Euclidean Spinors and Twistor Unification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Twistor-Strings, Grassmannians and Leading Singularities
Twistor-Strings, Grassmannians and Leading Singularities Mathew Bullimore1, Lionel Mason2 and David Skinner3 1Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, United Kingdom 2Mathematical Institute, 24-29 St. Giles', Oxford, OX1 3LB, United Kingdom 3Perimeter Institute for Theoretical Physics, 31 Caroline St., Waterloo, ON, N2L 2Y5, Canada Abstract We derive a systematic procedure for obtaining explicit, `-loop leading singularities of planar = 4 super Yang-Mills scattering amplitudes in twistor space directly from their momentum spaceN channel diagram. The expressions are given as integrals over the moduli of connected, nodal curves in twistor space whose degree and genus matches expectations from twistor-string theory. We propose that a twistor-string theory for pure = 4 super Yang-Mills | if it exists | is determined by the condition that these leading singularityN formulæ arise as residues when an unphysical contour for the path integral is used, by analogy with the momentum space leading singularity conjecture. We go on to show that the genus g twistor-string moduli space for g-loop Nk−2MHV amplitudes may be mapped into the Grassmannian G(k; n). For a leading singularity, the image of this map is a 2(n 2)-dimensional subcycle of G(k; n) and, when `primitive', it is of exactly the type found from− the Grassmannian residue formula of Arkani-Hamed, Cachazo, Cheung & Kaplan. Based on this correspondence and the Grassmannian conjecture, we deduce arXiv:0912.0539v3 [hep-th] 30 Dec 2009 restrictions on the possible leading singularities of multi-loop NpMHV amplitudes. In particular, we argue that no new leading singularities can arise beyond 3p loops. -
Twistor Theory and Differential Equations
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 42 (2009) 404004 (19pp) doi:10.1088/1751-8113/42/40/404004 Twistor theory and differential equations Maciej Dunajski Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK E-mail: [email protected] Received 31 January 2009, in final form 17 March 2009 Published 16 September 2009 Online at stacks.iop.org/JPhysA/42/404004 Abstract This is an elementary and self-contained review of twistor theory as a geometric tool for solving nonlinear differential equations. Solutions to soliton equations such as KdV,Tzitzeica, integrable chiral model, BPS monopole or Sine–Gordon arise from holomorphic vector bundles over T CP1. A different framework is provided for the dispersionless analogues of soliton equations, such as dispersionless KP or SU(∞) Toda system in 2+1 dimensions. Their solutions correspond to deformations of (parts of) T CP1, and ultimately to Einstein– Weyl curved geometries generalizing the flat Minkowski space. A number of exercises are included and the necessary facts about vector bundles over the Riemann sphere are summarized in the appendix. PACS number: 02.30.Ik (Some figures in this article are in colour only in the electronic version) 1. Introduction Twistor theory was created by Penrose [19] in 1967. The original motivation was to unify general relativity and quantum mechanics in a non-local theory based on complex numbers. The application of twistor theory to differential equations and integrability has been an unexpected spin off from the twistor programme. -
Twistor Theory at Fifty: from Rspa.Royalsocietypublishing.Org Contour Integrals to Twistor Strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J
Downloaded from http://rspa.royalsocietypublishing.org/ on November 10, 2017 Twistor theory at fifty: from rspa.royalsocietypublishing.org contour integrals to twistor strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J. Mason4 Cite this article: Atiyah M, Dunajski M, Mason LJ. 2017 Twistor theory at fifty: from 1School of Mathematics, University of Edinburgh, King’s Buildings, contour integrals to twistor strings. Proc. R. Edinburgh EH9 3JZ, UK Soc. A 473: 20170530. 2Trinity College Cambridge, University of Cambridge, Cambridge http://dx.doi.org/10.1098/rspa.2017.0530 CB21TQ,UK 3Department of Applied Mathematics and Theoretical Physics, Received: 1 August 2017 University of Cambridge, Cambridge CB3 0WA, UK Accepted: 8 September 2017 4The Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, UK Subject Areas: MD, 0000-0002-6477-8319 mathematical physics, high-energy physics, geometry We review aspects of twistor theory, its aims and achievements spanning the last five decades. In Keywords: the twistor approach, space–time is secondary twistor theory, instantons, self-duality, with events being derived objects that correspond to integrable systems, twistor strings compact holomorphic curves in a complex threefold— the twistor space. After giving an elementary construction of this space, we demonstrate how Author for correspondence: solutions to linear and nonlinear equations of Maciej Dunajski mathematical physics—anti-self-duality equations e-mail: [email protected] on Yang–Mills or conformal curvature—can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang– Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations. -
Twistor Theory of Symplectic Manifolds
Twistor Theory of Symplectic Manifolds R. Albuquerque [email protected] Departamento de Matem´atica Universidade de Evora´ 7000 Evora´ Portugal J. Rawnsley [email protected] Mathematics Institute University of Warwick Coventry CV47AL England November 2004 Abstract This article is a contribuition to the understanding of the geometry of the twistor space of a symplectic manifold. We consider the bundle l with fibre the Siegel domain Sp(2n, R)/U(n) Z existing over any given symplectic manifold M. Then, while recalling the construction of the celebrated almost complex structure induced on l by a symplectic connection on M, we Z arXiv:math/0405516v2 [math.SG] 17 Oct 2005 study and find some specific properties of both. We show a few examples of twistor spaces, develop the interplay with the symplectomorphisms of M, find some results about a natural almost-hermitian structure on l and finally discuss the holomorphic completeness of the Z respective “Penrose transform”. Let (M,ω) be a smooth symplectic manifold of dimension 2n. Then we may consider 2 the bundle π : l M (0.1) Z −→ of all complex structures j on the tangent spaces to M compatible with ω. Having fibre a cell, the bundle becomes interesting if it is seen with a particular and well known l almost complex structure, denoted ∇, — with which we start to treat by the name J Z of “Twistor Space” of the symplectic manifold M. The almost complex structure is induced by a symplectic connection on the base manifold and its integrability equation has already been studied ([13, 14, 6, 21]). -
Notes on Representations of Finite Groups
NOTES ON REPRESENTATIONS OF FINITE GROUPS AARON LANDESMAN CONTENTS 1. Introduction 3 1.1. Acknowledgements 3 1.2. A first definition 3 1.3. Examples 4 1.4. Characters 7 1.5. Character Tables and strange coincidences 8 2. Basic Properties of Representations 11 2.1. Irreducible representations 12 2.2. Direct sums 14 3. Desiderata and problems 16 3.1. Desiderata 16 3.2. Applications 17 3.3. Dihedral Groups 17 3.4. The Quaternion group 18 3.5. Representations of A4 18 3.6. Representations of S4 19 3.7. Representations of A5 19 3.8. Groups of order p3 20 3.9. Further Challenge exercises 22 4. Complete Reducibility of Complex Representations 24 5. Schur’s Lemma 30 6. Isotypic Decomposition 32 6.1. Proving uniqueness of isotypic decomposition 32 7. Homs and duals and tensors, Oh My! 35 7.1. Homs of representations 35 7.2. Duals of representations 35 7.3. Tensors of representations 36 7.4. Relations among dual, tensor, and hom 38 8. Orthogonality of Characters 41 8.1. Reducing Theorem 8.1 to Proposition 8.6 41 8.2. Projection operators 43 1 2 AARON LANDESMAN 8.3. Proving Proposition 8.6 44 9. Orthogonality of character tables 46 10. The Sum of Squares Formula 48 10.1. The inner product on characters 48 10.2. The Regular Representation 50 11. The number of irreducible representations 52 11.1. Proving characters are independent 53 11.2. Proving characters form a basis for class functions 54 12. Dimensions of Irreps divide the order of the Group 57 Appendix A. -
Covariant Dirac Operators on Quantum Groups
Covariant Dirac Operators on Quantum Groups Antti J. Harju∗ Abstract We give a construction of a Dirac operator on a quantum group based on any simple Lie alge- bra of classical type. The Dirac operator is an element in the vector space Uq (g) ⊗ clq(g) where the second tensor factor is a q-deformation of the classical Clifford algebra. The tensor space Uq (g) ⊗ clq(g) is given a structure of the adjoint module of the quantum group and the Dirac operator is invariant under this action. The purpose of this approach is to construct equivariant Fredholm modules and K-homology cycles. This work generalizes the operator introduced by Bibikov and Kulish in [1]. MSC: 17B37, 17B10 Keywords: Quantum group; Dirac operator; Clifford algebra 1. The Dirac operator on a simple Lie group G is an element in the noncommutative Weyl algebra U(g) cl(g) where U(g) is the enveloping algebra for the Lie algebra of G. The vector space g generates a Clifford⊗ algebra cl(g) whose structure is determined by the Killing form of g. Since g acts on itself by the adjoint action, U(g) cl(g) is a g-module. The Dirac operator on G spans a one dimensional invariant submodule of U(g)⊗ cl(g) which is of the first order in cl(g) and in U(g). Kostant’s Dirac operator [10] has an additional⊗ cubical term in cl(g) which is constant in U(g). The noncommutative Weyl algebra is given an action on a Hilbert space which is also a g-module. -
3 Representations of Finite Groups: Basic Results
3 Representations of finite groups: basic results Recall that a representation of a group G over a field k is a k-vector space V together with a group homomorphism δ : G GL(V ). As we have explained above, a representation of a group G ! over k is the same thing as a representation of its group algebra k[G]. In this section, we begin a systematic development of representation theory of finite groups. 3.1 Maschke's Theorem Theorem 3.1. (Maschke) Let G be a finite group and k a field whose characteristic does not divide G . Then: j j (i) The algebra k[G] is semisimple. (ii) There is an isomorphism of algebras : k[G] EndV defined by g g , where V ! �i i 7! �i jVi i are the irreducible representations of G. In particular, this is an isomorphism of representations of G (where G acts on both sides by left multiplication). Hence, the regular representation k[G] decomposes into irreducibles as dim(V )V , and one has �i i i G = dim(V )2 : j j i Xi (the “sum of squares formula”). Proof. By Proposition 2.16, (i) implies (ii), and to prove (i), it is sufficient to show that if V is a finite-dimensional representation of G and W V is any subrepresentation, then there exists a → subrepresentation W V such that V = W W as representations. 0 → � 0 Choose any complement Wˆ of W in V . (Thus V = W Wˆ as vector spaces, but not necessarily � as representations.) Let P be the projection along Wˆ onto W , i.e., the operator on V defined by P W = Id and P W^ = 0. -
Introduction to Representation Theory by Pavel Etingof, Oleg Golberg
Introduction to representation theory by Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina with historical interludes by Slava Gerovitch Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents Chapter 1. Introduction 1 Chapter 2. Basic notions of representation theory 5 x2.1. What is representation theory? 5 x2.2. Algebras 8 x2.3. Representations 9 x2.4. Ideals 15 x2.5. Quotients 15 x2.6. Algebras defined by generators and relations 16 x2.7. Examples of algebras 17 x2.8. Quivers 19 x2.9. Lie algebras 22 x2.10. Historical interlude: Sophus Lie's trials and transformations 26 x2.11. Tensor products 30 x2.12. The tensor algebra 35 x2.13. Hilbert's third problem 36 x2.14. Tensor products and duals of representations of Lie algebras 36 x2.15. Representations of sl(2) 37 iii Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms iv Contents x2.16. Problems on Lie algebras 39 Chapter 3. General results of representation theory 41 x3.1. Subrepresentations in semisimple representations 41 x3.2. The density theorem 43 x3.3. Representations of direct sums of matrix algebras 44 x3.4. Filtrations 45 x3.5. Finite dimensional algebras 46 x3.6. Characters of representations 48 x3.7. The Jordan-H¨oldertheorem 50 x3.8. The Krull-Schmidt theorem 51 x3.9. -
Hep-Th/0312171
hep-th/0312171 Perturbative Gauge Theory As A String Theory In Twistor Space Edward Witten Institute For Advanced Study, Princeton NJ 08540 USA Perturbative scattering amplitudes in Yang-Mills theory have many unexpected proper- ties, such as holomorphy of the maximally helicity violating amplitudes. To interpret these results, we Fourier transform the scattering amplitudes from momentum space to twistor space, and argue that the transformed amplitudes are supported on certain holomorphic curves. This in turn is apparently a consequence of an equivalence between the pertur- bative expansion of = 4 super Yang-Mills theory and the D-instanton expansion of a N certain string theory, namely the topological B model whose target space is the Calabi-Yau supermanifold CP3|4. arXiv:hep-th/0312171v2 6 Oct 2004 December, 2003 1. Introduction The perturbative expansion of Yang-Mills theory has remarkable properties that are not evident upon inspecting the Feynman rules. For example, the tree level scattering amplitudes that are maximally helicity violating (MHV) can be expressed in terms of a simple holomorphic or antiholomorphic function. This was first conjectured by Parke and Taylor based on computations in the first few cases [1]; the general case was proved by Berends and Giele [2]. (Unexpected simplicity and selection rules in Yang-Mills and gravitational helicity amplitudes were first found, as far as I know, by DeWitt [3] for four particle amplitudes.) These unexpected simplifications have echoes, in many cases, in loop amplitudes, especially in the supersymmetric case. For a sampling of one-loop results, see the review [4], and for some recent two-loop results for the theory with maximal or =4 N supersymmetry (which was first constructed in [5]), see [6]. -
Duality in Representation Theory
Ulam Quarterly Volume Numb er Duality in Repre s entation Theory W H Klink Department of Phys ics and Astronomy Department of Mathematics The Univers ity of Iowa Iowa City Iowa Tuong TonThat Department of Mathematics The Univers ity of Iowa Iowa City Iowa Ab stract The SchurWeyl Duality Theorem motivate s the general denition of dual repre s entations Such repre s entations ar i s e in a very large class of groups including all compact nilp otent and s emidirect pro duct groups as well as the complementary groups in the phys ics literature and the re ductive dual pairs in the mathematics literature Several applications of the notion of duality are given including the determination of p olynomials and op erator invar iants and the di scovery of unusual dual algebras Intro duction In I Schur prove d a theorem Sc that was later expande d by Weyl in a form We that i s now calle d the SchurWeyl Duality Theorem Thi s theorem which i s br iey reviewe d in the next s ection relate s the repre s en tation theory of two groups the general linear group and the symmetr ic or p ermutation group It i s the rst theorem as f ar as we know that clas s ie s up to i somorphi sm all irre ducible repre s entations of one group in terms of all irre ducible rational repre s entations of the other As we shall show such a phenomenon in which repre s entations of pairs of groups are relate d tur ns out to b e quite general It include s the complementary pairs of groups intro duce d in the phys ics literature by Moshinsky and Que sne MQ and the re ductive -
An Octahedron of Complex Null Rays, and Conformal Symmetry Breaking
An octahedron of complex null rays, and conformal symmetry breaking Maciej Dunajskia, Miklos L˚angvikb and Simone Spezialec a DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK b Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland, and Ash¨ojdensgrundskola, Sturegatan 6, 00510 Helsingfors, Finland c Centre de Physique Th´eorique, Aix Marseille Univ., Univ. de Toulon, CNRS, Marseille, France v1: January 23, 2019, v2: April 30, 2019 Abstract We show how the manifold T ∗SU(2; 2) arises as a symplectic reduction from eight copies of the twistor space. Some of the constraints in the twistor space correspond to an octahedral configuration of twelve complex light rays in the Minkowski space. We discuss a mechanism to break the conformal symmetry down ∗ to the twistorial parametrisation of T SL(2; C) used in loop quantum gravity. In memory of Sir Michael Atiyah (1929{2019) 1 Introduction A twistor space T = C4 is a complex{four dimensional vector space equipped with a pseudo{Hermitian inner product Σ of signature (2; 2), and the associated natural symplectic structure [1, 2]. In [3] Tod has shown that the symplectic form induced on a five{dimensional real surface of projective twistors which are isotropic with respect to Σ coincides with the symplectic form on the space of null geodesics in the 3+1{dimensional Minkowski space M. It the same paper it was demonstrated that the Souriau symplectic form [4] on the space of massive particles in M with spin arises as a symplectic reduction from T × T. -
Representations of Lie Algebras, with Applications to Particle Physics
REPRESENTATIONS OF LIE ALGEBRAS, WITH APPLICATIONS TO PARTICLE PHYSICS JAMES MARRONE UNIVERSITY OF CHICAGO MATHEMATICS REU, AUGUST 2007 Abstract. The structure of Lie groups and the classication of their representations are subjects undertaken by many an author of mathematics textbooks; Lie algebras are always considered as an indispensable component of such a study. Yet every author approaches Lie algebras dierently - some begin axiomatically, some derive the algebra from prior principles, and some barely connect them to Lie groups at all. The ensuing problem for the student is that the importance of the Lie algebra can only be deduced by reading between the lines, so to speak; the relationship between a Lie algebra and a Lie group is not always illuminated (in fact, there isn't always a relationship in the rst place) and so considering the representations of Lie algebras may appear redundant or at best cloudy. The approach to Lie algebras in this paper should clarify such problems. Lie algebras are historically a consequence of Lie groups (namely, they are the tangent space of a Lie group at the identity) which may be axiomatized so that they stand alone as an algebraic concept. The important correspondence between representations of Lie algebras and Lie groups, however, makes Lie algebras indispensable to the study of Lie groups; one example of this is the Eight-Fold Way of particle physics, which is actually just an 8-dimensional representation of but which has the enlightening property of sl3(C) corresponding to the strong nuclear interaction, giving a physical manifestation of the action of a representation and showing just one of the many interesting ramications of mathematics on science within the past 50 years.