortheallelesreported.SeeAppendixCforexamples.Anallele reportisthengeneratedbymanipulatingthedataintheprogramintoaseriesof0’s and1’s.“1”representsthepresenceofanalleleand“0”representstheabsence.

3.6. STATISICAL ANALYSIS

ThephenotypicdatageneratedfromthisstudywasanalyzedusingMystat,

(2002)ananalysisprogramdesignedforstudentsprovidedbySystatandSigmaPlot.

Themainfocuswasclusteringthedatainscatterplotsinanattempttogeneratethe preliminaryconclusionthatthequestionablespecimenswerephenotpyically distinctlydifferent.

AFLPsequenceranalysiswasinitiallygeneratedinGenemapper3.7(2003).

Onceconvertedthegeneticinformationwasusedtogeneratedistancetrees.

DistancetreesweregeneratedfortheAFLPdatausingthedefaultparametersfor distanceinPAUP4.0(Swofford,2002)utilizingtheWindowsformatandcommand systeminWindowsXP.AnalyseIfforExcel(1997)wasutilizedfortheregression analysisofthephenotypicdatacollectedfromthespecimens.Mystat(2002)wasalso utilizedforsomeofthescatterplots.Bothcanbedownloadedfreefromtheinternet. 59

4. RESULTS

4.1. PHENOTYPIC ANALYSIS

4.1.1. Overview of Data Collection. Forthephenotypicanalysis,theset ofmeasurementsmentionedinsection3.2wasrecordedforeachofthespecimens.

Theinformationwasgatheredforuseinsomedifferentstatisticalanalysesto determineiftherelationshipsamongmorphometricvariableswereallometric.The analyseswouldalsodetermineifthoserelationshipswereconsistentamongthe specimensexamined.Thistypeofanalysisiscommonlyused“inmanyorganisms wheretheratiobetweenincrementsinstructuresofdifferentsizeremainsroughly constant,yieldingarelativelygreatincreaseofonevariablewithrespecttoanotheron alinearscale”(Sokal/Rohlf,1980).

Eachsalamanderwasidentifiedbyspeciesandspecimennumber,i.e.CS1for CaveSalamandersample#1anditsmeasurementswererecordedinanExcel spreadsheetfileforcomparisonanalysis.

Regressionanalysiswasrunonsomeofthephenotypicinformationusing

AnalyzeIt(1997)pluginforMicrosoftExceltobetterunderstandtheallometric relationships.Asmentionedpreviously,thesetypesofanalysissoftwareareavailable asfreedownloadsfromtheinternet.AnothergoodsourceistheUniversitycomputer laborInformationTechnologygraduatestudents.

60

4.1.2. Scatterplots. Byutilizingscatterplots,alltheparameterswere takenintoconsiderationtoinitiallydeterminetheirusefulness.Severalcombinations werepluggedintoascatterplotgraphusingMystat(2002)andtheresultswere reviewed.

Whendifferentvariablesacrossallsampleswereplottedagainsteachother, severalinterestingpreliminaryresultsemerged.Totallengthwascomparedtoallof theothervariables.Specimensinthisstudywerecloselyobservedforanysignoftail brakeagebeforemeasurementsweretaken.Sincenoobvioustailbreakagewas observedinthespecimensmeasureditisassumedthatusingthismeasurementisa truemeasureofbodysize.Affectsoftailbreakageareparticularlyobviousinthatthe tailgrowsbackdifferently,eitherunusuallyshapedordistinctincolor.

Itwasdeterminedfromthegraphsthat,sincetotallengthwasbeingused,then headlengthwouldbeoflittleusesinceitisactuallypartoftheoverallmeasurement.

However,itwaspittedagainstoneothermeasurement,thatbeingheadwidth.

Weightwasusedasavariablewithtotallengtheventhoughtheoutcomemaynotbe useful.Theweightwasmeasuredingramsandthatnumberwasalwaysaneven numberwithnodecimalplaces.Asaresult,allthespeciesweightfellintooneoffour measurements.Costalgroovesasavariablewithtotallengthwouldlikelybe ineffectualaswellsincethatcountalsowereevennumbersandfellintooneoffour measurements.Unfortunately,Ineglectedtogetsnouttoventmeasurementsforall specimensthereforetherewasnotenoughdatatoutilizeit.Refertoscatterplotsin

Figures4.1through4.4below.Ideally,wewantedtoseeiftheundiagnosed specimensgroupedasaspeciesoftheirownoriftheysharedmixedcharacteristics. 61

Figure 4.1. Scatterplot—Femur Length vs. Head Width vs. Total Length

Figure 4.2. Scatterplot—Head Width vs. Head Length vs. Weight 62

Figure 4.3. Scatterplot—Total Length vs. Head Width vs. Weight

Figure 4.4. Scatterplot—Weight vs. Head Width vs. Femur Length

63

4.1.3. Regression Analysis. Refertoscatterplots,Figures.4.1through4.4 above.Thesegraphswereinitiallyutilizedtovisualizethedata.Ineachofthefour graphs,notethattheunknownsaren’tactuallyphenotypicallydistinct.Theytendto beinterspersedwiththeotherspecies.Yet,theydon’tactuallyfalloutwithany particulargroupeither.Regressionanalysiswasperformedforeachgroupusinga pairwisecomparison.

Regressionanalysisbasicallyanalyzestwovariables.Itshowsafunctional relationshipbetweenthetwovariables.Theprocessutilizesthedatatopredictvalues foroneofthevariableswhentheotherormultiplevariableshaveaspecifiedvalue.

AccordingtoSokaletal.dataregressionestimatestherelationshipofonevariable withanotheroneintermsofalinearfunctionofanother;thisisalsoknownas allometry.

Regressionanalysiswasappliedtofollowingfourcombinations:

HeadWidthversusFemurLength,HeadWidthversusHeadLength,Weightversus

TotalLengthandTotalLengthversusFemurLength.Theconfidenceintervals aroundtheslopewereproducedforallthegroups.Thisispromisingasconfidence intervalsaregoodindicatorsignsofrealrelationshipsbetweenthetwovariables.The firsttwocombinationshadgoodintervals.Table4.2illustratesthis.Thethirdgroup showedaslightlylargerconfidenceintervalandthefourthgrouphadan overwhelmingconfidenceinterval.Regressionanalysisisaformofhypothesis testingthroughtheuseofprecisecalculationsthatIwillnotgointoindepthexceptto saythatitinvolvesparameterssuchasstandarddeviations,probability,standard error,degreesoffreedom,residualsandslope.Thisinformationcanbeeasily 64 referencedandanumberofcomputerprogramsarenowavailabletoquicklyprovide neededanalysis.

Oncetheregressionanalysiswasdoneandconfidenceintervalswere established,pairwisecomparisonsoftheslopesfortheunknownspeciesversuseach oftheotherspecies(CaveSalamander,LongtailedSalamanderandtheDarksided

Salamander)usingthesamesetofparameters,wasperformed.

Becausethefourthcomparison,TotalLengthversusFemurLength,hadsuch largeconfidenceintervals,thereseemedtobenorealrelationshipbetweenthe variables.Basedonthisinformation,apairwisecomparisonoftheslopeswasnot doneonthisdataasitappearsthatitwouldnotproveuseful.Instead,Ichoseto comparetheWeightversustheTotalLengthmainlytouseadependentvariableother thanHeadWidthagainsttheindependentinsearchofanynewresults.

Confidenceintervalgraphsweredoneforeachgroup;Cave,Longtailed,

Darksided,andUnknown.Foursetsofvariableswereanalyzedinsearchofpositive correlationsassociatedwiththeallometricrelationships(depictedbytheslope).

Specifically,Iwaslookingforstatisticaldifferencewith,inthiscase,99% confidence.

Table4.1belowsummarizesthettestvaluesusedincomparisonofslopesfor alloftheregressionanalyseslistedpreviously.Oncetheslopeswerecalculatedusing theregressionanalysis,thecomparisonoftheslopesofthelinesforthequestionable orunknownsversuseachoftheothergroupsweredone.Table4.2depictsthe statisticalinformationnecessaryforthecalculations.

65

Thisinformationtellsusiftheyaretrulystatisticallydifferentfromone another.Theresultsoftheanalysiswilleitherprovethattheunknownsare phenotypicallydifferentorprovethattheyarenot.

Becausetheslopeofthelinesfollowalong tdistributions,asimple t-testwasperformed.Thisisparticularlyimportantforthisstudybecausethe samplingissuestalkedaboutpreviouslywillnotbesuchanissue.Ideally,asample sizeofthirtyspecimensforeachgroupwastobecollected.Inthiscase,thesmaller samplesizeswillnotaffectthestandarddeviationsandcalculationsforconfidence.

IntheHeadWidthversusFemurLengthcategory,theunknownswere statisticallydifferentfromtheotherthreespecieswith0.99%confidence.Inthe

HeadwidthversusHeadLengthanalysistheunknownswerenotstatisticallydifferent fromtheotherthreegroups.Also,intheHeadWidthversusTotalLengthanalysis theunknownswerenotstatisticallydifferentfromtheotherthreegroups.Inthelast analysis,WeightversusTotallengththeunknownswerenotstatisticallydifferent.

All ttestresultswerelessthanthestandarddegreesoffreedomforthisanalysis.

Itislikelythatwithothercombinationsofpairwisecomparisons,statistical differencescouldbefound.Withtheamountofmorphologicalmeasurementsthat weretaken,overfortydifferentcombinationscouldbeexaminedinorderto determinethisinformation.But,becauseitcouldbeextremelytimeconsuming,some wereselectedmainlybasedontheirbeingadependentoranindependentfactortosee howtheycomparedtoeachother.Actually,evenmorecombinationscouldbe generatedbychangingthedependentandindependentaxes.

66

Table 4.1. Summary of t-test Values

Pair wise Comparison of t-test Results

Salamanders HW vs. FL HW vs. HL HW vs. TL W vs. TL

Cave vs. Unknown

Confidence Interval

1.69 @ 95%* 3.15** 0.2118 0.035 0.0668

2.46 @ 99%**

Long vs. Unknown

Confidence Interval

2.13 @ 95%* 3.7605** 1.719 0.1667 0.3791

3.74 @ 99%**

Dark vs. Unknown

Confidence Interval

1.83@ 95%* 4.389** 0.6655 0.044 0.424

2.82@ 99%**

Thesevalueswereproducedafterextensivemathematicalcalculations;the stepofwhichareavailablethroughtheuseofanygoodbiostatisticalanalysis textbook.Keepinmindthough,thatitisjustasimportanttokeeptheregression analysisfiguresorganizedasitistokeepthemoleculardataorganized.Working withseveraldifferentnumericalvaluescanbeconfusingandeasilytransposed. 67

Table 4.2. Summary of Regression Statistics

Summary Statistics for Regression Lines

Head Width versus Femur Length Sal'mander r² s b intercept n CI p m ss r ss F 0.1279 to Cave 0.21 1.12 0.5555 5.535 29 0.9831 0.0128 8.89 33.76 7.11 -7.254 to Long 0.15 3.3 1.158 2.913 4 9.570 0.6137 3.82 21.76 0.35 -1.0907 to Dark 0 0.81 -0.0154 8.598 9 1.069 0.9822 0 4.62 0 0.797 to Unknown 0.95 0.56 2.763 -7.85 4 4.729 0.263 11.61 0.63 36.57

Head Width versus Head Length Sal'mander r² s b intercept n CI p m ss r ss F 0.2232 to Cave 0.35 1.01 0.4797 2.567 29 0.7362 0.007 15.1 27.6 14.72 -1.733 to - Long 0.96 0.69 -1.086 22.25 4 0.438 0.187 24.7 0.95 52.09 -0.1604 to Dark 0.2 0.73 0.2066 5.983 9 0.5736 0.2249 0.93 3.69 1.77 -3.1822 to Unknown 0.19 2.22 0.6113 0.5495 4 4.404 0.5598 2.37 9.87 0.48

Head Width versus Total Length Sal'mander r² s b intercept n CI p m ss r ss F 0.00599 to Cave 0.2 1.13 0.02925 5.504 29 0.0525 0.0157 8.43 34.22 6.65 -0.395 to Long 0.36 2.86 0.1307 -6.512 4 0.6573 0.3973 9.3 16.31 1.14 -0.0672 to Dark 0 0.81 0.00278 8.199 9 0.0728 0.9279 0.01 4.61 0.01 0.2307 to Unknown 0.25 2.14 0.05404 1.005 4 0.3388 0.5 30.6 9.18 0.67

Weight versus Total Length Sal'mander r² s b intercept n CI p m ss r ss F -1.675 to Cave 0.67 0.87 0.0390 -2.054 29 4.875 0.105 1.68 19.95 23.76 0.516 to Long 0.34 0.57 0.6576 1.629 4 1.629 0.516 2.228 0.088 0.266 -0.283 to Dark 0.106 2.81 0.2321 3.684 9 1.308 0.785 2.094 0.033 0.08 0.446 to Unknown 0.79 0.29 0.2120 -3.533 4 1.819 0.21 0.669 2.961 3.31

68

4.2. MOLECULAR ANALYSIS

Thispartoftheanalysiswasverychallengingfromstarttofinish.Itwasalso frustratingattimes.WhileextractingtheDNAwasfavorableinthisinstance,itcan beadifficultpartoftheprocessandthefinishedproductmaynotbeviable.Itis verydifficulttokeepthesamplesseparatedandkeepthemaccuratelymarkedduring theanalysisphase,thedataconversionphaseandPAUPprogramphase.Thiswas donewithonlyafewminorerrorsbutitrequiredmonumentaleffortandclearand concisethinkingthroughouttheentireprocess.Overall,thecompletedbatchof samplescameoutwell.Onlyafewsampleshadtoberemovedfromthetreeanalysis astheprimerpeakswereweakandnotofgoodintensity.Likely,thesourceofthis issuestemsfromatripthroughthethermocycler.Thecaponthevialwasnottightly closedandtheDNAwascompromisedasaresult.

Oncethetaildatawasconvertedintothe0and1format,itwasimportedinto anExceltabdelimitedtextfilesothatitcouldbeutilizedinthePAUPprogramto producethenecessaryanalysistogenerateatreeinTreeviewer.Seetable4.1foran exampleofthedataintextformat.Eachtailhadavaryingnumberofallelesthatthe programgenerated.Also,anumberofdifferentapproachesweretakenincomparing thedata.Theyincludedthefollowing:

1. ThetotaltaildatasetutilizingtheMseI1primerwascomparedtoeach

otherandscored.EachofthefourbinsetswithintheMseI1serieswere

comparedtoeachotherandscored;CaveSalamander,Darksided

Salamander,LongTailedSalamanderandtheQuestionableSalamanders. 69

Inaddition,eachquestionablesalamanderwasscoredcomparingittothe

othersalamandersfromallbinsets.

2. ThetotaltaildatasetutilizingtheMseI3primerwerecomparedtoeach

otherandscored.Again,allbinsetswerecomparedandscoredintheMse

I3seriesidenticaltothosedescribedfortheMseI1series.

OnceconvertedtoanExceltabdelimitedfile,commandreferencesareadded todevelopaNexusfileforcompleteprocessinginPAUP.Aheuristicsearchwas performedwithoptimalcriterionsettodistance,developinganumberof rearrangementsofthedatatoconstructthebestpossibletreeandassigningbranch lengthstocalculateaminimumevolutionscore.

Again,witheveryaspectofthisproject,keepingthedataorganizedwas paramount.Itisextremelyeasytomixupthemeasurementsinthephenotypicdataas thereisnotmuchdifferenceinsizes.Itisalsoeasytomixupsamplesinthe genotypicanalysisbecauseofworkingwithsuchsmallsamplessizesandamultiple specimensfrommultiplespecies.Thedataforthephylogenetictreeanalysisisalso easytomixupifthenumbersaren’tcloselymonitored.Itisimportanttonamethe specimenswithsimple,easytoremembernames.And,whendealingwiththetext filesbecarefulwithcuttingandpasting.Itisveryeasytomixupinformation.It helpedconsiderablytosavemultiplefileswithgoodlabelinganddeleteanythingthat didn’tworkthefirsttime.Savingtoomanyfilesbecomesconfusingespeciallywhen yousavethemwithsimilarnames.Untilonegetsfamiliarwiththisphylogenetictree program,severaltestrunsshouldbemadeinordertogettheinformationinprecisely therightorder.RefertoasampledatasetinTable4.3.below. 70

Table 4.3. Data Set from the Q5 Mse3 Binset

LT2 1 1 0 1 1 1 1 1 1 CS1 0 1 0 1 1 0 1 1 0 CS2 0 1 1 1 1 0 1 0 1 CS3 0 1 0 1 1 0 1 1 0 CS5 0 1 0 1 1 0 1 0 1 CS7 1 1 0 1 1 0 1 1 1 CS9 1 1 0 1 1 0 1 0 0 LT1 1 1 0 1 1 0 1 1 0 QS3 1 0 0 1 1 0 0 0 1 QS5 1 1 1 1 1 1 1 1 1 DS5 0 1 1 1 1 0 1 1 1 DS9 0 1 1 1 1 1 1 0 1 CS4 1 1 1 1 1 0 1 0 0 CS8 0 1 1 1 1 0 1 1 0 C10 0 1 0 1 1 1 1 1 1 QS2 1 1 1 1 1 0 1 1 0 QS4 0 1 1 1 1 1 1 0 1 DS2 1 1 1 1 1 0 0 1 0 DS4 1 1 0 1 1 0 1 0 0 CS6 0 1 0 1 1 1 1 0 1 LT3 0 1 1 1 1 1 1 1 1 DS6 0 1 1 1 1 1 1 1 1 DS8 0 1 0 1 1 1 0 1 1

Theoptimalcriterionsettodistancegeneratedacompletelytreecomparing branchlengthorobserveddifferencesintheallelestodeterminehowcloselyrelated thespeciesactuallycouldbetooneanother.Oneofthereasonsthistypeofanalysis wasimportantinthisprojectparticularlyinvolvesthequestionablespecimens.

Ideally,theresultstobelookingforwouldbeatreethatgroupedthequestionable specimensontheirownbranch.Unfortunately,thiswasnotthecase,questioningthe theorythattheycouldpossiblybeastandalonespecies.

Afterassessingallofthecombinationsofbinsets,itwasdeterminedthat,for thisanalysis,onlytheinformationcompiledforwhatwascalledthetotalbatchfor eachprimerwasutilized.Totalbatchisdefinedasallofthesamplesanalyzedfor eachoftheprimers.Also,bothprimerbatcheswerecombinedinordertocompare 71 theprimerstoeachother.Asaresult,threephlyogenetictreesweregenerated.All threetreescanbereferencedinAppendixDF.

Asmentionedpreviously,fourquestionablespecimensofunknownorigin wereexaminedandcomparedtotheknownspeciesbasedonvisuallyobserved unusualphenotypiccharacteristics.Eachofthefourspecimenshadacombinationof characteristicsfromeachoftheotherspecies.Theobservedcharacteristicsarenoted inthefollowingdiscussionbelow.

ThespecimensinquestionarelabeledQS2,QS3,QS4andQS5respectively inthephylogenetictrees.

ThevisuallyobservedphenotypiccharacteristicsforQS2includedthatit lookedlikeaCaveSalamander,itwasthesizeofaDarksidedSalamanderandithad tailmarkingssimilartoaDarksidedSalamander.Basedontheinformationprovided inthetreesitappearsthat,intheM se I1treeitiscloselyrelatedtoDarksided

Salamanders.IntheM se I3treeitappearstobemorecloselyrelatedtotheCave

Salamanders.But,inexaminingthetwotreesitcanbenotedthat,overall,theredoes notseemtobealargedistinctionbetweentheCaveSalamandersandtheDarksided

Salamandersresidinginthisparticularcavewhenfocusingonthecladesinwhichthe

QS2issituatedin.Thisobservationismadethough,basedonthetwoprimersused.

Thepossibilityexiststhatadifferentinterpretationcouldresultifothersetsof primerswereused.

ThevisuallyobservedphenotypiccharacteristicsforQS3includedthatithad

LongtailedmarkingsbutthecolorationofaDarksidedSalamander.Basedonthe informationthetreesprovidedhere,itappearsthat,intheM se I1treeandtheM se I3 72 treeitisverycloselyrelatedtotheDarksidedSalamanders.Infact,thereisvery littledistancebetweenitandseveralDarksidedspecimenstherefore,itisreasonable toassumethatthisquestionablespecimenisaDarksidedSalamander.

ThevisuallyobservedphenotypiccharacteristicsforQS4includedthatithad themarkingsofaLongtailedSalamander,thesizeofaDarksidedSalamanderand thecolorationandpatterningofaCaveSalamander.Basedontheinformationthe treesprovideforthisspecimenitappearsthat,inboththeM se I1treeandtheM se I3 treeitiscloselyrelatedtotwoothersalamandersbutthistimetheCaveSalamander andtheLongtailedSalamander.

ThevisuallyobservedphenotypiccharacteristicsforQS5includedthatithad anextralongtailliketheLongtailedsalamander,combinedmarkingsoftheLong tailedandtheDarksidedSalamanders,anditwasthesizeofaCaveSalamander.As seenwiththeQS4sample,itpullsoutwithCaveSalamandersandLongtailed

Salamanders.

Itmightbenoticedthatthetreecombiningbothprimersetswasnot referencedintheabovetext.Uponexaminationofthistree,noneworunpredicted resultsappearedthatwouldbeofuseinanalyzingthedata.

Mentionedpreviously,andreiteratedhere,theDarksidedSalamanderisa subspeciesoftheLongtailedSalamander.Therefore,weshouldbeseeingthem clusteringtogetherintheAFLPphylogenetictrees.Yet,inallthreetrees,theLong tailedSalamandersareconsistentlyclusteringwiththeCaveSalamanders.Basedon thisobservation,itappearsthatthereisagreatdealofgeneticdistancebetweenthe twosubspeciestheLongtailedSalamanderandtheDarksidedSalamander; 73 supportingthetheorythattheyshould,perhaps,beconsideredseparatespecies.

However,moreinterestingly,theLongtailedSalamandersinthiscavepopulation seemtohaveageneticmakeupcomparableorsimilartotheCaveSalamander; supportingthetheorythattheyareinterbreedingbackedupbytheevidencenoted above.

So,inconclusion,thefollowingcanbesaidconcerningtheresultsand subsequentdiscussionaboutwhatistakingplacehere.First,thefourspecimenswere utilizedinthisanalysisbasedonvisuallyobservedphenotypiccharacteristics.Each hadsomethinguniquelyunusualaboutthemtomakethemsuspect.Thevisual assessmentsparalleltheDNAtreeanalysisinallfourcases.Thescatterplots identifiedearlierconsistentlytellusthatthefourgroupsmentionedarenot phenotypicallydistinctlydifferenthowever,theyarenotdefinitivelywiththeothers either;supportingthepossibilitythattheycouldbehybrids.Mostoftheregressions performedwerenotsignificant.However,thevisualassessmentslookedlikethe unknownsweregroupingwiththeothers.Inotherwords,phenotypesaysthatthese unknownsarenotactuallynewspeciesbuttheyarenotknownspecieseither;astrong indicationthattheymaybehybrid.

Providedthatsomewhatidealprimerswereused,applyingAmplified

FragmentLengthPolymorphisminthisstudyhadprovedusefulindeterminingwhich speciesofsalamandersmighthavebeenbreedingtogethertomakethephenotypically distinctmorphs.Inthiscase,thereseemstobethreedistinctiveoccurrencestaking place: 74

1. Cavesalamandersanddarksidedsalamandersmightbeinterbreeding;

referringtotheresultsfromtheQS2sample.

2. Cavesalamandersandlongtailsalamandersarepotentiallyinterbreeding;

referringtotheresultsfromboththeQS4andtheQS5sample.

3. Therearedefinitedarksidedsalamanderswithdistinctcharacteristics;

referringtotheresultsfromtheQS3sample.

4.3. COMPARISON OF PHENOTYPIC AND MOLECULAR METHODS

Bothmethodsutilizeddatarelatedtothesalamanderstodetermineifthese questionablesamplesweredistinctspecies,actuallyinterbreedingorifthe characteristicsobservedweremerelyvariationswithineachoftheirownspecies.

Aseriesofanalysesforthephenotypicdatawasperformedthatyielded promisingresults.Theregressiondatawaspreciseandthestatisticalanalysis supportedthetheoriesidentified.

AFLPanalysisalsoprovedtobeapromisingapproachtothisanalysis.The treesgeneratedyieldedpointedtowardtheprospectthatsomethingwasdefinitely takingplaceamongthegeneticsofthegroupsstudied.Whencomparedtothevisual assessments,itcouldbesaidwithcertaintythatsomethingwasoccurring.

Computersoftwarehasmadeconsiderablestridesinrecentyearsandmany newprogramsareavailablefordataanalysis.Thisaspectoftheresearchwilllikely onlycontinuetoimprove.

AFLPisbecomingamorepopularapproachtoanalysis.Ithasbeenwidely usedforplantgenomestudiesinthelastseveralyears(Law1998,Barker1999,

Reisberg1999,Beismann,1997)andafewvertebratesforsexidentification.It 75 reducestimeconstraintsandissomewhatmorecosteffectiveandtheabilitytorefine theprimerchoicesisparamount.Somegeneticstudiesinvolvingtheuseof salamandershavebeendonewithRFLPandmicrosatellites(Weins2003,Riley

2003).OnemainreasonAFLPwaschosenforthisstudywasthatthereseemstobe limiteddocumentedliteratureontheuseofAFLPinrelationtosalamanders.

Microsatellitescouldhavebeenused.Thetechniquecombinestheuseofsmall alterationswithinthegeneticsequencewithamoredirectmeasurementofvariability thatofgenomicDNA.Itismostusefulinspeciesweretheshorttandemrepeatsare alreadyknown.Ifnot,agenomiclibraryofgeneticsequenceshastobedevelopedfor thespecies;requiringseveralPCRreactionsandsequencingbeforetheactualanalysis canbegin(Martin,2004).Thismustbedoneoneatatimeandthroughtheuseofgel electrophoresis.Whiletheycanbeusedforspeciesidentificationacrossabroad spectrumofanimals,AFLPcanprocesstheinformationsimilarlybutthroughtheuse ofasequencerandasoftwareprogramthatanalyzesthedataefficiently.

Microsatellitesalsohaveexpensivestartupcostsandtaxonomiclimitations

(Robinson,1999).

Overall,bothapproacheswerebeneficialinthecompleteanalysisofthe salamanders.However,usingAFLPasamodelforgeneticanalysisinsalamanders wasmeanttoaidintheadvancementofthisparticularapproachasitisreasonableto assumethatanincreasingnumberofhybridswillbediscoveredinthefuture.

Salamandersarewidelydistributedamongecosystemsandtheyareamenabletoboth molecularandquantitativestudies.Theyshouldprovetoberespectablemodelsfor futuregeneticinvestigation(Beebee,2005). 76

MuchtimewasspentduringthisinvestigationoptimizingtheAFLPprocess inrelationtosalamandersunderthepremisethattheknowledgegainedwillbenefit anyfuturestudiesofsalamanderpopulationsusingtheAFLPtechnique.

Ofcourse,thisparticularstudymerelyopensthedoorandbroachesthe questionofinterbreeding.Inordertotrulymakesomegood,solidconclusionsa muchlargerdatasetneedstobegathered.ThiswouldmaketheAFLPanalysismore viableandregressionanalysismorerefined,providingmoredefinitivevalues.

77

5. DISCUSSION

5.1. HYBRIDIZATION Humanimpactoncavesandrestorationpracticesassociatedwiththemwere discussedextensivelyinprevioussectionsofthisdocument.Presently,human disturbancehasbeenidentifiedandaddressedinanumberofwaysthroughtheuseof variedmanagementpracticesamongconcernedspeleologicalorganizations.Today, norealevidencepointstoalinkbetweenhumandisturbanceandthepossibilitythat salamandersmightbehybridizinginareaswherethis“human”factorhasbeen removed.Humandisturbanceofcaveecosystemsandlackofconcernwillalwaysbe issuesthatneedtobeaddressedinsomeforminthefuture.Perhaps,oneshould considerathoughtpatternsuchasthisasanongoinghypothesisforfuture generationstoinvestigate.Inviewofthat,whatotherpossiblefactorscouldbe employedinanattempttounderstandwhytheremightbeinbreedingamongthe speciesinthisgenus?Couldotherenvironmentalfactorsuniquetocaveecosystems beinvolved?

Thepreferredhabitatforallof the Eurycea speciesdiscussedconsistsofmoist areasorwaterlocatedinwoodlands,rockoutcroppings,caves,springsorcoldcreeks

(Johnson,2002).Theyeatmostlyinvertebratesthatenjoythesameorsimilarhabitat.

Allofthemlayeggsinwaterorthemoistcracksandcreviceslocatedintherock outcroppings.The Eurycea speciesarelunglessandlackgills;therefore,theybreathe throughtheirskin.Thesesalamandershavelimitedbreedingperiods,mostlyfrom

NovembertoApril.Cavesalamanders,inparticular,musthave limestone rock outcroppingsforbreeding(Johnson,2002). 78

Allarenocturnalandcanbeseenafterheavyrains.Certainenvironmentalconditions canlimittheirbreedinghabitsforexample,fluctuationsinthewaterlevelsinpoolsor pondsthattheymayusetobreedcanhaveasignificanteffect(Stebbins,1985).

VisualobservationatOnondagaCaveshowsthatthesalamandersseemtopreferthe naturalpoolswithinthecaveasopposedtothemanmadepoolsconstructedof concretedevelopedbyprivateownersinthe1970’s.

Asmentionedpreviously,theLongtailedsalamander’srangedoesnot actuallyreachNorthernCrawfordCounty.However,thesubspeciesoftheLong tailedsalamander,theDarksidedsalamanderisfoundextensivelythroughout

CrawfordCounty.Thevisualassessments,thestatisticalanalysisandthegenotype studyofthisgenusindicatethatsomesortofinterbreedingistakingplace.What mightbesomeoftheenvironmentalparametersinfluencingthishybridization?And, whywouldtheyactuallydothis?Typically,inbreedingisdetrimental,costsarehigh anditdecreasesfitnessinaspecies.Amixtureofgenesfromorganismsthatare distinctenoughtobecalledseparatespeciesdon’tusuallyproducehealthy,fit offspringthatcansurvive(Stebbins,1985).

Inarecentstudyoninterbreedingbetweeninvasivespeciesandnative salamanderspecies,Fitzpatricketal.(2007)foundthatinterbreedingbetweenthe

CaliforniaTigerSalamander,anative,andtheBarredTigerSalamander,aninvasive, areproducingoffspringwithanincreasedabilityforsurvival.Theyalsoindicatethat thishybridcouldpotentiallyreplacetheparentalpopulationsastheyaremore resistanttodisease,betteratpredatorescapeandmoreefficientfoodgatherers.

AccordingtoFitzpatricketal.(2007),concernsamongconservationistsswingboth 79 ways.Somefeelthatthishybridizationisbeneficialasitisfavoredbynatural selection.Othersdisagreeandfeelthatitisactuallyathreattothenativespeciesin theformofgeneticimpurity.

Inasimilarstudy,Veenetal.(2001)identifiedhybridizationandadaptive matechoiceinflycatchers.Typically,theoffspringofmatingbetweentwodifferent speciesareinfertileorhavelowreproductiverates.Inthiscase,piedandcollared flycatchers,twocloselyrelatedbirdspecies,appearedtobehybridizing.Aswiththe hybridoffspringoftheTigersalamanders,heterosisorhybridvigorisbeingexhibited withthehybridoffspringofthepiedmalesandthecollaredfemales.More specifically,theyareproducingmorefledglingslaterintheseasonthanpurecollared pairsproducingpeakperformancelateron.Also,notalloftheoffspringareactually hybrids.Inaddition,Veenetal.(2001)foundthatthiscombinationalsoproduced moremalethanfemaleoffspring.Theyhypothesizethatthishybridizationcould enhancespeciesdivergence.Forinstance,anynegativeoutcomeofhybridization mightputpressureonthetwospeciestoevolvebetterwaystodistinguishbetween eachother.

WhywouldthesalamandersinOnondagaCavebeinterbreedingthen?What factorscouldbeinfluencingtheirmatechoice?Firstly,let’sconsiderthespecies versussubspecies.TheDarksidedSalamanderisasubspeciesoftheLongtailed

Salamander.Butwhatactuallyconstitutesasubspecies?AccordingtoStebbins1985, thecharacteristicsofmanyspeciesdifferinvaryingpartsoftheirrange.IntheOzark region,thegeographicrangedistributionfortheDarksidedSalamanderoccurs throughoutsouthernandeasternMissouri.TheLongtailedSalamanderisrestricted 80 tothesoutheasternportionofMissouri.Thereisaboutatwocountywideregion wherethetwospeciesoverlap(Johnson,2002).Thiswouldbethepointwherethe characteristicsofonechangegraduallyintothoseoftheother.Thiszoneofchangeis identifiedasintergradation(Stebbins,1985).Thesubspeciesthatresultsarealso knownasgeographicvariantsorgeographicraces.

Asmentionedpreviously,separatespeciesdon’tusuallyproducehealthyand fitoffspring.AccordingtoStebbins(1985),thesubspeciescategoryhasbeenapplied intheabsenceofadequateinformationandwith“considerablesubjectivity.”

Previously,basedidentificationwasthemodefordistinguishinga subspeciesfromaspecies.So,asbiochemicaltechniqueshavebeendeveloped, appliedandanalyzedactualdegreesofgeneticdifferenceshavebeenassignedto groupsoforganisms.Stebbins(1985)indicatesthesetechniqueshaveshownthat somecloselyrelatedpopulationsareactuallyfullspeciesasopposedtoasubspecies.

Now,inthecaseoftheLongtailedSalamander,eventhoughitsrangeisin thesouthernmostpartofCrawfordCounty,afewspecimenswerefoundin

OnondagaCave.Whatcouldbethereasonforthis?Isthisanewlocalityof occurrence?Whatabouttheunusualindividualsorhybrids?Perhaps,theyareapart ofthehybridizationthathasbeenidentified.Actually,thereisalsothepossibility thattheyweretransportedoutsideofitsoriginalrange,perhapsbyhumans.

Anotherperspectivetoinvestigatewhythishybridizationistakingplaceisto takeacloserlookatthecavemicroclimate.Thecaveecosystemisfragileandhasa uniquebiologicalandecologicalstructure.Cavesareactuallymadeupofthreezones ofcavelife;theentrancezone,thetwilightzoneandthezoneoftotaldarkness 81

(Weaver,1992).Thesezonessupportdifferentaspectsofthelimitedfoodchainthat existsincave.Theentrancezonehaslimitedlightandthetemperatureandhumidity canvary.Mostoftheanimalsfoundatorneartheentrancearesurfacedwellersand don’tnormallygoveryfarbeyondtheentranceduetothelimitedfoodsource.The twilightzonebeginsjustinsidetheentranceandtypicallyendswheretotaldarkness begins.Thetemperatureandhumidityaremorestabilizedinthisareabutstillcan minimallyfluctuate.Thisisthezonewerevariousspeciesofinsects,frogs, salamanders,cavecrickets,andbatscanbefound.Thezoneoftotaldarkness supportsonlytroglobiticspecies,thosethatareblindandhavenopigmenttotheir skin.Temperatureofthewater,airandrockareconstantandthehumidityisconstant aswell.Inotherwords,thetemperatureisambientandremainsatabout56°year round.Couldthisaspectoftotaldarknessplayaroleinthe Eurycea interbreeding?

Sincesalamandersarebrightlycoloredandthiscolorlikelyplaysaroleinthe breedingritualsofthesalamander,woulditbeafactorinmatechoiceifthefemale couldnotactuallyseeitduetothelackoflightinthecave?Wouldthisthenincrease thepossibilitythattheywouldmatewiththeindividualmostavailabletothem?

OnondagaCavehasninetotalentrances;twoaremanmadeandsevenare natural.Theareastudied,theMissouriCavernssection,isamanmadeentrance.All oftheentrances,manmadeornatural,liewithintheentrancezoneofthecavewhere thetemperatureandhumidityfluctuateandthelightisverylimitedandgenerally nonexistentasthetwilightzoneisclose.Salamanderspreferawet,cool environmentgenerallyunderleaflitterinshadehabitatssuchaswoodlandsand forests.Theseareasarealwayswetandcool.Thecavemicroclimatemimicsthese 82 conditions.Itiswetandcoolinsidethecaveinthesummerandwinter(warmer insidethanout;butstillcoolandnotfreezing).Thereareanumberofreasonswhy theymightutilizethismicroclimateandwhyusingitmightbeafactorintheir interbreeding.Foodisprobablynotasignificantreasonwhythesalamandersstudied areusingthissectionofthecave.Smallinvertebratesarewashedintotheareaunder thedoorduringraineventsandtheycanfindtheirownwayinaswellsincetheylive intheleaflitterjustoutsidethedoor.Unlikethetroglobites,foodwouldnotbea limitingfactorastheredoesn’tseemtobecompetitionforthespace.Troglobites, suchastheGrottosalamander,aregenerallylimitedinnumberanddistributionbased onthelimitedfoodsource(Weaver,1992).Remember,thetroglobitesaredependent onthefoodthatothercreaturesbringinwiththemand/orleavebehind.Theseareas oftotaldarknessdon’tseemuchinthewayoflargeanimalorhumantraffic.Humans actuallyleaveafoodsourcebehindintheformofskincellsandhair,lintoffoftheir clothesandbacteriaandfungusbroughtinontheirshoes.

Thefluctuationinthehumiditycouldbeanotherfactor.Salamandersuse pheromonestoattracttheirmate.Inafanningmotiontheyattempttodistributethe pheromonethroughouttheareainwhichtheyreside.Highhumiditycouldactually assistinthisdistributionhelpingtocarrythescent(Rossi,1995).Thescentcould havealingeringeffectsinceitissuspendedinthethickair.Thiseffectiswitnessed onoccasionwhentoursaretakenintothecaveandsomeonehasaparticularodorto them,forexamplethesmellofacigarette.Thatscentisenhancedinthehighly humidconditionsandthewaftingsmellcanbeidentifiedfromagreatdistance. 83

Differentspeciesofsalamandershavebeenknowntoutilizehabitatsthatare notnecessarilytheirfirstchoice.Wilson(2003)observedalongwithothersthehabits oftheGreensalamanderintheKentucky,Tennessee,andVirginiaarea.TheGreen salamanderisprimarilyarockcrevicedweller.Butheandothersreportseeingthis salamanderinwoodyandevenarborealhabitats.Obviously,thesearenotrelated habitats.Theremusthavebeensomereasonwhythissalamanderchosetoinhabita differentarea.Apparently,thisspeciesofsalamanderonceusedthiswoody,arboreal habitatwhentheAmericanChestnuttreewasprevalent.Butbecauseofadeclinein thetreepopulationasaresultofthechestnutblightandthelossofthesubsequent woodydebris,thesalamanderbeganusingthecrevicesofrockoutcropsinstead.

Whataboutfactorsoutsidethecavemicroclimatethatcouldactuallyhavean effectonthemicroclimateitself?Changingweatherconditionsoutsidethecavecould dictatewhatthesalamandersconsiderdoinginsidethecave.Barometricpressure changes,temperaturechanges,precipitationandfreezingwouldaffecttheentrance zoneandthetwilightzonetosomedegree,inturnaffectingwhenorifthe salamandersusetheareas.Wilson(2003),reportsthattheyobservedthegreen salamanderbecomingmoreactiveduringperiodsofhighhumidity,duringmisting conditionsandduringlightandmoderaterain.But,inthesummertheywerenotseen asoftenduringperiodsofheavyorprolongedrain;possiblymakingittoowetfor matingrituals.Stebbins(1985)pointedoutthatconditionsofdifferingtemperatures andrainfallwerethebestguideforfieldobservations.Healsoindicatedthatthe knowledgeofthepatternsofdailyactivityinthesalamanderswasveryusefulin studyingthem.Studyingthedailyhabitsofsalamandersandtheconditions 84 associatedwiththecavemicroclimatewouldbebeneficialinformationthatcouldbe incorporatedintoacavemanagementplan.Thoroughrecordingofthistypeofdata maybeofhelpinansweringsomeofthesequestions.

Thecavemicroclimatemustalsoserveassomesortofprotectionfrom predation.Onecouldnotsayforcertainthatthiswouldhaveanydirectimpactona salamander’smatechoice,however.Thereareusuallyfactorswithinaspecies geographicrangethatkeepthemmatingwitheachothertocontinuethefitnessof theirspecies.Inadditiontothosediscussed,changesintheirgeographicrange,their movingintoadifferentlatitude,changesinthecoloroftheirsurroundings,changesin behaviorandchangesintheamountoflighttheyareexposedtocouldallplayarole intheirwillingnesstoinbreed(Stebbins,1985).

Let’snotforgetgoodbiodiversityandecosystemintegrity.Duringtrekstothe samplingsiteitwassurprisingthatifnootherspecieswasseenatthesamplingsite, anabundanceof Plethodon alabgula ortheWesternSlimysalamanderwasalways there;apparently,foragoodreason.Welshetal.(2001)identifythe Plethodontidae familyasaspeciesofsalamanderthathaveuniqueattributesmakingthemexcellent indicatorsofbiodiversityandecosystemintegrity.TheSlimysalamanderisnormally aterrestrial,forestfloordwellerthatoccursinhighdensitieswhenthehabitatexhibits signsofgoodbiodiversity.However,intheheatofthesummertheyareknowntogo undergroundandhavebeenfoundinMissouricaves(Johnson,2002).Theirpresence inlargenumbersintheMissouriCavernsentrancemightprovideaconnectionthat correlatesbiodiversityandecosystemintegritywith Eurycea interbreeding.

85

5.2. APPLICATION OF RESULTS

Thequestionsraisedandthosethatwereansweredcouldbebeneficialand serveasamodelforfuturediscoveriesofhybrids.Theinformationcouldprovide constructivebackgroundthatmightbenoteworthyindevelopingmanypartsofawell definedcavemanagementplan.

Thefinishedprojectprovedtohaveathreefoldresult.First,totakeacloser lookathowcavemanagement,restorationeffortsandhumandisturbancecould positivelyornegativelyaffectthecaveecosystem.And,whatmeasurescouldbe takeninthedevelopmentoftheseplanstoincludeimportantscientificresearchasa supplementtotheeffectivenessofthosemanagementplans.

Cavesplayanimportantpartinthequalityofourdrinkingwater.Asaresult, continuedandheightenedawarenessofthisuniqueundergroundenvironmentis paramount.Asdevelopmentonthesurfaceabovecaveecosystemsincreasesand changesinwaterqualityoccur,theseactionswillhavetobeaddressed.

Second,toapplythemoleculartechniqueAFLP,orAmplifiedFragment LengthPolymorphismasagenetictesttodetermineifhybridizationwastruly occurringwithinthegenus Eurycea .Thistechniquewaschosebecauseitwas inexpensive,relativelyeasytouse,andcouldbeutilizedforendangeredspeciesor speciesofconcernsinceitrequiresonlysmallamountsofgenomicDNA.And thirdly,tolookathowtheinformationgatheredcouldbeappliedtoassistin answeringthequestion—whydothespeciesinthisgenusappeartobeinterbreeding?

Theintentwastoaddressavarietyofenvironmentalissuesassociatedwiththecave ecosystemthatmightprovidesomeinsightastotheirwillingnesstointerbreed. 86

Forthisstudy,twospeciesofsalamandersandonesubspecieswereobserved inasectionofthecavethatisnowhighlyprotectedandwhereminimalhuman interactiontakesplace.Sixtyyearsago,multipletoursofindividualswereguided throughtheareaonadailybasis.Thethreegroupsstudiedwere Eurycea lucifuga ,the

CaveSalamander, Eurycea longicauda longicauda ortheDarksidedSalamanderand

Eurycea longicauda ,theLongtailedSalamander.Particularattentionwasfocusedon theCaveandDarksidedSalamandersasthesamplingsiteisonthenorthernmost boundaryoftheknowhabitattheLongtailSalamander;althoughafewspecimens wereidentifiedandsampled.TheAFLPtechniquewasappliedinattempttoidentify polymorphismsinrelationtoeachspecies.

Theseapplicationsnodoubthaveimprovedtheassessmentofscientifictheory onmanydifferentlevels.Priortotheseadvancements,speciesidentificationwas probablydonebyphenotypealone.And,mostofthestatisticalapproachesto analyzingthisdataonlyafewyearsagomightbeconsideredarchaicnow.Manyof thegeneticanalysiscapabilitiesavailabletodayarenotconceptsthataregenerations old.Imagineifthesegenotypiccapabilitieshadbeenavailabletoresearchers,when manyofthespeciesweactuallyhavetodaywerenamed.Theexponentialgrowthin speciesidentificationanddiscoverythatisseenonaregularbasistodaywouldhave startedmanyyearssoonerasaresult.

Moreresearchemployingthetechniqueinawiderangeofapplications shouldbedone.Becauseitcanbeappliedtosmallsamplingsizes,itprovidesan additionalwayforresearcherstostudyspeciesofconcern.Oneofthemore interestingaspectsofAFLPisthesoftwareusedinanalysis.Itcananalyzesmall 87 samplessizesfromseveralgroupssimultaneouslyandcrosscomparetheresults.

Thesefeatureswilllikelydrawtheattentionofprogressiveanalystsasitbecomes betterdocumentedandmorepopular.

5.3. CONCLUSIONS

Theresultsofthisprojectweresurprisinglyinterestingandexciting.Itraises yetmorequestionsaboutfuturestudiesofcaveecosystems.Thereareanumberof approachestogainingmoreknowledgetosupportthisaspectofthehypothesis.First, impactstudiesneedtocontinueandbecomemorerefined.Anumberofstudieswere citedinpreviousportionsofthisthesis.Environmentalimpactstudiesprovidethe scientificcommunitywithmuchofitsbasisfordevelopingpolicyandmanaging resources.

Next,toenhanceaprojectsuchastheonecoveredinthisdocument,habit studiesofthesalamandersthemselvesmightprovebeneficialinhelpingtonarrow downspecificsamplingtimesofthedayandseasonsoftheyear.Oneoftheissues dealtwithwastherandomnessofthesamples.Thereappearedtobenorhymeor reasontowheneachtypeofsalamander,ifany,wouldbepresentinthissectionofthe cave.Theunitwasvisitedanumberofways;goinginatdifferenttimesonthesame dayevenlateatnightandextremelyearlyinthemorning.Goinginondifferentdays andgoinginduringdifferentweatherevents,i.e.particularlywarmdaysor particularlycolddays.Visitsweremadeduringthedifferentseasons.Itappeared blatantlyobviousthatsalamanderscanbeveryelusive.ReiteratingStebbins(2005), 88 knowledgeofthedailyactivitypatternsofsalamanderswasveryusefulinstudying them.Ahabitsstudy,whilepotentiallyalongtermevent,couldproveuseful.

Experiencingthisrandomnessraisedanotherquestionforme.Arecent

NationalGeographictelevisionprogramdiscussedcaveecosystemswheremultiple speciesofbatshadevolvedtoutilizethecaveatdifferenttimesofthedayandnight todecreasecompetitionforspace.Couldthesalamandersbedoingsomething similar?Or,aretheyrandombecausetheycanbe?Nohumanactivityisoccurringin theareathatinhibitstheirmovement.InotherpartsofOnondagaCave,all employeeshaveobservedsalamandersutilizingdifferentareasofthecaveatdifferent timesoftheyearanditappearstobebasedonhumanactivityatthetime.Duringthe busiesttimesoftheseason,wedonotseeanyofthespeciesthatnormallyutilize

OnondagaCave.However,weregularlyseedifferentspeciesduringtheearlyandlate portionsoftheseasonwenttrafficflowisminimalornonexistent.Ahabitsstudy mightaddressthistheoryaswell.Anotherapproachtorefiningtherandomness wouldbeasalamanderspecificpheromonestudywherepheromonesexclusivetoa specieswouldbeusedto“drawout”orattracttheparticularspeciesofsalamanderto besampled.

Becausetheresultsofthisprojectseemedpromising,muchdiscussionhas takenplacewithcolleaguesinthecavingcommunity.Itisofspecialinteresttometo notethatseveralhavereportedvisuallyobservedphenotypicassessmentsinsomeof thecavestheyaremappinginMissouri.Ofparticularinterest,though,isthatthe anomalyisreportedtoexistincavestheyhavemappedintheOzarkregionof

Missouri.Oneindividualstatedthathehadseenthisinonlyfourothercavesoutof 89 aboutonethousandthathehasbeeninnationwide and allfourwerelocatedinthe

OzarkPlateau.Oneofthefour,CrystalCavelocatedinBerryCounty,Missouriwas aformercommercialshowcaveforalmost65years(Beard,1999).In1994,itwas closedtothepublicandisnowleasedbytheMissouriCaveandKarstConservancy.

Theyhavesomephotodocumentationofunusuallylookingsalamanders.

Inclosing,Imentionedpreviouslythatoneofthereasonsforasalamander beingoutsideitsrangewasasaresultofhumanintervention;someoneactually relocatingtheanimal.Thismayseemfarfetchedbutconsiderthemindsetofthe typicalcommercialcaveownerinthe1970’s.Firstofall,thereweren’tmanyofthem andtheyalllikelykneweachother.Atthattime,thiswasabigindustryandsome caveownerswentaboveandbeyondtopromoteandmarkettheir“product.”People wereprobablyjustasscaredofbatsthenastheyaretoday.But,asalamanderisnot alarmingtothegeneralpublicand,forthemostpart,isconsideredpretty.Whatare thechancesthatthecaveownerhereatthetime“transported”afewsalamandersto

CrystalCaveorvisaversaandstrategicallyplacedthemthroughoutthecavesothe visitingpubliccouldseeoneontheirtour?

90

APPENDIX A

STANDARD OPERATING PROCEDURE 91

APPENDIX A Extraction of DNA from Whole Tissue Samples Materials and Instrumentation:

REDExtractNAmpTMTissuePCRKit(SIGMA) 0.5clearmicrocentrifugetubesforspecimens ThermalCycler 70%Ethanolsolution ddH 20 50Lpipetteman 200Lpipetteman 200Lpipettetips TissueSamples Forceps

Protocol:

Instructionsadaptedfromkit. 1. Washforcepsinbetweeneachsampletokeepremovecontamination. 2. Removetissuesamplesfrom70%ethanolsolutionandplaceincleantube. 3. WashsamplethreetimeswithddH 20,discardingwaterbetweeneachwash. 4. Add100LofExactionSolutiontotissuesample. 5. Add25LofTissuePreparationSolutiontosample. 6. Mixlightlyorvortex.EnsureSampleiscompletelyimmersedinsolution. 7. Programathermalcyclerforonecycleof55 oCfor10min,andoneat95 oCfor 3min. 8. Runsamplesthroughthermalcycler. 9. Removeandadd100LofNeutralizationSolutionBfromKitandmix thoroughly. 10. Itisnormalthatthetissuemaynotbecompletelydigestedatthispoint. 11. SolutionisnowreadyfortheAmplifiedFragmentLengthPolymorphism reaction. Samplescanbestoredovernightat4 oC.Forlongtermstorageremovesolutionfrom tissueremnantsandplaceinanewtube.Storeat20 oCforupto6months.

92

Standard Procedure for DNA Column Binding Purification Process

Materials and Instrumentation:

1.1. QIAquickMineluteReactionCleanupKitProduct#28204

DNAExtractionSolution PBBuffer PEBuffer 2mLtubes 2mLfiltertubes 10Lpipetteman 200Lpipetteman TabletopMicrocentrifuge

Protocol:

TobindDNA,addthefollowingtoa2mLtube: 1.ExtractedDNASolution 100 µL 2.PBBuffer 500 µL 600 µL Letmixturesitatroomtemperaturefor5minutes. Centrifugemixtureatanythingover10,000rpmfor1minute. Towash,addthefollowingtotheeachtubefromthepreviousreaction: 1.PEBuffer 740 µL Centrifugeatanythingover10,000rpmfor1minute.Discardtheflowthroughliquid. Centrifugeagainfor5minutesdiscardinganyliquidandretainingthecenterofthetube (column)containing30 µLoffilteredandpurifiedDNA. Placethecolumninaclean2mLtube. ToeluteDNA,add30 µLofBufferEBinthecenterofthefiltercolumn. Letsitfor5minutes.Spin1minute.Keepthecontentsoftube. 93

APPENDIX B

AFLP OPERATING PROCEDURE 94

APPENDIX B Amplified Fragment Length Polymorphism (AFLP)

Materials and Instrumentation:

AFLPTemplatePreparationKit(LICOR) DNAExtractionSolutions SelectiveAmplificationPrimers TaqPolymeraseandBuffer 0.2mLmicrocentrifugetubes 0.5mLmicrocentrifugetubes 1mLmicrocentrifugetubes Labels ThermalCycler ddH 20 10Lpipetteman 50Lpipetteman 200Lpipetteman 1mLpipetteman 200Lpipettetips 1mLpipettetips

Protocol:

Preparation of Thermal Cycler: Preparethefollowingfour(4)programs.All4 oCSoakstepsaretoallowtheresearcher timetoreturnandremovereaction.Itisnotencouragedtoallowthefull24hour durationtoexpire. 1. AFLP1 a. 37 oCfor2hours b. 70 oCfor15minutes c. 4oCsoakfor24hours 2. AFLP2 a. 20 oCfor2hours b. 4oCsoakfor24hours 3. AFLP3 a. 94 oCfor2minutes b. 94 oCfor30seconds c. 56 oCfor1minute d. 72 oCfor1minute e. Repeatsteps(b)through(d)20times f. 4oCsoakfor24hours 95

4. AFLP4 a. 1cycleof i. 94 oCfor30seconds ii. 65 oCfor30seconds iii. 72 oCfor1minute b. 12cyclesloweringstep(4.a.ii)aboveby.7 oCeachcycle(STEPDOWN) c. 23cyclesof i. 94 oCfor30seconds ii. 56 oCfor30seconds iii. 72 oCfor1minute Protocol for Digestion: Addthefollowingtoa.2microcentrifugePCRtubeonice: 1. 5Xreactionbufferfromkit 5.0L 2. EcoR1/Mse1enzymemixfromkit 2.0L 3. SampleExtractionmixture 6.0L Volume: 13.0L MixGently,Centrifugeat2000rpmfor30seconds. PlaceinthermalcyclerandrunAFLP1program. Protocol for Ligation: Addthefollowingtoeachtubefrompreviousreaction(onice): 1. Adaptermixfromkit 24.0L 2. T4DNAligasefromkit 1.0L FinalVolume: 25.0L Mixgently,Centrifugeat2000rpmfor30seconds. PlaceinthermalcyclerandrunAFLP2program. Dilutebytransferring10Lofmixturetoanewtubeandadding90LTEbuffer. Labelremainingsolutionandstoreat20 oC. Protocol for Pre-Amplification:

Addthefollowingtoa.2mLtube(onice): 1. Dilutedligationmixture 2.5L 2. AFLPpreampprimermix(fromkit) 20.0L 3. PCRreactionbuffer(10X) 2.5L 4. TaqDNApolymerase(5units/L) 0.5L FinalVolume: 25.5L Mixgently,Centrifugeat2000rpmfor30seconds. PlaceinthermalcyclerandrunAFLP3program. 96

Oncecomplete,dilutePreAmpmixwitha1:40mix(5LofPreAmpplus195Lof ddH 20)inanewtube. StoretheconcentratedportionofPreAmpmixtureat20 oCforfuturedilutions.Store dilutedportionat4 oCovernightorat20 oClongterm. Protocol for Selective Amplification Working Mix: If chosen.

Addthefollowingtoa.5mLtube(onice): 1. ddH20 237L 2. 10xTaqbuffer 60L 3. Labeledprimer 50L 4. Unlabeledprimer 50L 5. dNTPmixture 50L

StoreoniceuntilpreparationsforfinalstageofAFLParedone. 6. AddTaqDNApolymerase(5units/L) 3L

Mixgentlyorvortextoensurehomogenousmixture.Sufficienttoperform50selective amplificationreactions,barringpipetteerror(usuallyaround4547). Protocol for Selective Amplification:

Addthefollowingtoa.2mLtube(onice): 1.Workingmix 9.0 µL 2.DilutedPreAmpMixture2.0 µL 11.0 µL Protocol for using Supermix in place of Working Mix for Selective Amplification:

Addthefollowingtoa.2mLtube(onice): 1. Supermix 22.5L 2. UnlabeledPrimer 2.0L 3. LabeledPrimer 2.0L 4. DilutedPreAmpmixture 1.0L FinalVolume: 11L Mixgentlyandcentrifugeat2000rpmfor15seconds. PlaceinthermalcyclerandrunAFLP4program. Dilutetoa1:10mixturebytransferring2LofthesolutionfromAFLP4toanew tubeandadding18LofFormamide. Final Samples are ready to be loaded into the sequencer tray . 97

Inaseparatetube,mix550LofFormamidewith30L600LizsizeStandard Mixgentlyorvortextoensurehomogenousmixture.Sufficienttoperform50selective amplificationreactions,barringpipetteerror(usuallyaround4547). Loadthefollowingintoeachlabeledwellofthesequencertray: 1. DilutedSelectiveAmplification 1L 2.SizeStandardMixture 10L 11L

APPENDIX C

AFLP ELECTROPHEROGRAMS

99

APPENDIX C AFLP Electropherograms

100

101

APPENDIX D

PHYLOGENETIC DISTANCE TREE-1 102

QS4

DS4

DS8

CS2

LT1

CS4

CS9

QS2

DS6

DS5

DS3

QS3

DS2

CS1

CS5

CS7

CS3

CS8

CS6

LT2

C10

QS5

LT3

DS9 103

APPENDIX E

PHYLOGENETIC DISTANCE TREE-2 104

LT2

QS5

C10

CS3

CS1

CS2

LT1

DS9

CS5

QS4

CS6

LT3

DS4

CS7

CS9

CS4

CS8

QS2

DS7

DS8

QS3

DS5

DS2

DS6 105

APPENDIX F

PHYLOGENETIC DISTANCE TREE-3 106 QS4

DS9

DS4

DS8

CS3

CS8

QS2

CS4

CS9

CS2

CS1

LT1

DS2

DS6

QS3

DS5

CS5

CS7

C10

LT2

QS5

CS6

LT3

107

BIBLIOGRAPHY

AnalyseIt,AnalyseItforExcel .AnalyseItSoftware,Ltd.Leeds,England.1997. Beard,Jonathon,Weaver,H.Dwight,“CrystalCaverns:ANewBeginning,”MCKC Digest . 6:Vol.3.4851.1999. Beebee,TJC,“ConservationGeneticsofAmphibians,”Heredity . 95 ,423427.2005. Blois,JessicaL.,Arbogast,BrainS.,“ConservationGeneticsoftheSonomaTreeVole basedonMitochondrialandAmplifiedFragmentLengthPolymorphism Markers,”JournalofMammalogy, 87 (5):950960.2006. Boston,Penelope,“LifeBelowand“OutThere”,TheAmericanGeologicalInstitute. Geotimes.2000. Boston,Penny,“StudyingSlime,”AstrobiologyMagazine ,MoffettField(SPX) November2004. Brenner,SydneyandMiller,JeffreyH.,EncyclopediaofGeneticsSanDiego :Academic Press.2002. Brown,EmilyS.andNiquette,CharlesM.,“CaveManagementandtheMilitary:An exampleatFortLeonardWood,Missouriabstract,”1984 Proceedings of the National Cave Management Symposium in Missouri pg.109.1986. Buecher,RobertH.,“PreDevelopmentStudiesatKartchnerCaverns,”1991 Proceedings of the Management Symposium in Kentucky pp144161 .1993.

ChurchillF.B.,“WilhelmJohannsenandtheGenotypeconcept,”JournaloftheHistory ofBiology 7530.1974. Conant,R.,andCollins,J.T.,PetersonFieldGuides:ReptilesandAmphibians, Eastern/CentralNorthAmerica ,ThirdEditionExpanded.HoughtonMifflinPress. 1998.

Culver,DavidC.andWhite,WilliamB.,EncyclopediaofCaves .ElsevierAcademic PressPublications,Burlington,Iowa.2005. Degani,G.,Jackson,K.,Dosoretz,C.G.andPlotzky,Y .,“DNAVariationin Salamandersfromdifferenthabitats,”IsraelJournalofZoology. 45 (2):239246. 1999. 108

Evans,A.,Lelania,D.C.,Forester,andMasters,B.S.,“RecognitionbyPopulationand GeneticSimilarityintheMountainDuskySalamander, Desmognathus ochrophaeus (Amphibia:Plethodontidae),”Ethology 103 :865875.1997. Forssell,ScottE.,“TheConceptofCarryingCapacityandhowitrelatestoCaves,”1977 Proceedings of the National Cave Management Symposium-Montana pp15.1997.

Fitzpatrick,Benjamin,Shaffer,H.Bradley.,“InterbreedingBetweenInvasiveandNative SalamanderSpeciesCreatesHardyHybridsLikelytoReplaceParental Populations,”NationalScienceFoundation .Arlington,Virginia.PressRelease07 122.2007. Genemapper3.7.Appliedbiosystems,Inc.AppleraCorporation.ForestCity,CA.(2003) Gorman,G.C.,andJ.Renzi,Jr.,“GeneticDistanceandHeterozygosityEstimatesin ElectrophoreticStudies:EffectsofSampleSize,”Copeia 1979 (2):242249.1997. Green,D.Earl,“AnesthesiaofAmphibiansintheField,”AmphibianResearchand MonitoringNationalWildlifeCenter.Madison,Wisconsin .2001. Gurnee,Russell,“RestorationofShowCaves.”1989Proceedings of the National CaveManagement Symposium in Texas pp4246.1991. HartlL,SeefelderS.,“Diversityofselectedhopcultivarsdetectedbyfluorescent AFLP’s,”TheoreticalandAppliedGenetics96 :112116.1998. HildrethWerker,Val,“MinimumImpactCodeofEthicsLechuguillaCave,”1997 Proceedings of the National Cave Management Symposium in Washington pp188 189.1999. Hill,Carol,PaoloForti,CaveMineralsoftheWorld. SecondEdition.National SpeleologicalSociety.Huntsville,Alabama.463pp.1997. Jaeger,J.R.,RiddleB.R.,JenningsR.D.,andBradfordD.F.,“Rediscovering Rana onca : EvidenceforPhylogeneticallyDistinctLeopardFrogsfromtheBorderRegionof Nevada,Utah,andArizona,”Copeia 2001 (2):339354.2001. Jehle,R.andArntzen,J.W.,“Review:MicrosatelliteMarkersinAmphibianConservation Genetics,”HerpetologicalJournal 12 ;pp.19.2002. Jennings,J.N.,KarstGeomorphology .BasilBlackwellInc.NewYork,NewYork.1985. Johnson,T.R.,TheAmphibiansandReptilesofMissouri 2nd .Edition.Missouri DepartmentofConservation.2002. 109

Kimberling,D.N.,FerreiraA.R.,ShusterS.M.,andKeimP.,“RAPDmarkerestimation ofgeneticstructureamongisolatednorthernleopardfrogpopulationsinthesouth westernUSA,”MolecularEcology 5:521529.1996. Lannoo,Michael,“AmphibianDeclines.TheConservationStatusofUnitedStates Species,”UniversityofCaliforniaPress.2005. Lewis,JulianJ.,“TheEffectsofCaveRestorationonsomeAquaticCaveCommunities intheCentralKentuckyKarst,”1991Proceedings of the National Cave Management Symposium in Kentucky pp.346 -350.1993. Malik,Tarig,“SpelunkingonMars:CavesareHotSpotsinSearchofLife,”Science Tuesday.2005. Martin,Adam,“EffectsofGeographicDistanceandDispersalBarriersonAmphibian Polymorphism,”M.S.Thesis.UniversityofMissouri.Rolla,Missouri.2004. MaughanP.J.,SaghaiMaroof,M.A.,BussG.R.,“AmplifiedFragmentLength Polymorphism(AFLP)inSoybean:speciesdiversity,inheritance,andnearisogenic lineanalysis,”TheoreticalandAppliedGenetics93;392401.1996. Miller,Benjamin,“SpeologenesisofCathedralCave,”MissouriDepartmentofNatural Resources.OnondagaCaveStatePark.Leasburg,Missouri.2004. MissouriDept.ofNaturalResources,GeologicTimeScale.GeologicalSurveyand Resource.Division. Fact sheet number 12 .Rolla,Missouri.2002. MissouriDept.ofNaturalResources,Missouri—TheCaveState.GeologicalSurveyand ResourceAssessmentDivision. Fact Sheet number 15 .Rolla,Missouri.2002. MissouriDept.ofNaturalResources,DivisionofStateParks.OnondagaCaveStatePark. Cave Management Plan .Leasburg,Missouri.2007. Page,Ronald,Treeview1.6.6 .DivisionofEnvironmentalEvolution.Instituteof BiomedicalandLifeSciences.UniversityofGlasgow.Glasgow,Scotland.2002. RidoutC.J.,DoniniP.,UseofAFLPincerealsresearch. Trends in Plant Science 4:76 79.1999. Riley,SethP.D.,Shaffer,H.Bradley,Voss,S.Randel,Fitzpatrick,BenjaminM., “Hybridizationbetweenarare,nativetigersalamander( Ambystoma calforniense ) anditsintroducedcongener,”EcologicalSocietyofAmerica .Ecological Applications13(5);pp.12631275.2003. 110

Ritland,K.,L.A.Dupuis,F.L.Bunnell,W.L.Y.Hung,andJ.E.Carlson, “Phylogeographyofthetailedfrog( Ascaphus truei )inBritishColumbia,” CanadianJournalofZoology 78 :17491758.2000. Robinson,JulianP.,Harris,StephenA.,“AmplifiedFragmentLengthPolymorphisms andMicrosatellites:APhylogeneticPerspective,”WhichDNAMarkerforWhich PurposeChapter12 .Dept.ofPlantSciences,UniversityofOxford.GreatBritian. 1999. Rohde,Katherine,“CaveRestorationandCaveManagement,”1978 Proceeding of the National Cave Management Symposium in New Mexico pp205207 .1999.

Rossi,J.V.andRossi,“SnakesoftheUnitedStatesandCanada:KeepingthemHealthy,” Volume2:WesternArea.KriegerPublishingCompany.Malabar,Florida.325pp. 1995. Stebbins,R.C.,AFieldGuidetoWesternReptilesandAmphibians .HoughtonMifflin Company.Boston,Massachusetts.336pp.1985. Stitt,Robert.R.,“HumanImpactonCaves,”1976Proceedings of the National Cave Management Symposium in Arkansas pp3643.1978. Swofford,D.L.,“PAUP*.PhylogeneticAnalysisUsingParsimony(*andOther Methods)”.Version4beta10.SinauerAssociates,Sunderland,Massachusetts. 2002. Systat12,Mystat12StudentVersion .SystatSoftware,Inc.SanJose,CA.2002. Thompson,ThomasL.,TheStratigraphicSuccessionInMissouri(Revised1995):Rolla, MissouriDepartmentofNaturalResources’DivisionofGeologyandLand Survey,v.40,118p.42figs,1tbl.L.1995. Vale,Eugene,“WhenDoYouThinkThey’llGetHere?”PatternsofVisitationat OnondagaCaveandTheirManagementImplications.”1995 Proceedings of the National Cave Management Symposium in Indiana pp297303.1997. Vos,Pieter,R.Hogers,M.Bleeker,M.Reijans,T.vandeLee,M.Hornes,A.Frijters,J. Pot,J.Peleman,M.Kulpter,andM.Zabeau,“AFLP:anewtechniqueforDNA fingerprinting,”NucleicAcidsResearch 23 (21):44074414.1995. Weaver,H.Dwight,TheWildernessUnderground:CavesoftheOzarkPlateau . UniversityofMissouriPress.Columbia,Missouri.113pp.1992. 111

Welsh,Hartwell,Droege,Sam,“ACaseforUsingPlethidontidSalamandersfor MonitoringBiodiversityandEcosystemIntegrityofNorthAmericanForests,” ConservationBiology .15:vol.3,558569.2001. Werker,Jim,“Restoration,TrailDesignation,andMicrobialPreservationinLechuguilla Cave.”1997 Proceedings of the National Cave Management Symposium in Washington pp181184.1999.

Wiens,JohnJ.,Chippindale,PaulT.,Hillis,DavidM.,“WhenarePhylogeneticAnalyses MisledbyConvergence?ACaseStudyinTexasCaveSalamanders,”Societyof SystematicBiologists.SystematicBiology 52 (4):pp501514.2003. Williams,RodN.,Dewoody,J.Andrew,“FluorescentdUTPhelpscharacterize10novel tetranucleotidemicrosatellitesfromandenrichedsalamander( Ambystoma texacum ) genomiclibrary,”MolecularEcologyNotes 4:pp.1719.2004. Wilson,ChristopherR.,“WoodyandarborealhabitatsoftheGreenSalamander( Aneides aeneus )intheBlueRidgeMountains,”ContemporaryHerpetology. 2: 8.2003. 112

VITA

MariaLouisePotterwasborninSt.LouisMissourionMay22,1965.Hers wasaneasyanduneventfulbirthashermotherwasemployedatSt.LouisUniversity HospitalasanOphthalmologyTechnician.Itwasliterallyaflightofstairsbetween thewombandtheworld.Upuntilagefour,shelivedinasubdivisionintheouter fringesofNorthSt.Louis.Fromthatpointon,shegrewuponatenacreparcelof landinruralCrawfordCounty,Missouri.SheattendedBourbonHighSchoolwhere shegraduatedinthetop10percentofaclassof64.Afterhighschoolgraduationin 1983,shewasacceptedtoEastCentralCollegeinUnion,Missourionscholarship wheresheearnedanAssociateofArtsDegreewithadoublemajorinBiologyand CommercialArtin1986.Atthatpoint,shewasacceptedintoSt.LouisUniversity onscholarshipdoublemajoringagaininBiologyandStudioArt.Herinitialintent wastoapplytoVeterinarySchoolbutlateroptedtotakeamoreecologicalapproach tobiology.Shegraduatedin1988withaBachelor’sofScienceinBiologyandArt. UpongraduationfromSt.LouisUniversity,sheobtainedemploymentwiththe MissouriDepartmentofNaturalResourcesworkingintheresourcemanagementand interpretationfieldsatvariousstateparks.Currently,sheisanaturalresource managerorparksuperintendentatOnondagaCaveStatePark.Itwasduringthis tenurethatshechosetopursueaMaster’sofSciencedegreeandappliedtothen UniversityofMissouriRolla.AfterreceivingherMSinAppliedandEnvironmental SciencesinMay2008,sheplanstoapplywhatshehaslearnedtovariousresearch projectswheresheisemployed. 113

114