A Giant Planet Orbiting the 'Extreme Horizontal Branch' Star V 391 Pegasi

Total Page:16

File Type:pdf, Size:1020Kb

A Giant Planet Orbiting the 'Extreme Horizontal Branch' Star V 391 Pegasi Vol 449 | 13 September 2007 | doi:10.1038/nature06143 LETTERS A giant planet orbiting the ‘extreme horizontal branch’ star V 391 Pegasi R. Silvotti1, S. Schuh2, R. Janulis3, J.-E. Solheim4, S. Bernabei5, R. Østensen6, T. D. Oswalt7, I. Bruni5, R. Gualandi5, A. Bonanno8, G. Vauclair9, M. Reed10, C.-W. Chen11, E. Leibowitz12, M. Paparo13, A. Baran14, S. Charpinet9, N. Dolez9, S. Kawaler15, D. Kurtz16, P. Moskalik17, R. Riddle18 & S. Zola14,19 After the initial discoveries fifteen years ago1,2, over 200 extrasolar Fig. 1), implying that the main pulsation period of the star is increa- 212 planets have now been detected. Most of them orbit main- sing at a rate of P_ 1 5 (1.46 6 0.07) 3 10 (or 1 s in 22,000 years). sequence stars similar to our Sun, although a few planets orbiting For V 391 Peg a simple second-order polynomial does not give a red giant stars have been recently found3. When the hydrogen in satisfactory fit and the sinusoidal residuals require further interpreta- their cores runs out, main-sequence stars undergo an expansion tion (lower panel of Fig. 1). An oscillating P_ is not compatible with into red-giant stars. This expansion can modify the orbits of pla- any evolutionary or pulsational model: it would require that the star nets and can easily reach and engulf the inner planets. The same expands and contracts periodically every 3 years, a time much larger will happen to the planets of our Solar System in about five billion than the dynamical timescale, which is of the order of 500 s for a years and the fate of the Earth is matter of debate4,5. Here we report subdwarf B star. Nor can the sinusoidal residuals be explained by any 16 the discovery of a planetary-mass body (Msini 5 3.2MJupiter) orbit- known pulsational effect. Random period variations are also not a ing the star V 391 Pegasi at a distance of about 1.7 astronomical possibility because these variations would be cancelled by the large units (AU), with a period of 3.2 years. This star is on the extreme number of pulsation cycles (.28 for each point in Fig. 1). horizontal branch of the Hertzsprung–Russell diagram, burning The simplest explanation for the sinusoidal component of the O–C helium in its core and pulsating. The maximum radius of the red- diagram in Fig. 1 is a wobble of the star’s barycentre due to the presence giant precursor of V 391 Pegasi may have reached 0.7 AU, while the of a low-mass companion. Depending on its position around the orbital distance of the planet during the stellar main-sequence barycentre of the system, the subdwarf B star is periodically closer phase is estimated to be about 1 AU. This detection of a planet to, or more distant from us by 5.3 6 0.6 light seconds and the timing orbiting a post-red-giant star demonstrates that planets with of the pulsation is cyclically advanced or delayed. From our best fit and orbital distances of less than 2 AU can survive the red-giant expan- Kepler’s third law (assuming a circular orbit, M1 5 0.5MSun, where sion of their parent stars. MSun is the mass of the Sun, and M2 = M1), we obtain: Porb 5 With an effective temperature close to 30,000 K and a surface 1,170 6 44 days (or 3.20 6 0.12 years), a 5 1.7 AU and M2sini 5 6 gravity ten times that of the Sun , V 391 Pegasi (or HS 220112610 3.2MJupiter, where a is the planet–star separation and 1 AU is the from the original Hamburg Schmidt survey name) is one of about 40 mean distance between the Earth and the Sun. The orbital parameters hot subdwarf B stars showing short-period p-mode pulsations7. of the system are listed in Table 1. This interpretation is robust: the Its pulsational spectrum exhibits four or five pulsation periods6,8 between 342 and 354 s (see Supplementary Information for more Table 1 | Orbital parameters details on the star’s properties). Parameter Value Because of their compact structure, subdwarf B pulsators have 1 170 44 extremely stable oscillation periods, like white dwarf pulsators. It is Orbital period, Porb (d) , 6 therefore possible to register very small differences in the arrival times Epoch of maximum time delay, T0 (BJD) 2,452,418 6 96 9,10 Eccentricity, e (assumed) 0.0 of the photons , which in principle allows the detection of low- 1 600 000 190 000 11 Star projected orbital radius, assini (km) , , 6 , mass secondary bodies , through the use of the observed–calculated 21 Star projected orbital velocity, vssini (m s ) 99 6 12 12 27 (O–C) diagram (see Fig. 1 legend for more details). Functionally, Mass function*, f(M1, M2)(MSun)(1.19 6 0.43) 3 10 it is equivalent to the timing method used to find planets around Distance from the star{, a (AU) 1.7 6 0.1 1,13 Maximum elongation{ (milliarcsec) 1.2 6 0.1 pulsars . 21 Planet orbital velocity{, vp (km s ) 16 6 1 When a pulsation period changes linearly in time, the O–C dia- Planet mass{, M2sini (M ) 3.2 6 0.7 . Jupiter . gram has a parabolic shape, as confirmed by all the previous mea- 3 3 2 * fMðÞ,M ~4p2ðÞa sini GP2 ~ðÞM sini ðÞM zM . surements of dP/dt (or P_ ) in compact pulsators9,14,15. The same 1 2 s orb 2 1 2 { These numbers are obtained assuming M1 5 0.5 6 0.05MSun (suggested from astero- behaviour is found in the O–C plot of V 391 Peg (upper panel of seismology) and M2 = M1. 1INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy. 2Institut fu¨r Astrophysik, Universita¨t Go¨ttingen, Friedrich-Hund-Platz 1, 37077 Go¨ttingen, Germany. 3Institute of Theoretical Physics and Astronomy, Vilnius University, 12 A. Gostauto Street, 01108 Vilnius, Lithuania. 4Institutt for Teoretisk Astrofysikk, Universitetet i Oslo, PB 1029 Blindern, 0315, Norway. 5INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy. 6K. U. Leuven, Institute of Astronomy, Celestijnenlaan 200D, 3001 Leuven, Belgium. 7Department of Physics and Space Sciences and the SARA Observatory, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, USA. 8INAF-Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy. 9CNRS-UMR5572, Observatoire Midi-Pyre´ne´es, Universite´ Paul Sabatier, 14 avenue Edouard Belin, 31400 Toulouse, France. 10Department of Physics, Astronomy and Materials Science, Missouri State University, 901 S. National, Springfield, Missouri 65897, USA. 11Institute of Astronomy, National Central University, 300 Jhongda Road, Chung-Li 32054, Taiwan. 12Wise Observatory, Tel Aviv University, Tel Aviv 69978, Israel. 13Konkoly Observatory, P O Box 67, H-1525 Budapest XII, Hungary. 14Cracow Pedagogical University, ul. Podchorazych 2, 30-084 Cracow, Poland. 15Department of Physics and Astronomy, 12 Physics Hall, Iowa State University, Ames, Iowa 50011, USA. 16Centre for Astrophysics, University of Central Lancashire, Preston PR1 2HE, UK. 17Copernicus Astronomical Centre, ul. Bartycka 18, 00-716 Warsaw, Poland. 18Thirty Meter Telescope Project, 2632 E. Washington Blvd, Pasadena, California 91107, USA. 19Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30- 244 Cracow, Poland. 189 © 2007 Nature Publishing Group LETTERS NATURE | Vol 449 | 13 September 2007 same sinusoidal component is also found in the O–C diagram of 2,000 2,500 3,000 3,500 4,000 the secondary pulsation frequency of the star (see Figs 2 and 3 for 20 20 more details). Any alternative interpretation of our results would have 10 10 to be compatible with this fact. The sinusoids in the lower panels of 0 0 Figs 1, 2 and 3 suggest a circular orbit. From our observations we –10 –10 cannot yet set a precise upper limit to the eccentricity, but it must –20 –20 be close to zero. 5 5 Using the known characteristics of the V 391 Peg system, we can determine a first estimate of the planet’s effective temperature by 0 0 balancing the flux received from the star with the blackbody flux Observed–calculated (s) –5 –5 re-radiated by the planet (see Supplementary Information for more details). Assuming a Bond albedo of 0.343 (similar to that of 2,000 2,500 3,000 3,500 4,000 t (BJD – 2,450,000) Jupiter17), we obtain an effective temperature for the planet of about 470 K, corresponding to a maximum of the blackbody radiation near Figure 2 | The O–Cdiagramoff1. In this version of the O–C diagram, all the 6.2 mm from Wien’s law. runs of each observing season were combined and the phases were recalculated With a projected radius of about five light seconds, the wobble of on these larger data sets. This reduces the noise (but also reduces the time the barycentre of V 391 Peg points towards a planet (for comparison, resolution), so that in principle O–C diagrams can be built for each pulsation frequency of a multiperiodic pulsator. In this way, if the pulsating star has a the amplitude of the solar displacement around the barycentre of our companion, each pulsation mode can supply an independent confirmation of Solar System is almost three light seconds). However, depending on the periodic motion around the centre of mass. V 391 Peg has four or five the unknown inclination i of the system, a brown dwarf or even a low- pulsation periods; for the two that have sufficiently large amplitudes of 1% and mass stellar companion cannot be totally excluded.
Recommended publications
  • The Variable Stars and Blue Horizontal Branch of the Metal-Rich Globular Cluster NGC 6441
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The Variable Stars and Blue Horizontal Branch of the Metal-Rich Globular Cluster NGC 6441 Andrew C. Layden1;2 Physics & Astronomy Dept., Bowling Green State Univ., Bowling Green, OH 43403, U.S.A. Laura A. Ritter Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1090, U.S.A. Douglas L. Welch1,TracyM.A.Webb1 Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada ABSTRACT We present time-series VI photometry of the metal-rich ([Fe=H]= 0:53) globular − cluster NGC 6441. Our color-magnitude diagram shows that the extended blue horizontal branch seen in Hubble Space Telescope data exists in the outermost reaches of the cluster. About 17% of the horizontal branch stars lie blueward and brightward of the red clump. The red clump itself slopes nearly parallel to the reddening vector. A component of this slope is due to differential reddening, but part is intrinsic. The blue horizontal branch stars are more centrally concentrated than the red clump stars, suggesting mass segregation and a possible binary origin for the blue horizontal branch stars. We have discovered 50 new variable stars near NGC 6441, among ∼ them eight or more RR Lyrae stars which are highly-probable cluster members. Comprehensive period searches over the range 0.2–1.0 days yielded unusually long periods (0.5–0.9 days) for the fundamental pulsators compared with field RR Lyrae of the same metallicity. Three similar long-period RR Lyrae are known in other metal-rich globulars.
    [Show full text]
  • A Search for Radio Pulsations from Neutron Star Companions of Four
    Astronomy & Astrophysics manuscript no. 16098˙arxiv c ESO 2018 November 15, 2018 A search for radio pulsations from neutron star companions of four subdwarf B stars Thijs Coenen1, Joeri van Leeuwen2,1, and Ingrid H. Stairs3 1 Astronomical Institute ”Anton Pannekoek,” University of Amsterdam, P.O. Box 94249, 1090 GE, Amsterdam, The Netherlands 2 Stichting ASTRON, PO Box 2, 7990 AA Dwingeloo, The Netherlands 3 Dept. of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., V6T 1Z1 Canada ABSTRACT We searched for radio pulsations from the potential neutron star binary companions to subdwarf B stars HE 0532-4503, HE 0929- 0424, TON S 183 and PG 1232-136. Optical spectroscopy of these subdwarfs has indicated they orbit a companion in the neutron star mass range. These companions are thought to play an important role in the poorly understood formation of subdwarf B stars. Using the Green Bank Telescope we searched down to mean flux densities as low as 0.2 mJy, but no pulsed emission was found. We discuss the implications for each system. 1. Introduction Several such binary formation channels have been hypoth- esized. For an sdB to form, a light star must lose most of its The study of millisecond pulsars (MSPs) enables several types hydrogen envelope and ignite helium in its core. In these binary of research in astrophysics, ranging from binary evolution (e.g. systems, sdB stars can be formed through phases of Common Edwards & Bailes, 2001), to the potential detection of back- Envelope evolution where the envelope is ejected, or through ground gravitational radiation using a large set of pulsars with stable Roche Lobe overflow stripping the donor star of its hydro- stable timing properties (Jaffe & Backer, 2003).
    [Show full text]
  • (GK 1; Pr 1.1, 1.2; Po 1) What Is a Star?
    1) Observed properties of stars. (GK 1; Pr 1.1, 1.2; Po 1) What is a star? Why study stars? The sun Age of the sun Nearby stars and distribution in the galaxy Populations of stars Clusters of stars Distances and characterization of stars Luminosity and flux Magnitudes Parallax Standard candles Cepheid variables SN Ia 2) The HR diagram and stellar masses (GK 2; Pr 1.4; Po 1) Colors of stars B-V Blackbody emission HR Diagram Interpretation of HR diagram stellar radii kinds of stars red giants white dwarfs planetary nebulae AGB stars Cepheids Horizontal branch evolutionary sequence turn off mass and ages Masses from binaries Circular orbits solution General solution Spectroscopic binaries Eclipsing spectroscopic binaries Empirical mass luminosity relation 3) Spectroscopy and abundances (GK 1; Pr 2) Stellar spectra OBFGKM Atomic physics H atom others Spectral types Temperature and spectra Boltzmann equation for levels Saha equation for ionization ionization stages Rotation Stellar Abundances More about ionization stages, e.g. Ca and H Meteorite abundances Standard solar set Abundances in other stars and metallicity 4) Hydrostatic balance, Virial theorem, and time scales (GK 3,4; Pr 1.3, 2; Po 2,8) Assumptions - most of the time Fully ionized gas except very near surface where partially ionized Spherical symmetry Broken by e.g., convection, rotation, magnetic fields, explosion, instabilities, etc Makes equations a lot easier Limits on rotation and magnetic fields Homogeneous composition at birth Isolation (drop this later in course) Thermal
    [Show full text]
  • Red Giant Sun May Not Destroy Earth
    Site Index Subscriptions Shop Newsletters HOME ANIMALS ENVIRONMENT HISTORY NEWS HOME ANIMAL NEWS ANCIENT WORLD ENVIRONMENT NEWS CULTURES NEWS SCIENCE & SPACE NEWS KIDS WEIRD NEWS MAPS NEWS Red Giant Sun May Not Destroy Earth PEOPLE & PLACES PHOTOGRAPHY Anne Minard for National Geographic News 15 Most Popular News Pages VIDEO September 14, 2007 WORLD MUSIC The first glimpse of a planet that survived its star's red giant phase is Photos in the News offering a glimmer of hope that Earth might make it past our sun's News Videos NATIONAL eventual expansion. GEOGRAPHIC MAGAZINE The newfound planet, dubbed V391 Pegasi b, is much larger than Earth but likely ADVERTISEMENT MAGAZINES orbited its star as closely as our planet orbits the sun (explore a virtual solar system). SHOP LATEST PHOTOS IN THE NEWS SUBSCRIPTIONS When the aging star mushroomed into a red Photo Gallery: Frozen Inca Mummy TV & FILM giant about a hundred times its previous size, Goes On Display V391 Pegasi b was pushed out to an orbit TRAVEL WITH US nearly twice as far away. OUR MISSION Solar Plane Sets Record, Makers Say "After this finding, we now know that planets with an orbital distance similar to the Earth can survive the red giant expansion of their parent Hubble Fans Dispute "Sharpest" Title Enlarge Photo stars," said lead author Roberto Silvotti of the National Institute of Astrophysics in Napoli, Italy. Printer Friendly • Catalog Quick "But this does not automatically mean that even More Photos in the News Shop Email to a Friend the Earth, much smaller and much more vulnerable [than V391 Pegasi b], will survive" our • Books & Atlases RELATED sun's expansion billions of years from now, he NATIONAL GEOGRAPHIC'S PHOTO OF THE DAY • Clothing & Future Universe Will "Stop said.
    [Show full text]
  • Does GD356 Have a Terrestrial Planetary Companion
    Mon. Not. R. Astron. Soc. 404, 1984–1991 (2010) doi:10.1111/j.1365-2966.2010.16417.x Does GD 356 have a terrestrial planetary companion? Dayal T. Wickramasinghe,1 Jay Farihi,2 Christopher A. Tout,1,3,4 Lilia Ferrario1 and Richard J. Stancliffe4 1Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia 2Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH 3Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA 4Centre for Stellar and Planetary Astrophysics, Monash University, PO Box 28M, VIC 3800, Australia Accepted 2010 January 25. Received 2010 January 20; in original form 2009 November 2 Downloaded from ABSTRACT GD 356 is unique among magnetic white dwarfs because it shows Zeeman-split Balmer lines in pure emission. The lines originate from a region of nearly uniform field strength (δB/B ≈ 0.1) that covers 10 per cent of the stellar surface in which there is a temperature inversion. The energy source that heats the photosphere remains a mystery but it is likely to be associated with http://mnras.oxfordjournals.org/ the presence of a companion. Based on current models, we use archival Spitzer Infrared Array Camera (IRAC) observations to place a new and stringent upper limit of 12 MJ for the mass of such a companion. In the light of this result and the recent discovery of a 115-min photometric period for GD 356, we exclude previous models that invoke accretion and revisit the unipolar inductor model that has been proposed for this system. In this model, a highly conducting planet with a metallic core orbits the magnetic white dwarf and, as it cuts through field lines, a current is set flowing between the two bodies.
    [Show full text]
  • Hydrogen-Deficient Stars
    Hydrogen-Deficient Stars ASP Conference Series, Vol. 391, c 2008 K. Werner and T. Rauch, eds. Hydrogen-Deficient Stars: An Introduction C. Simon Jeffery Armagh Observatory, College Hill, Armagh BT61 9DG, N. Ireland, UK Abstract. We describe the discovery, classification and statistics of hydrogen- deficient stars in the Galaxy and beyond. The stars are divided into (i) massive / young star evolution, (ii) low-mass supergiants, (iii) hot subdwarfs, (iv) cen- tral stars of planetary nebulae, and (v) white dwarfs. We introduce some of the challenges presented by these stars for understanding stellar structure and evolution. 1. Beginning Our science begins with a young woman from Dundee in Scotland. The brilliant Williamina Fleming had found herself in the employment of Pickering at the Harvard Observatory where she noted that “the spectrum of υ Sgr is remarkable since the hydrogen lines are very faint and of the same intensity as the additional dark lines” (Fleming 1891). Other stars, well-known at the time, later turned out also to have an unusual hydrogen signature; the spectacular light variations of R CrB had been known for a century (Pigott 1797), while Wolf & Rayet (1867) had discovered their emission-line stars some forty years prior. It was fifteen years after Fleming’s discovery that Ludendorff (1906) observed Hγ to be completely absent from the spectrum of R CrB, while arguments about the hydrogen content of Wolf-Rayet stars continued late into the 20th century. Although these early observations pointed to something unusual in the spec- tra of a variety of stars, there was reluctance to accept (or even suggest) that hydrogen might be deficient.
    [Show full text]
  • The Deaths of Stars
    The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula, and what does it have to do with planets? 4. What is a white dwarf star? 5. Why do high-mass stars go through more evolutionary stages than low-mass stars? 6. What happens within a high-mass star to turn it into a supernova? 7. Why was SN 1987A an unusual supernova? 8. What was learned by detecting neutrinos from SN 1987A? 9. How can a white dwarf star give rise to a type of supernova? 10.What remains after a supernova explosion? 2 Pathways of Stellar Evolution GOOD TO KNOW 3 Low-mass stars go through two distinct red-giant stages • A low-mass star becomes – a red giant when shell hydrogen fusion begins – a horizontal-branch star when core helium fusion begins – an asymptotic giant branch (AGB) star when the helium in the core is exhausted and shell helium fusion begins 4 5 6 7 Bringing the products of nuclear fusion to a giant star’s surface • As a low-mass star ages, convection occurs over a larger portion of its volume • This takes heavy elements formed in the star’s interior and distributes them throughout the star 8 9 Low-mass stars die by gently ejecting their outer layers, creating planetary nebulae • Helium shell flashes in an old, low-mass star produce thermal pulses during which more than half the star’s mass may be ejected into space • This exposes the hot carbon-oxygen core of the star • Ultraviolet radiation from the exposed
    [Show full text]
  • White Dwarfs in Globular Clusters 3 Received Additional Support from the Theoretical Investigations of [94, 95, 96]
    White Dwarfs in Globular Clusters S. Moehler1 and G. Bono1,2,3 1 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany, [email protected] 2 Dept. of Physics, Univ. of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy, [email protected] 3 INAF-Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Italy We review empirical and theoretical findings concerning white dwarfs in Galactic globular clusters. Since their detection is a critical issue we describe in detail the various efforts to find white dwarfs in globular clusters. We then outline the advantages of using cluster white dwarfs to investigate the forma- tion and evolution of white dwarfs and concentrate on evolutionary channels that appear to be unique to globular clusters. We also discuss the usefulness of globular cluster white dwarfs to provide independent information on the distances and ages of globular clusters, information that is very important far beyond the immediate field of white dwarf research. Finally, we mention pos- sible future avenues concerning globular cluster white dwarfs, like the study of strange quark matter or plasma neutrinos. 1 Introduction During the last few years white dwarfs have been the topic of several thorough review papers focused on rather different aspects. The interested reader is referred to [85] and to [86] for a comprehensive discussion concerning the use of white dwarfs as stellar tracers of Galactic stellar populations and the physics of cool white dwarfs. The advanced evolutionary phases and their impact on the dynamical evolution of open and globular clusters have been reviewed by [116], while [4] provide a comprehensive discussion of the use of arXiv:0806.4456v3 [astro-ph] 30 Jun 2011 white dwarfs to constrain stellar and cosmological parameters together with a detailed analysis of the physical mechanisms driving their evolutionary and pulsation properties.
    [Show full text]
  • White Dwarf and Hot Subdwarf Binaries As Possible Progenitors of Type I A
    White dwarf and hot sub dwarf binaries as p ossible progenitors of type I a Sup ernovae Christian Karl July White dwarf and hot sub dwarf binaries as p ossible progenitors of type I a Sup ernovae Den Naturwissenschaftlichen Fakultaten der FriedrichAlexanderUniversitatErlangenN urnberg zur Erlangung des Doktorgrades vorgelegt von Christian Karl aus Bamberg Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultaten der UniversitatErlangenN urnberg Tag der m undlichen Pr ufung Aug Vositzender der Promotionskommission Prof Dr L Dahlenburg Erstb erichterstatter Prof Dr U Heb er Zweitberichterstatter Prof Dr K Werner Contents The SPY pro ject Selection of DB white dwarfs Color criteria Absorption line criteria Summary of the DB selection The UV Visual Echelle Sp ectrograph Instrumental setup UVES data reduction ESO pip elin e vs semiautomated pip eline Derivation of system parameters Denition of samples Radial velocity curves Followup observations Radial velocity measurements Power sp ectra and RV curves Gravitational redshift Quantitative sp ectroscopic analysis Stellar parameters of singleline d systems
    [Show full text]
  • (NASA/Chandra X-Ray Image) Type Ia Supernova Remnant – Thermonuclear Explosion of a White Dwarf
    Stellar Evolution Card Set Description and Links 1. Tycho’s SNR (NASA/Chandra X-ray image) Type Ia supernova remnant – thermonuclear explosion of a white dwarf http://chandra.harvard.edu/photo/2011/tycho2/ 2. Protostar formation (NASA/JPL/Caltech/Spitzer/R. Hurt illustration) A young star/protostar forming within a cloud of gas and dust http://www.spitzer.caltech.edu/images/1852-ssc2007-14d-Planet-Forming-Disk- Around-a-Baby-Star 3. The Crab Nebula (NASA/Chandra X-ray/Hubble optical/Spitzer IR composite image) A type II supernova remnant with a millisecond pulsar stellar core http://chandra.harvard.edu/photo/2009/crab/ 4. Cygnus X-1 (NASA/Chandra/M Weiss illustration) A stellar mass black hole in an X-ray binary system with a main sequence companion star http://chandra.harvard.edu/photo/2011/cygx1/ 5. White dwarf with red giant companion star (ESO/M. Kornmesser illustration/video) A white dwarf accreting material from a red giant companion could result in a Type Ia supernova http://www.eso.org/public/videos/eso0943b/ 6. Eight Burst Nebula (NASA/Hubble optical image) A planetary nebula with a white dwarf and companion star binary system in its center http://apod.nasa.gov/apod/ap150607.html 7. The Carina Nebula star-formation complex (NASA/Hubble optical image) A massive and active star formation region with newly forming protostars and stars http://www.spacetelescope.org/images/heic0707b/ 8. NGC 6826 (Chandra X-ray/Hubble optical composite image) A planetary nebula with a white dwarf stellar core in its center http://chandra.harvard.edu/photo/2012/pne/ 9.
    [Show full text]
  • The Fate of Planets
    The Fate of Planets Eva Villaver Universidad Autónoma de Madrid, Dpto. Física Teórica, Módulo 15, Facultad de Ciencias, Campus de Cantoblanco, 28049 Madrid, Spain. e-mail: [email protected] Abstract. As a star evolves off the Main Sequence, it endures major structural changes that are capable of determining the fate of the planets orbiting it. Throughout its evolution along the Red Giant Branch, the star increases its radius by two orders of magnitude. Later, during the Asymptotic Giant Branch, it loses most of its initial mass. Finally, during the Planetary Nebulae phase, it emits intense radiation before ultimately beginning its fade as a white dwarf. We show how the several competing processes (stellar mass-loss, gravitational and frictional drag, tidal forces, planet accretion and evaporation) affect the survival of planets around evolved stars. Keywords: Planets, Evolved Stars, Giant and White Dwarf stars PACS: 97.82.j, 97.10.Me, 97.20.Li PLANET'S FATE BEYOND THE MAIN SEQUENCE The Red Giant Branch Phase Once the nuclear burning has been exhausted in the core, low- and intermediate mass stars evolve into the Red Giant Branch (RGB) phase. During the RGB, hydrogen burning continues in a shell outside the helium core, which now, devoid of energy sources, is contracting and heating up. The stellar evolution timescales (in the absence of significant mass loss) are set by the rate of consumption of the nuclear fuel. As the core contracts the envelope expands and cools. The stellar effective temperature decreases while the star’s radius and luminosity increase. There are several competing processes that affect the orbital distance between the star and the planet as the star evolves off the Main Sequence (MS): the changes in the mass of both the planet and the star (M˙p and M˙∗ respectively), the gravitational and frictional drag (Fg and Ff ), and the tidal force.
    [Show full text]
  • Announcements
    Announcements • Next Session – Stellar evolution • Low-mass stars • Binaries • High-mass stars – Supernovae – Synthesis of the elements • Note: Thursday Nov 11 is a campus holiday Red Giant 8 100Ro 10 years L 10 3Ro, 10 years Temperature Red Giant Hydrogen fusion shell Contracting helium core Electron Degeneracy • Pauli Exclusion Principle says that you can only have two electrons per unit 6-D phase- space volume in a gas. DxDyDzDpxDpyDpz † Red Giants • RG Helium core is support against gravity by electron degeneracy • Electron-degenerate gases do not expand with increasing temperature (no thermostat) • As the Temperature gets to 100 x 106K the “triple-alpha” process (Helium fusion to Carbon) can happen. Helium fusion/flash Helium fusion requires two steps: He4 + He4 -> Be8 Be8 + He4 -> C12 The Berylium falls apart in 10-6 seconds so you need not only high enough T to overcome the electric forces, you also need very high density. Helium Flash • The Temp and Density get high enough for the triple-alpha reaction as a star approaches the tip of the RGB. • Because the core is supported by electron degeneracy (with no temperature dependence) when the triple-alpha starts, there is no corresponding expansion of the core. So the temperature skyrockets and the fusion rate grows tremendously in the `helium flash’. Helium Flash • The big increase in the core temperature adds momentum phase space and within a couple of hours of the onset of the helium flash, the electrons gas is no longer degenerate and the core settles down into `normal’ helium fusion. • There is little outward sign of the helium flash, but the rearrangment of the core stops the trip up the RGB and the star settles onto the horizontal branch.
    [Show full text]