Physical Science 1. Often Diving Accidents Occur Because the Diver

Total Page:16

File Type:pdf, Size:1020Kb

Physical Science 1. Often Diving Accidents Occur Because the Diver DEEP Project Topics Physical Science 1. Often diving accidents occur because the diver failed to get the proper training. An uneducated diver might hold his or her breath innocently wanting to conserve air. Proper diving training includes instruction in Boyle's Law, which explains that holding your breath on scuba can result in bursting your lungs! Research and explain the work of Robert Boyle. Design and perform an experiment that demonstrates Boyle's Law in action. Show how Boyle's Law relates to scuba diving. 2. A diver giggles as he removes his mouthpiece and offers it to a passing fish. There are several such stories of divers who begin to act dangerously strange as they dive deeper. The divers act drunk, although they have not been drinking. The problem is called nitrogen narcosis. Dalton's Law explains how the extreme pressure of deep diving forces more nitrogen into the blood causing nitrogen narcosis. Research and explain the work of John Dalton. Design and perform an experiment that demonstrates Dalton's Law in action. Show how Dalton's Law relates to scuba diving. (Warning: This is an advanced topic requiring strong science skills.) 3. When you open a bottle of 7-Up and see the bubbles form, and hear the fizzing, you are witnessing Henry's Law in action. If divers surface too quickly, bubbles can form in their blood just like in the 7-Up. This dangerous and painful condition is known as the bends. Research and explain the work of William Henry. Design and perform an experiment that demonstrates Henry's Law in action. Show how Henry's Law relates to scuba diving. 4. Charles' Law describes the connection between the temperature of a gas and the pressure exerted on the gas. Scuba divers breathe from a tank of air in a pressurized environment, so Charles' Law is important for all divers. Research and explain the work of Jaques Charles and Joseph Gay-Lussac. Design and perform an experiment that demonstrates Charles' Law in action. Show how Charles' Law relates to scuba diving. 5. Proper buoyancy control is very important to safe diving. Without proper buoyancy control divers would sink and bounce along the bottom, or be stuck floating on the surface. When buoyancy is adjusted perfectly divers gain the sensation of flight, gliding effortlessly over reefs and canyons that drop to the depths. Explain the science of buoyancy and describe the specialized equipment that divers use to control their buoyancy. Design and perform an experiment relating to buoyancy. DEEP Project Topics HUMAN PHYSIOLOGY 1. The effects of scuba diving on body temperature: • What is hypothermia? How do wet suits and dry suits work to maintain warmth? How large is the difference in body temperature with and without a wet suit? Why is being wet present a higher risk of hypothermia? What body organs work to regulate body temperature? • How do colder or warmer temperatures affect “warm-blooded” vs “cold-blooded” animals? Crickets vs humans? Fish vs humans? Daphnia? Does it affect their respiration rate? 2. The effects of scuba diving on senses: • Explain the physiology of hearing. How does being under water effect hearing? Are certain sounds (low or higher pitch) changed more by being under water? • Explain the physiology of vision. How is vision changed under water? Compare vision under water with and without a mask. Is color vision changed by being under water? • How did vision evolve underwater? Can you create and test different versions of “eyes”? • Can pressure affect vision underwater? 3. The effects of scuba diving on the circulatory system: • How does scuba diving affect heart rate and blood pressure? What accounts for these changes? Can we measure changes due to each of several causes? How quickly does the body return to normal? What influences this? • What is the “mammalian diving reflex”? Does it exist in humans? • How does circulation/heart rate change in guppies depending on water temperature? 4. The effects of scuba diving on the respiratory system: • How does diving change breathing rate? What factors cause this change or the amount of change? Does this vary from one individual to another? Explain the physiology behind changes in breathing rate. • What are the bends? What causes the bends and how can this be avoided? Explain the body's response to the bends. • What is nitrogen narcosis? What causes nitrogen narcosis and how does it affect the body? • Explore scuba tank air usage. Why do some people use more air? Does it depend on lung capacity? Mass? Fitness? Experience? DEEP Project Topics ECOLOGY TOPICS 1. What is ocean acidification? What is the affect of ocean acidification on coral reefs? Explore how climate change will change our oceans. Explore differences between calcium carbonate coral and aragonite coral. 2. How do various factors in the water affect the rate of decomposition of plant and/or animal materials or remains? What would overfeeding of fish or an “algal bloom” do to the dissolved oxygen in the water? What about pH, ammonia, nitrates and nitrites? 3. What is the relationship between dissolved oxygen and temperature in fresh and salt water environments? 4. Does pressure affect the rate of photosynthesis or cellular respiration? Is BTB an adequate way to measure this? 5. How do various pollutants affect the primary productivity and dissolved oxygen in ecosystems? How does a dark environment effect primary productivity? (Vernier) 6. What is the relationship between dissolved oxygen and pH? How does the pH of the water differ if plants or animals are living in it? What’s the role of sunlight? (Vernier) 7. What specific adaptations do local tidepool plants and animals have in order to survive in their environment? Compare and contrast these adaptations to those of organisms in other water environments. ENGINEERING TOPICS Engineering projects involve the design and construction of some kind of working object or machine. Often the machines are motorized. Examples include ROVs (remotely operated underwater vehicles), underwater habitats, remote controlled boats, underwater gliders, and more. The engineering projects are often very popular, but they are also very challenging for both the students and the DEEP faculty. For this reason we must limit the number of engineering projects. Students who demonstrate that they will be able to complete an engineering project, without taking up too much faculty time and intervention. Students who take on engineering projects understand that extra time and money will be required to complete the DEEP project. NEW TOPIC IDEAS You may have an idea for a project that is not listed above. We love new ideas! As long as the project relates to scuba, oceans, water, and science, you are welcome to give it a try. Talk with your DEEP advisors about your idea as early as possible for coaching on how to make your idea work in DEEP..
Recommended publications
  • Dysbarism - Barotrauma
    DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA.
    [Show full text]
  • Nitrogen Narcosis
    WHAT IS IT? A reversible alteration in consciousness that occurs while at depth (usually noticeable around 30 meters or 100 ft) Caused by the anesthetic effect of certain gases at high pressure NITROGEN NARCOSIS Depths Beyond 100 Feet! Individual Variability Day-to-Day Variability Signs and Symptoms of N2 Narcosis Impaired performance mental/manual work Dizziness, euphoria, intoxication Overconfidence Uncontrolled laughter Overly talkative Memory loss/post-dive amnesia Perceptual narrowing Impaired sensory function Loss of consciousness > 300 ft Deep Scuba Dives Breathing Air YEAR DIVER DEPTH 1943 Dumas 203 feet 1948 Dumas 307 feet 1967 Watts 390 feet 1968 Watson 437 feet 1989 Gilliam 452 feet Prevention of Nitrogen Narcosis Restrict diving depth to less than 100 fsw If affected, return immediately to surface Plan dive beforehand − Max time to be on bottom − Any decompression required − Minimum air required for ascent − Emergency action in event of accident Breathe helium/oxygen mixture How to Beat Narcosis (Francis 2006) Be sober, no hangover and drug free Be rested and confident Use a high quality regulator Avoid task loading Be over trained Approach limits gradually Use a slate to plan dive Schedule gauge checks and buddy checks Be positive, well motivated and prudent Oxygen Characteristics: − Colorless − Odorless − Tasteless Disadvantage: − Toxic when Oxygen is the only gas excessive amounts metabolized by the human body are breathed under pressure Too much or too little oxygen is dangerous! Oxygen Toxicity
    [Show full text]
  • What Are the Health Effects from Exposure to Carbon Monoxide?
    CO Lesson 2 CARBON MONOXIDE: LESSON TWO What are the Health Effects from Exposure to Carbon Monoxide? LESSON SUMMARY Carbon monoxide (CO) is an odorless, tasteless, colorless and nonirritating Grade Level: 9 – 12 gas that is impossible to detect by an exposed person. CO is produced by the Subject(s) Addressed: incomplete combustion of carbon-based fuels, including gas, wood, oil and Science, Biology coal. Exposure to CO is the leading cause of fatal poisonings in the United Class Time: 1 Period States and many other countries. When inhaled, CO is readily absorbed from the lungs into the bloodstream, where it binds tightly to hemoglobin in the Inquiry Category: Guided place of oxygen. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of the physiological mechanisms underlying CO toxicity. For specific learning and standards addressed, please see pages 30 and 31. MATERIALS INCORPORATION OF TECHNOLOGY Computer and/or projector with video capabilities INDIAN EDUCATION FOR ALL Fires utilizing carbon-based fuels, such as wood, produce carbon monoxide as a dangerous byproduct when the combustion is incomplete. Fire was important for the survival of early Native American tribes. The traditional teepees were well designed with sophisticated airflow patterns, enabling fires to be contained within the shelter while minimizing carbon monoxide exposure. However, fire was used for purposes other than just heat and cooking. According to the historian Henry Lewis, Native Americans used fire to aid in hunting, crop management, insect collection, warfare and many other activities. Today, fire is used to heat rocks used in sweat lodges.
    [Show full text]
  • THE 6 MAJOR BODY SYSTEMS and How They Interact with Each Other to Keep the “Body Machine” Alive and Working Well
    THE 6 MAJOR BODY SYSTEMS And how they interact with each other to keep the “body machine” alive and working well. CIRCULATORY SYSTEM / CARDIOVASCULAR SYSTEM PRIMARY PURPOSE: transport blood throughout the body by circulating PRIMARY ORGANS/PARTS: Heart, blood vessels (arteries, veins, capillaries) (1) Transports/carries nutrients and oxygen through the blood to most parts of the body (2) Transports/carries waste in cells and carbon-dioxide (CO2) away from the parts: (a) Cell waste goes to the kidneys for filter and disposal (b) Carbon-dioxide (CO2) goes to the lungs to exhale (breathe out) Kidneys and Lungs have a close relationship with Cardiovascular system Kidneys: filter through blood to take out the waste and get it eventually out of the body Lungs: breathes in oxygen and gives it to the blood for Circulatory system to carry throughout the body; and takes unneeded carbon-dioxide (CO2) from the blood and breathes that out. Circulatory/Cardiovascular System through the blood to most parts of the body provides nutrients and oxygen ​ which is needed for our bodies to have ENERGY! RESPIRATORY SYSTEM PRIMARY PURPOSE: Breathing - taking in Oxygen, pushing out Carbon-Dioxide (CO2) PRIMARY ORGANS: Lungs, trachea (tube going from lungs to nose/mouth) (1) Inhales (breathes in) Oxygen - good for the body - gives it to the Circulatory System to be transported throughout the body through the blood. (2) Exhales (breathes out) Carbon-Dioxide (CO2) - lungs get this gas from the blood (Circ. Sys.) and pushes it out of the body DIGESTIVE SYSTEM PRIMARY PURPOSE: take in food; break down food into nutrients (good) and waste (unneeded) PRIMARY ORGANS: Stomach, large and small intestines, esophagus (tube from stomach to mouth) (1) Digestive System gets nutrients (good) from food and hands it over to the blood and Circulatory System then carries those nutrients where they need to go.
    [Show full text]
  • Overview of the Circulatory System Fill in the Blank
    Overview Of The Circulatory System Fill In The Blank If orthotropic or rheumatoid Bernardo usually Germanising his erotica euphemize contractually or expect centrally and Malaprop, how pessimum is Tore? Obcordate Darius hale meltingly. Liberating and aerobatic Marco vandalise, but Lynn quickly unlives her margins. LESSON 1. Bio 104 Chapters 17 20 Cardiovascular System 33. Short-Answer Questions About Circulatory and Lymphatic System Infections. Circulatory system the concept to blood pressure and available and flake the currency of William Harvey II Overview the Concept Objectives The student will 1. Cardiovascular System Higher Education Pearson. Outline The Digestive System develop your textbook to one you clock in the blanks Where do. As the pulmonary circulation at the remaining circles from each blank to fill the in humans and cocaine affect the pulmonary vein in. Circulatory and Lymphatic System Infections GALILEO Open. The vascular diseases that red blood comes with their amazing heart failure occurs most of ingested food pieces of circulatory system, resulting pattern of the. 7 Circulatory System Diseases Symptoms Risks and More. For each definition given below fill date the inmate with the crate part that completes the term. The respiratory system access in blanks worksheet answers human digestive. FREE Circulatory System Activities and Classroom Resources Teacher Planet. Blood and Circulation Webquest Gates Chili. Then to pass through the systemic artery is vital for developing this system circulatory system is blood pressure, where they extend like you can adjust their understanding its chambers. Blood cannot flow diagrams a particular part in the circulatory system blank to. There are separated by which vitamins, fill the vessels that makes cells found, body and describing the.
    [Show full text]
  • Outta Gas (From the 2007: Exploring the Inner Space of the Celebes Sea
    2007: Exploring the Inner Space of the Celebes Sea Outta Gas FOCUS MAXIMUM NUMBER OF STUDENTS Gas laws 30 GRADE LEVEL KEY WORDS 9-12 (Chemistry/Physics) Celebes Sea SCUBA diving FOCUS QUESTION Gas laws How can Boyle’s Law, Charles’ Law, Gay-Lussac’s Ideal Gas Law Law, Henry’s Law, and Dalton’s Law be used to Boyle’s Law predict the behavior of gases used in SCUBA div- Charles’ Law ing? Gay-Lussac’s Law Henry’s Law LEARNING OBJECTIVES Dalton’s Law Students will define Boyle’s Law, Charles’ Law, Pressure Gay-Lussac’s Law, Henry’s Law, and Dalton’s Law. Worksheet Mathematics Students will use Boyle’s Law, Charles’ Law, Gay- Lussac’s Law, Henry’s Law, and Dalton’s Law to BACKGROUND INFORMATION solve practical problems related to SCUBA diving. Indonesia is well-known as one of Earth’s major centers of biodiversity. Although Indonesia cov- MATERIALS ers only 1.3 percent of Earth’s land surface, it “Blue Water Diving Worksheet,” one copy for includes: each student or student group • 10 percent of the world’s flowering plant species; AUDIO/VISUAL MATERIALS • 12 percent of the world’s mammal species; None • 16 percent of all reptile and amphibian species; and TEACHING TIME • 17 percent of the world’s bird species. One or two 45-minute class periods plus time for students to complete worksheet In addition, together with the Philippines and Great Barrier Reef, this region has more species SEATING ARRANGEMENT of fishes, corals, mollusks, and crustaceans than Classroom style any other location on Earth.
    [Show full text]
  • I960 DISSERTATION Ohio Ohio State University the Ohio State University Kenneth Rae Coburn, B
    THE CARDIOVASCULAR AND RESPIRATORY RESPONSES OF DOGS TO LETHAL CONCENTRATIONS OF CARBON MONOXIDE DISSERTATION Pi Q Pi resented in Partial Fulfillment of the Requirements for the egree Doctor of Philosophy in the Graduate School of the Ohio State University BY Kenneth Rae Coburn, B. S. The Ohio State University i960 Approved by AdvisorA r ^ T ri Department of Physiology ACKNOWLEDGMENTS I wish, to express my sincere appreciation for the guidance, enthusiasm and invaluable aid of Doctors Fred A0 Hitchcock, Earl T. Carter and Joseph F„ Tomashefski without whose assistance this study could never have been carried out. I am grateful to all those of the Cardiopulmonary Laboratory of the Ohio State Tuberculosis Hospital for the aid and assistance which they offered. CONTENTS Introduction ........................................................................ 1 Survey of the Literature A. Early History of CO Poisoning............................................ 4 B. Absorption and Excretion of C O...................................................... 5 C. Oxygen, Carbon Monoxide and Hemoglobin........ 8 D. Blood and Circulatory Changes in CO Poisoning...............................15 a. Blood Changes . 15 b. Blood Vessels and CO ................................................16 c. Behaviour of the Heart ...................................................16 E. Effect of CO on Respiration .............. 18 F. Recent Integrated Studies.............................................................................. 19 Methods and Procedures A. Anesthesia
    [Show full text]
  • Respiratory System Respiratory System the Role of the Respiratory System Is to Take in Oxygen and Release Carbon Dioxide from the Body
    Essential Question: How do major organ systems work together in living organisms? Standards: S7L2d. Explain that tissues, organs, and organ systems serve the needs cells have for oxygen, food, and waste removal. S7L2e. Explain the purpose of the major organ systems in the human body (i.e., digestion, respiration, reproduction, circulation, excretion, movement, control and coordination, and for protection from disease). Activating Strategy: Respiratory & Circulatory Activity – Have students record their at rest pulse. Then have students do jumping jacks beside their desk or outside for 2-3 minutes. After calling time have students record their pulse rate again. Ask the students to describe the activity and explain why they are breathing harder and their pulse rate is faster after the activity. Activating Strategy: Look at the animated picture to the right. What is the man doing? What is coming out of his mouth? Why? What is happening to his heart rate? Why? What is the connection between his breathing harder and his heart rate increasing? Why do Professional Football players breath pure oxygen on the sideline? Respiratory System Respiratory System The role of the Respiratory System is to take in oxygen and release carbon dioxide from the body. Nose/Mouth Trachea Lungs Alveoli Diaphragm Trachea connects the mouth and throat to the lungs (commonly known as the windpipe) Lungs Take in oxygen and expel carbon dioxide as we breathe Alveoli Where the exchange of oxygen and carbon dioxide occur in your blood http://www.youtube.com/watch?v=AJpur6XUiq4
    [Show full text]
  • Grade 6: the Heart and Circulatory System Lesson 1: the Heart Lesson 2: the Heart Rate Lesson 3: the Circulatory System and Blood
    Grade 6: The Heart and Circulatory System Lesson 1: The Heart Lesson 2: The Heart Rate Lesson 3: The Circulatory System and Blood Objectives: 1. Students will identify the four chambers of the heart 2. Students will identify four important structures of the Circulatory System and what they do. 3. Students will explain heart rate and be able to take their resting and active heart rates. 4. Students will describe the major functions of the Circulatory System. 5. Students will explain the role of the heart in circulation 6. Students will give a basic explanation of the cardio-pulmonary sequence. 7. Students will describe systemic circulation. Materials: Lesson 1: • Animal heart (Example: cow, pig, sheep) • Note cards • Picture of the heart (See Figure 1) • Dissection tools (Scissors, pan, etc.) Lesson 2: • Small drum • Watch or clock with second hand, or time • Optional: Stethoscope Lesson 3: • Corn Syrup • Plastic Beads: flat red disks, white ovals, green or blue seed beads • “Explain” experiment (per group): o Two small balloons or large finger cots o One clear tube (1/2” diameter) about 8” long o One clear tube (3/4” diameter) about 8” long o 16 - 20 oz. water o Red food coloring o Measuring cup o Funnel o Two empty plastic containers (such as cottage cheese or yogurt cartons) Activity Summary: In this lesson students will learn the basic functioning of the heart, Circulatory System and blood, the connection to lung functioning, and the activity of the Grade 6: The Heart & Circulatory System – Revised 2008 Page 1 Circulatory System in the body.
    [Show full text]
  • Digestive, Circulatory, and Respiratory Systems, Vol. 1
    Teacher Workbooks Science and Nature Series Digestive, Circulatory, and Respiratory Systems, Vol. 1 © Copyright 2004 Teachnology Publishing Company A Division of Teachnology, Inc. For additional information, visit us at www.teachnologypublishing.com Table of Contents Digestive System Class Notes-Digestion in Humans 1-2 Digestive System Vocabulary 3 Digestive System Cryptogram 4 Digestion Graphic Organizer 5 Digestive Word Search 6 Digestive System Crossword 7 Digestive System Quiz 8 Digestive System Travel Brochure Project 9 Digestive System Square Puzzle 10 Circulatory System Class Notes-Circulatory System 11-13 Circulatory System Vocabulary 14 Circulatory System Cryptogram 15 Circulatory Graphic Organizer 16 Circulatory Word Search 17 Circulatory System Crossword 18 Circulatory System Quiz 19 Circulatory System Matching Quiz 20 The Cardiac 100 Project 21 Human Respiratory System: Class Notes-Human Respiration 22 Respiratory System Vocabulary 23 Respiratory System Cryptogram 24 Respiratory Word Search 25 Respiratory System Crossword 26 The Oxygen Treasure Map Project 27 Respiratory Matching Quiz 28 The Diaphragm in Action! 29 Answers 30 © 2004 Teachnology, Inc. iii Name __________________________________ Date ____________________________ Digestion in Humans Digestion begins in the mouth. Teeth break down food mechanically. Amylase is an enzyme found in the mouth that breaks down starch. The epiglottis covers the trachea (windpipe) allowing food to freely flow to the esophagus followed by the stomach. Food is pushed through the digestive canal by tiny contracting smooth muscle tissue. This process is called peristalsis. The Stomach Food sits in the stomach for two hours. During this time, food is broken down by gastric juices secreted by the stomach wall. Gastric juice is composed of hydrochloric acid (HCl) and the enzyme pepsin.
    [Show full text]
  • Masteringphysics: Assignmen
    MasteringPhysics: Assignment Print View http://session.masteringphysics.com/myct/assignmentPrint... Manage this Assignment: Chapter 18 Due: 12:00am on Saturday, July 3, 2010 Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy A Law for Scuba Divers Description: Find the increase in the concentration of air in a scuba diver's lungs. Find the number of moles of air exhaled. Also, consider the isothermal expansion of air as a freediver diver surfaces. Identify the proper pV graph. Associated medical conditions discussed. SCUBA is an acronym for self-contained underwater breathing apparatus. Scuba diving has become an increasingly popular sport, but it requires training and certification owing to its many dangers. In this problem you will explore the biophysics that underlies the two main conditions that may result from diving in an incorrect or unsafe manner. While underwater, a scuba diver must breathe compressed air to compensate for the increased underwater pressure. There are a couple of reasons for this: 1. If the air were not at the same pressure as the water, the pipe carrying the air might close off or collapse under the external water pressure. 2. Compressed air is also more concentrated than the air we normally breathe, so the diver can afford to breathe more shallowly and less often. A mechanical device called a regulator dispenses air at the proper (higher than atmospheric) pressure so that the diver can inhale. Part A Suppose Gabor, a scuba diver, is at a depth of . Assume that: 1. The air pressure in his air tract is the same as the net water pressure at this depth.
    [Show full text]
  • Malignant Hypothermia PWSA.USA Scientific Orlando, Florida November 11, 2011 Hypothermia in PWS
    Janice Forster, MD Linda Gourash, MD LathamCenters Francie McDougall, RN Jacqueline Durette, APRN, BC Malignant Hypothermia PWSA.USA Scientific Orlando, Florida November 11, 2011 Hypothermia in PWS • Several case reports in middle‐aged PWS – Recurrence risk – No gender bias – Hypothermic response to ambient cold temperature challenge • Faulty homeostatic mechanisms – Abnormal pain/temperature perception (known) – Abnormal central sensor threshold (suspected) – Impaired insight and judgment – Cognitive inflexibility limits capacity for change Hypothermia in PWS • Neurobiology of thermoregulation • Causes of hypothermia • Somatic findings secondary to hypothermia • Morbidity associated with hypothermia • Case presentations • Treatment • Prevention Mechanisms of Heat Loss Radiation . 60% total heat loss . core to surface via . circulatory system S P I N A L C O R D Mechanisms of Heat Loss Radiation . 60% total heat loss . core to surface via . circulatory system Evaporation . 22% total heat loss S P I N A L C O R D Mechanisms of Heat Loss Radiation . 60% total heat loss . core to surface via . circulatory system Evaporation . 22% total heat loss S P Conduction & Convection I . 15% total heat loss N A . kinetic energy transferred L from body surface to C environment via laminar O R air/water flow D Temperature Regulation: Afferent S P I N SKIN A L C TRPM‐8 O R Cold/menthol sensor D Temperature Regulation: Afferent S P DORSAL ROOT GANGLION I N 50 % decreased SKIN A L temperature/pain C TRPM‐8 O R D Temperature Regulation: Afferent Hypothalamus
    [Show full text]