1 Effect of Trace Lanthanum Hexaboride and Boron Additions on Microstructure, Tensile Properties and Anisotropy of Ti-6Al-4V

Total Page:16

File Type:pdf, Size:1020Kb

1 Effect of Trace Lanthanum Hexaboride and Boron Additions on Microstructure, Tensile Properties and Anisotropy of Ti-6Al-4V Effect of trace Lanthanum Hexaboride and Boron additions on microstructure, tensile properties and anisotropy of Ti-6Al-4V produced by Additive Manufacturing M.J Bermingham1, S D McDonald, M.S Dargusch Centre for Advanced Materials Processing and Manufacturing, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia Abstract In this work trace lanthanum hexaboride (LaB6) and elemental boron are alloyed with Ti-6Al-4V and their effects on the microstructure, tensile properties (including anisotropy) and melt pool shape during Additive Manufacturing (AM) are investigated. During the melting process, the LaB6 scavenges oxygen and decomposes into La2O3 and TiB. The presence of the rare earth element drastically changes the apparent surface tension and shape of the deposited layers. This is attributed to the Heiple-Roper effect and could have benefits during AM in producing components with unsupported overhangs. The formation of eutectic TiB during the final stages of solidification results in highly directional TiB needles in between columnar grains that are aligned with the build direction. The slow cooling rate during deposition of approximately 90-100°Cs-1 produces very large TiB particles which can exceed 50µm in length. Although improving strength by up to 10%, under tensile stress the high aspect ratio TiB particles are sites for crack opening which leads to a decline in ductility in the longitudinal test direction and a corresponding increase in anisotropy over unmodified Ti-6Al-4V. Keywords: titanium alloys; characterization; stress/strain measurements; grains and interfaces 1 Corresponding author: [email protected] 1 1.0 Introduction Additive Manufacturing offers many advantages over conventional manufacturing processes and research efforts to advance this technology have grown considerably in recent years. Titanium alloys are strong candidates for AM because of their high material cost and the high cost of traditional manufacturing processes. Ti-6Al-4V is by far the most studied of all titanium alloys in AM and now researchers have a comprehensive understanding of the Ti-6Al-4V microstructure and properties inherent to AM. For instance, across multiple AM technologies with different cooling rates it is now understood that the solidification conditions during AM of Ti-6Al-4V generally favour epitaxial growth of textured columnar-β grains which can create material property anisotropy [1-7]. While incomplete fusion (and therefore porosity) between layers can also contribute to anisotropy during AM of Ti-6Al- 4V [8, 9], Kobryn and Semiatin [8] and Qiu et al. [10] have shown that, even after the removal of porosity through Hot Isostatic Pressing, or in the absence of porosity in the case of Carroll et al. [11], anisotropy still remains, on account of the microstructural texture. It has been proposed that grain boundary-α (which delineates the columnar prior β-grains) is susceptible to failure under tensile loads normal to the build direction and this can account for anisotropy [11, 12]. It is therefore important for future research efforts to find ways to prevent anisotropy. The most obvious way of achieving this is to produce homogeneous equiaxed microstructures during AM. There are two approaches that may improve the homogeneity in the microstructure of α+β titanium alloys produced during solidification. The first is to eliminate the highly textured columnar β-grains that result from the prevailing solidification conditions and alloy constitution, i.e. promote the Columnar to Equiaxed Transition (CET). The second approach is to refine the α-phase and eliminate unfavourable variants such as grain boundary-α or large α-colonies that can be several millimetres in size and adopt texture from the parent β-grain. Both of these approaches may be achievable through selective chemical alloying, however, to date there has been limited progress made in developing new titanium alloys for this purpose. Silicon is an effective growth restricting solute based grain refiner in titanium [13] and recently Mereddy et al. [14] investigated Ti-Si alloys during Wire Arc Additive Manufacturing (WAAM) in an attempt to achieve homogenous equiaxed grains throughout the build. Although substantial refinement of the grain size occurred (including the presence of some fine grained equiaxed crystals), ultimately the addition was unable to completely suppress epitaxial growth and some columnar grains still formed. Boron has also been studied as a grain refiner in trace additions to Ti-6Al-4V during AM processes. Although the columnar grain structure remained, Bermingham et al. [15] demonstrated substantial refinement of the α-grain morphology, elimination of continuous 2 segments of grain boundary-α and an improvement in compressive strength with trace boron additions during Ti-6Al-4V AM. In light of the work by Carroll et al. [11], the elimination of grain boundary-α is another promising approach that may eliminate anisotropy and warrants further investigation. Additions of as little as 1000ppm boron to cast Ti-6Al-4V are known to prevent the formation of grain boundary-α [16]. Recently the ASTM released a standard specification for additive manufacturing Ti-6Al-4V by powder bed fusion (ASTM F2924). The standard provides guidance on the acceptable chemistry tolerance of the base alloy, and interestingly, it indicates a provision for up to 0.1wt% of any ‘other’ elements2, up to a maximum of 0.4wt% in total. Potentially, new alloys could be carefully developed based on Ti- 6Al-4V that contain trace additions capable of eliminating the microstructural directionality and the associated anisotropy of AM while still complying with this new standard. However, there are only a handful of known elements that are powerful enough to impart substantial refinement in such small concentrations. Boron [17, 18], Beryllium [19], Carbon [20] and several Rare Earth elements including La and Y [21-24] have all been reported to refine the microstructure of titanium alloys in small concentrations during solidification. Rare Earth elements are also known to reduce the dissolved oxygen concentration in titanium through a ‘scavenging’ phenomena [25] and this trait could be very beneficial for AM. Not only could this permit the use of lower quality, cheaper feedstock material (i.e. with higher oxygen contents), but it also provides a margin of safety for AM processes that are vulnerable to atmospheric contamination. For example, there is growing interest in developing large scale ‘out of chamber’ AM technologies capable of producing components several metres in size [26] outside of an inert gas or vacuum chamber, and therefore, any trace alloy addition that can reduce the dissolved oxygen content has clear potential in AM processes susceptible to atmospheric contamination. The purpose of this study is to investigate the effect of trace Lanthanum hexaboride (LaB6) additions on the microstructure and tensile properties, including the effects of anisotropy, of Ti-6Al-4V components produced by Wire Arc Additive Manufacturing (WAAM). The level of addition is to be within the chemical tolerance specified by ASTM F2924, and thus considered to be present in ‘trace levels’. Although ASTM F2924 specifically relates to powder bed fusion AM, it is reasonable to expect that other AM processes including Directed Energy Deposition (such as WAAM, LENS etc.) would 2 ASTM F2924 specifies maximum levels for Al, V, Fe, O, C, N, H and Y but all other elements individually have a maximum allowance of 0.1wt%, up to a combined limit of 0.4wt%. 3 follow similar guidelines for acceptable alloy chemistry. Only a few researchers have considered using LaB6 as a trace alloy element in titanium and these have been exclusively in casting and powder metallurgy processes [27-29]. When mixed with titanium the LaB6 is reported to decompose into TiB and La2O3 (via the reaction 2LaB6 + 12Ti + 3O → 12TiB + La2O3), and the subsequent TiB is reported to refine the microstructure while the lanthanum lowers the dissolved oxygen content. Therefore, this is a promising compound to explore as a trace alloy addition to Ti-6Al-4V for AM. For comparison, Ti- 6Al-4V modified with trace boron is also investigated. Although the effect of trace boron additions on the microstructure and compressive strength of Ti-6Al-4V has been reported [15], to date no research has investigated the potential improvement in tensile anisotropy associated with the elimination of grain boundary-α with the introduction of TiB during AM of Ti-6Al-4V. 2.0 Experimental Methods The wire arc additive manufacturing technique was used for this study (details about the equipment available in [15]). Ti-6Al-4V wire was used as the feedstock and a wrought Ti-6Al-4V base plate was used as a substrate for the deposits. Three alloys were investigated in this study, namely Ti-6Al-4V, Ti- 6Al-4V + boron and Ti-6Al-4V + LaB6. As previously mentioned, the level of addition of B and La was targeted to be within the limits specified by ASTM F2924, i.e. <0.10wt% of each element. The boron and LaB6 containing alloys were prepared by coating the build surface with specially prepared alcohol based paints (each approximately 15wt% of LaB6 or B) prior to each deposition using a similar method as reported elsewhere [14, 15]. The average LaB6 powder size used in the paint was 10µm (Sigma Aldrich, 99%) and the average boron powder size was 1µm (Strem Chemicals, 92-95%). The average alloy chemistry sampled from multiple locations within the built components is shown in Table 1. Each deposit was created by moving the welding torch in a linear direction and feeding wire into the molten pool, which solidified to make a layer. A subsequent layer was then deposited over the first by increasing the height of the torch, however, between layers the direction of torch travel was reversed so that the component was built up in a zig-zag fashion.
Recommended publications
  • Material Safety Data Sheet
    MATERIAL SAFETY DATA SHEET SRM Supplier: National Institute of Standards and Technology SRM Number: 660a Standard Reference Materials Program MSDS Number: 660a Bldg. 202 Rm. 211 SRM Name: Lanthanum Hexaboride Gaithersburg, Maryland 20899 Powder, Line Position and Line Shape Standard for Powder Diffraction Date of Issue: 13 September 2000 MSDS Coordinator: Joylene W.L. Thomas FAX: (301) 926-4751 Phone: (301) 975-6776 e-mail: [email protected] ChemTrec: 1-800-424-9300 SECTION I. MATERIAL IDENTIFICATION Material Name: Lanthanum Hexaboride Powder, Line Position and Line Shape Standard for Powder Diffraction Description: SRM 660a is a high purity lanthanum hexaboride fine powder of 99.5 % purity or better. This material was ball milled and size classified to nominally < 15 µm. Other Designations: Lanthanum Boride Name Chemical Formula CAS Registry Number Lanthanum Hexaboride LaB6 12008-21-8 DOT Classification: Not regulated by DOT regulations Manufacturer/Supplier: Available from a number of suppliers SECTION II. HAZARDOUS INGREDIENTS Hazardous Component Nominal Concentration (%) Exposure Limits and Toxicity Data ACGIH TLV-TWA: No occupational exposure limits Lanthanum Hexaboride ~99 established SECTION III. PHYSICAL/CHEMICAL CHARACTERISTICS Lanthanum Hexaboride Appearance and Odor: a purple, crystalline powder Molecular Weight: 203.78 Specific Gravity (Water = 1): 2.61 Boiling Point: decomposes Melting Point: 2210 °C Solubility in Water (vol/vol at 0 °C): insoluble Solubility in Other Compounds: insoluble in hydrochloric acid MSDS 660a Page 1 of 3 SECTION IV. FIRE AND EXPLOSION HAZARD DATA Flash Point: N/A Method Used: N/A Autoignition Temperature: N/A Flammability Limits in Air (Volume %): UPPER: N/A LOWER: N/A Unusual Fire and Explosion Hazards: This material is an explosion hazard as a fine dust, especially over 600 °C.
    [Show full text]
  • A Quick and Versatile One Step Metal–Organic Chemical Deposition Method for Supported Pt and Cite This: RSC Adv., 2020, 10, 19982 Pt-Alloy Catalysts†
    RSC Advances View Article Online PAPER View Journal | View Issue A quick and versatile one step metal–organic chemical deposition method for supported Pt and Cite this: RSC Adv., 2020, 10, 19982 Pt-alloy catalysts† Colleen Jackson,a Graham T. Smith,b Nobuhle Mpofu,c Jack M. S. Dawson,a Thulile Khoza,d Caelin September,e Susan M. Taylor,f David W. Inwood, g Andrew S. Leach,h Denis Kramer, i Andrea E. Russell, j Anthony R. J. Kucernak a and Pieter B. J. Levecque *c A simple, modified Metal–Organic Chemical Deposition (MOCD) method for Pt, PtRu and PtCo nanoparticle deposition onto a variety of support materials, including C, SiC, B4C, LaB6, TiB2, TiN and a ceramic/carbon nanofiber, is described. Pt deposition using Pt(acac)2 as a precursor is shown to occur via a mixed solid/liquid/vapour precursor phase which results in a high Pt yield of 90–92% on the support material. Pt and Pt alloy nanoparticles range 1.5–6.2 nm, and are well dispersed on all support Creative Commons Attribution-NonCommercial 3.0 Unported Licence. materials, in a one-step method, with a total catalyst preparation time of 10 hours (2.4–4Â quicker than conventional methods). The MOCD preparation method includes moderate temperatures of 350 C in a tubular furnace with an inert gas supply at 2 bar, a high pressure (2–4 bar) compared to typical MOCVD methods (0.02–10 mbar). Pt/C catalysts with Pt loadings of 20, 40 and 60 wt% were synthesised, physically characterised, electrochemically characterised and compared to commercial Pt/C catalysts.
    [Show full text]
  • Preparation and Characterization of Lab6 Ultra Fine Powder by Combustion Synthesis
    Preparation and characterization of LaB6 ultra fine powder by combustion synthesis DOU Zhi-he, ZHANG Ting-an, ZHANG Zhi-qi, ZHANG Han-bo, HE Ji-cheng Key Laboratory for Ecological Utilization of Multimetallic Mineral of Ministry of Education, Northeastern University, Shenyang 110004, China Received 25 November 2010; accepted 16 May 2011 Abstract: High-purity, homogeneous and ultra fine LaB6 powders were prepared by combustion synthesis. The effects of reactant ratio and molding pressure on the phase and morphology of the combustion products were studied. The combustion products and leached products were analyzed by XRD, SEM and EDS. The results indicate that the combustion product consists of LaB6, MgO and a little Mg3B2O6. The combustion product becomes denser and harder when the molding pressure increases. The purity of LaB6 is higher than 99.0%. The LaB6 particle size is in range of 1.92–3.00 µm and the lattice constant of LaB6 is a=0.414 8 nm. Key words: combustion synthesis; lanthanum hexaboride; Mg3B2O6 content of free carbon in LaB6 products) and a poorer 1 Introduction sintering property. Although the nano-sized powders of LaB6 could be prepared by chemical vapor deposition Lanthanum hexaboride (LaB6) with divalent (CVD) [9], the yield was lower for a longer production rare-earth cubic hexaborides [1] has high melting point process. Therefore, it is important to develop an efficient (2 715 °C), high hardness, high chemical stability [2] and method to prepare LaB6 powders with high purity and the other special peculiarities [3] such as high and small particle size. Combustion synthesis has attracted constant electrical conductivity, low electronic work much attention to the synthesis of novel materials function, low expansion coefficient and high neutron because of high reaction speed, high temperature, high absorbability [4].
    [Show full text]
  • Time-Resolved Langmuir Probing of a New Lanthanum Hexaboride (Lab6) Hollow Cathode
    Time-resolved Langmuir Probing of a New Lanthanum Hexaboride (LaB6) Hollow Cathode IEPC-2011-245 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden • Germany September 11 – 15, 2011 Kimberly R. Trent1 and Michael S. McDonald2 Plasmadynamics and Electric Propulsion Laboratory, University of Michigan, Ann Arbor, MI 48104, USA Robert B. Lobbia3 Air Force Research Laboratory, Edwards, CA 93524, USA and Alec D. Gallimore 4 Plasmadynamics and Electric Propulsion Laboratory, University of Michigan, Ann Arbor, MI, 48104, USA Abstract: A new laboratory model lanthanum hexaboride (LaB6) hollow cathode sized for a 20 A HET discharge has been developed. The cathode design is based on previous high- current LaB6 cathodes. The cathode’s heating element, which is used to bring the insert to thermionic emission temperatures, is usually the most likely to break down. In this new LaB6 cathode, the heater has been redesigned to address various fail mechanisms such as the fusion of the heating element to other critical elements of the cathode, and the high-cost of replacing this component of the cathode. This relatively low-cost, and robust cathode was designed for use in experiments to aid in the contemporary modeling of electron dynamics in Hall-effect Thrusters (HETs), and for use in experiments to aid in the development of methods for electron energy distribution function (EEDF) control in HETs. In preparation for these experiments, this cathode was run in triode mode with an annular anode, and stable operation was achieved for various operating conditions. Various plasma parameters were calculated from Langmuir probe (LP) data at a point downstream in the plasma plume.
    [Show full text]
  • Nasa Tm X-71549 High-Efficiency, Low
    https://ntrs.nasa.gov/search.jsp?R=19740014756 2020-03-23T10:15:21+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server NASA TECHNICAL NASA TM X-71549 MEMORANDUM rV' I N74,22869 V (NASA-Ta-X-71549) HIGl-EFFICIENC!, << LCM-TEMPERATURE CESIUB DIODES WITH ELECTRODES. (NASA) "1 LANTUANUM-HEXABORIDE Unclas 19 p BC $4.00 CS.CL 09A 3 G3/09 38109 HIGH-EFFICIENCY, LOW-TEMPERATURE CESIUM DIODES WITH LANTHANUM-HEXABORIDE ELECTRODES by James F. Morris Lewis Research Center Cleveland, Ohio 44135 TECHNICAL PAPER proposed for presentation at Conference on Plasma Science sponsored by the Institute of Electrical and Electronics Engineers Knoxville, Tennessee, May 15-17, 1974 ABSTRACT Lanthanum-hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium- diode performance should result from the lower collector temperatures allowed for earth and low-power-space duties. Decreased temperatures will lessen thermal-transport losses that attend thermionic-conversion mechanisms. Such advantages will add to those from collector-Carnot and electrode effects. If plasma ignition difficulties impede diode tem- perature reductions, recycling small fractions of the output power could provide ionization. So high-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes appear feasible. i HIGH-EFFICIENCY, LOW-TEMPERATURE CESIUM DIODES WITH LANTHANUM-HEXABORIDE ELECTRODES by James F. Morris Lewis Research Center SUMMARY Emitters and collectors of lanthanum hexaboride may increase effi- ciencies of 1700 K cesium diodes by a factor of 3 over those previously obtained in nuclear thermionic space power programs.
    [Show full text]
  • Effects of Size and Structural Defects on the Vibrational Properties of Lanthanum Hexaboride Nanocrystals
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article http://pubs.acs.org/journal/acsodf Effects of Size and Structural Defects on the Vibrational Properties of Lanthanum Hexaboride Nanocrystals Chloe Groome, Inwhan Roh, Tracy M. Mattox,* and Jeffrey J. Urban* Lawrence Berkeley National Laboratory, The Molecular Foundry, One Cyclotron Road, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: Lanthanum hexaboride (LaB6) is notable for its thermionic emission and mechanical strength and is being explored for its potential applications in IR-absorbing photovoltaic cells and thermally insulating window coatings. Previous studies have not investigated how the properties of LaB6 change on the nanoscale. Despite interest in the tunable plasmonic properties of nanocrystalline LaB6, studies have been limited due to challenges in the synthesis of phase-pure, size-controlled, high-purity nanocrystals without high temperatures or pressures. Here, we report, for the first time, the ability to control particle size and boron content through reaction temperature and heating ramp rate, which allows the effects of size and defects on the vibrational modes of the nanocrystals to be studied independently. Understanding these effects is important to develop methods to fully control the properties of nanocrystalline LaB6, such as IR absorbance. In contrast to previous studies on stoichiometric LaB6 nanocrystals,
    [Show full text]
  • Experimental Comparison Between Hollow Cathodes with Cermet, Lanthanum Hexaboride, and Barium Oxide Insert Materials
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-2018 Experimental Comparison Between Hollow Cathodes with Cermet, Lanthanum Hexaboride, and Barium Oxide Insert Materials Nagual Simmons Western Michigan University, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Mechanical Engineering Commons Recommended Citation Simmons, Nagual, "Experimental Comparison Between Hollow Cathodes with Cermet, Lanthanum Hexaboride, and Barium Oxide Insert Materials" (2018). Master's Theses. 3711. https://scholarworks.wmich.edu/masters_theses/3711 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. EXPERIMENTAL COMPARISON BETWEEN HOLLOW CATHODES WITH CERMET, LANTHANUM HEXABORIDE, AND BARIUM OXIDE INSERT MATERIALS by Nagual Simmons A thesis submitted to the Graduate College in partial fulfillment of the requirements for the degree of Masters of Science Mechanical Engineering Western Michigan University August 2018 Thesis Committee: Dr. Kristina Lemmer, Ph.D., Chair Dr. Jennifer Hudson, Ph.D. Dr. Mike McDonald, Ph.D. Copyrighted by Nagual Simmons 2018 EXPERIMENTAL COMPARISON BETWEEN HOLLOW CATHODES WITH CERMET, LANTHANUM HEXABORIDE, AND BARIUM OXIDE INSERT MATERIALS Nagual Simmons, M.S. Western Michigan University, 2018 This thesis compares two different hollow cathode assemblies (HCA) using three different insert materials. NASA’s Jet Propulsion Laboratory (JPL) provided the H6 HCA and the Lanthanum Hexaboride (LaB6) insert. A barium oxide (BaO) insert was purchased from E- beam and used with the H6 HCA.
    [Show full text]
  • A Comparison of Lanthanum Hexaboride, Cold Field Emission and Thermal Field Emission Electron Guns for Low Voltage Scanning Electron Microscopy
    Scanning Electron Microscopy Volume 3 Number 1 3rd Pfefferkorn Conference Article 15 1984 A Comparison of Lanthanum Hexaboride, Cold FIeld Emission and Thermal Field Emission Electron Guns for Low Voltage Scanning Electron Microscopy J. Orloff Oregon Graduate Center Follow this and additional works at: https://digitalcommons.usu.edu/electron Part of the Biology Commons Recommended Citation Orloff, J. (1984) "A Comparison of Lanthanum Hexaboride, Cold FIeld Emission and Thermal Field Emission Electron Guns for Low Voltage Scanning Electron Microscopy," Scanning Electron Microscopy: Vol. 3 : No. 1 , Article 15. Available at: https://digitalcommons.usu.edu/electron/vol3/iss1/15 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Electron Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Electron Optica l Systems (pp. 149- 162) 0- 931288-34-7/84$1 . 00+.05 SEM lnc., AMF O'Hare (Chic ago ), IL 60666-0507, U. S. A. A COMPARISONOF LANTHANUMHEXABORJDE, COLD FIELD EMISSIONAND THERMALFIELD EMISSIONELECTRON GUNS FOR LOW VOLTAGESCANNING ELECTRON MICROSCOPY J. Orl off Oregon Graduate Center Department of Applied Physics and Electrical Engineering 19600 N.W. Walker Road Beaverton, Oregon 97006 Phone no: (503) 645-1121 Abstract Introduction A comparison of lanthanum hexaboride, cold Electron beam testing of semiconductor W(310) field emission and Zr/W thermal field devices is a subject of rapidly increa s ing emi ssion cathodes was made by calculating the importance. In fact, e-beam testing may well be current-spot s iz e relationship for each, using the most important use of low voltage scanning comparable lenses, to determine which would be electron microscopy .
    [Show full text]
  • Thermal Analysis and Testing of Different Designs of Lab6 Hollow Cathodes to Be Used in Electric Propulsion Applications
    aerospace Article Thermal Analysis and Testing of Different Designs of LaB6 Hollow Cathodes to be Used in Electric Propulsion Applications Ugur Kokal † , Nazli Turan ‡ and Murat Celik * Department of Mechanical Engineering, Bogazici University, Istanbul 34342, Turkey; [email protected] (U.K.); [email protected] (N.T.); * Correspondence: [email protected] † Currently Ph.D. student at Istanbul Technical University, Istanbul, Turkey. ‡ Currently Ph.D. student at Notre Dame University, North Bend, IN, USA. Abstract: LaB6 emitters are commonly used in hollow cathodes that are utilized in electric space propulsion systems. In order to obtain necessary surface current emission densities of 1–10 A/cm2 for ◦ cathode operations, LaB6 emitters require temperatures above 1500 C. Hence, the design for LaB6 cathodes presents thermal and mechanical challenges. In this paper, several design iterations for LaB6 hollow cathodes are presented and thermal analyses are conducted for each design. Temperature and heat flux distributions that are obtained from thermal analyses are investigated. The designs are evaluated according to the required heat input to the emitter, and the radiative and conductive heat loss mechanisms. In addition to the thermal analyses, experimental tests are conducted for different cathode designs and, based on these tests, various modes of failure are determined. Revising the cathode design and the material selection iteratively to eliminate the encountered failure mechanisms, a novel cathode design is achieved. Experimental tests of this novel cathode are conducted and current-voltage characteristics are presented for different mass flow rates and for discharge currents Citation: Kokal, U.; Turan, N.; Celik between 0.5 and 12 A.
    [Show full text]
  • Instrumentation, Electron Optics and X-Ray Spectroscopy T
    INSTRUMENTATION, ELECTRON OPTICS AND X-RAY SPECTROSCOPY T. Mulvey To cite this version: T. Mulvey. INSTRUMENTATION, ELECTRON OPTICS AND X-RAY SPECTROSCOPY. Journal de Physique Colloques, 1984, 45 (C2), pp.C2-149-C2-154. 10.1051/jphyscol:1984233. jpa-00223946 HAL Id: jpa-00223946 https://hal.archives-ouvertes.fr/jpa-00223946 Submitted on 1 Jan 1984 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C2, supplément au n°2, Tome 45, février 1984 page C2-149 INSTRUMENTATION, ELECTRON OPTICS AND X-RAY SPECTROSCOPY T. Mulvey Department of Physios, The University of Aston in Birmingham, B4 7ET, U.K. Résumé - Les développements récents dans le champ d'instrumentation du micro­ analyseur à rayons X sont revus, ainsi que les canons électroniques, les systèmes des lentilles et les détecteurs des électrons rétrodiffusés (Z contraste). Les amé­ liorations souhaitables pour l'analyse des échantillons minces à l'aide de la spec- trométrie à dispersion en énergie sont aussi discutées. Abstract - Recent instrumental developments in the field of electron probe instrumentation are reviewed. These include electron guns, lens systems and back-scattered electron (Z contrast) detectors.
    [Show full text]
  • Large-Area. Lanthanum Hexaboride Electron Emitter D
    -Large-area. lanthanum hexaboride electron emitter D. M. Goebel, Y. Hirooka, and T. A. Sketchley University of California, Los Angeles, School ofEngineering and Applied Science, Los Angeles, California 90024 (Received 2 April1985;. accepted for publication 10 June 1985) A large-area cathode assembly which is capable of continuous, high-current electron emission is described. The cathode utilizes an indirectly heated lanthanum hexaboride (LaB6) disk as the thermionic electron emitter. The LaB6 cathode emits over 600 A of electrons at an average of 20 A/cm2 continuously with no obs~rvable lifetime limits to date after about 400 h of operation in a 'plasma discharge. Proper clasping of the LaB6 disk is required to avoid impurity production from chemical reactions with the holder and to provide adequate support if the disk fracture~ during rapid thermal cycling. Modification of the LaB6surface composition due to preferential sputtering of boron by hydrogen and argon ions in the plasma discharge has been observed. The surfl;l.ce appearance is consistent with the formation of LaB4 as a result of boron depletion. The electron emission' capability of the cathode is not significantly altered by the surface change. This surface modification by preferential sputtering is not observed in hollow cathodes where the ion energy from the cathode sheath voltage is typically less than 50 V. The electron emission by the cathode has not been affected by exposure to both air and water during operation. Utilizing thick disks of this intermediate temperature cathode material results in reliable, high-current, long­ lifetime electron emitter assemblies. INTRODUCTION I. ELECTRON EMITTER CHARACTERISTICS Large-area cathodes capable of high current density electron Lanthanum hexaboride was first described by Lafferty6 emission are required for many applications such as in ion for use as an electron emitter.
    [Show full text]
  • AP TECH APPLIED PHYSICS TECHNOLOGIES Refractory Materials & Electron Sources
    AP TECH APPLIED PHYSICS TECHNOLOGIES Refractory Materials & Electron Sources Building the World’s Best Cathodes LaB6 and CeB6 cathodes are ideal for many small spot size applications such as SEM, TEM, surface analysis and metrology, and for high current applications such as microwave tubes, lithography, electron-beam welders, X-ray sources and free electron lasers. Applied Physics Technologies has 1600 NE Miller Street decades of experience in research, McMinnville, Oregon development, and manufacturing 97128 USA of LaB6 and CeB6 cathodes. We can provide the cathodes you ph. 503.434.5550 need for replacement, OEM, fax. 503.434.1312 email. [email protected] and custom applications. web. a-p-tech.com Lanthanum hexaboride (LaB6) and cerium hexaboride (CeB6) cathodes The unique properties of hexaboride crystals provide stable electron-emitting media with work functions near 2.5 eV. The low work function yields higher currents at lower cathode temperatures than tungsten, which means greater brightness (or current at the beam focus) and longer cathode life. Typically, these cathodes exhibit 10 times the brightness and more than 10 times the service life of tungsten cathodes. In electron microscope applications, these characteristics translate to more beam current in a smaller spot at the sample, improved resolution, and less frequent cathode replacement. For applications with large beam spot sizes, where large total current and current density are required, large, flat crystal faces of LaB6 or CeB6 can be the cathodes of choice. This regime is unsuitable for point sources such as field emitters, which are unable to provide sufficient total current, and has been thought of as the realm of the dispenser cathode.
    [Show full text]