University of Dundee Six Outbursts of Comet 46P/Wirtanen Kelley, Michael SP

Total Page:16

File Type:pdf, Size:1020Kb

University of Dundee Six Outbursts of Comet 46P/Wirtanen Kelley, Michael SP University of Dundee Six Outbursts of Comet 46P/Wirtanen Kelley, Michael S. P.; Farnham, Tony L.; Li, Jian-Yang; Bodewits, Dennis; Snodgrass, Colin; Allen, Johannes Publication date: 2021 Licence: CC BY Document Version Other version Link to publication in Discovery Research Portal Citation for published version (APA): Kelley, M. S. P., Farnham, T. L., Li, J-Y., Bodewits, D., Snodgrass, C., Allen, J., Bellm, E. C., Coughlin, M. W., Drake, A. J., Duev, D. A., Kupfer, T., Masci, F. J., Reiley, D., Walters, R., Dominik, M., Jørgensen, U. G., Bach- Møller, N., Bozza, V., Burgdorf, M. J., ... Unda-Sanzana, E. (2021, May). Six Outbursts of Comet 46P/Wirtanen. Cornell University. General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 Draft version May 13, 2021 Typeset using LATEX modern style in AASTeX63 Six Outbursts of Comet 46P/Wirtanen Michael S. P. Kelley,1 Tony L. Farnham,1 Jian-Yang Li (NPl),2 Dennis Bodewits,3 Colin Snodgrass,4 Johannes Allen,3 | Eric C. Bellm,5 Michael W. Coughlin,6 Andrew J. Drake,7 Dmitry A. Duev,8 Matthew J. Graham,8 Thomas Kupfer,9 Frank J. Masci,10 Dan Reiley,11 Richard Walters,11 Zwicky Transient Facility Collaboration M. Dominik,12 U. G. Jørgensen,13 A. Andrews,14 N. Bach-Møller,13 V. Bozza,15, 16 M. J. Burgdorf,17 J. Campbell-White,18 S. Dib,13, 19 Y. I. Fujii,20, 21 T. C. Hinse,22, 23 M. Hundertmark,24 E. Khalouei,25 P. Longa-Pena,~ 26 M. Rabus,27 S. Rahvar,25 S. Sajadian,28 J. Skottfelt,14 J. Southworth,29 J. Tregloan-Reed,30 E. Unda-Sanzana,26 MiNDSTEp Collaboration 1Department of Astronomy, University of Maryland, College Park, MD 20742-0001, USA 2Planetary Science Institute, 1700 E. Ft. Lowell Rd., Tucson, AZ 85719, USA 3Physics Department, Leach Science Center, Auburn University, Auburn, AL 36832, USA 4Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK 5DIRAC Institute, Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA 6School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 7Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA 8Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 9Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 10IPAC, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA 11Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA arXiv:2105.05826v1 [astro-ph.EP] 12 May 2021 12Centre for Exoplanet Science, SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK 13Centre for ExoLife Sciences (CELS), Niels Bohr Institute, Øster Voldgade 5, 1350 Copenhagen, Denmark 14Department of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK 15Dipartimento di Fisica "E.R. Caianiello", Universit`adi Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy 16Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Napoli, Italy 17Universit¨atHamburg, Faculty of Mathematics, Informatics and Natural Sciences, Department of Earth Sciences, Meteorological Institute, Bundesstraße 55, 20146 Hamburg, Germany [email protected] 2 Kelley et al. 18SUPA, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, UK 19Max Planck Institute for Astronomy, K¨onigstuhl 17, D-69117 Heidelberg, Germany 20Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan 21Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu, Sakyo, Kyoto 606-8501, Japan 22Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland 23Chungnam National University, Department of Astronomy & Space Science, 34134 Daejeon, South Korea 24Astronomisches Rechen-Institut, Zentrum f¨urAstronomie der Universit¨atHeidelberg (ZAH), 69120 Heidelberg, Germany 25Department of Physics, Sharif University of Technology, PO Box 11155-9161 Tehran, Iran 26Centro de Astronom´ıa(CITEVA), Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile 27Departamento de Matem´atica y F´ısica Aplicadas, Universidad Cat´olica de la Sant´ısima Concepci´on,Alonso de Rivera 2850, Concepci´on,Chile 28Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran 29Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK 30Instituto de Investigaci´onen Astronomia y Ciencias Planetarias, Universidad de Atacama, Copiap´o,Atacama, Chile (Received September 30, 2020; Revised April 19, 2021; Accepted May 03, 2021) Submitted to The Planetary Science Journal ABSTRACT Cometary activity is a manifestation of sublimation-driven processes at the surface of nuclei. However, cometary outbursts may arise from other processes that are not necessarily driven by volatiles. In order to fully understand nuclear surfaces and their evolution, we must identify the causes of cometary outbursts. In that context, we present a study of mini-outbursts of comet 46P/Wirtanen. Six events are found in our long-term lightcurve of the comet around its perihelion passage in 2018. The apparent strengths range from −0:2 to −1:6 mag in a 500 radius aperture, and correspond to dust masses between ∼ 104 to 106 kg, but with large uncertainties due to the unknown grain size distributions. However, the nominal mass estimates are the same order of magnitude as the mini-outbursts at comet 9P/Tempel 1 and 67P/Churyumov- Gerasimenko, events which were notably lacking at comet 103P/Hartley 2. We com- pare the frequency of outbursts at the four comets, and suggest that the surface of 46P has large-scale (∼10{100 m) roughness that is intermediate to that of 67P and 103P, if not similar to the latter. The strength of the outbursts appear to be corre- lated with time since the last event, but a physical interpretation with respect to solar insolation is lacking. We also examine Hubble Space Telescope images taken about 2 days following a near-perihelion outburst. No evidence for macroscopic ejecta was found in the image, with a limiting radius of about 2-m. 1. INTRODUCTION 3 Comet 46P/Wirtanen is a small Jupiter-family comet that has been considered as a potential spacecraft target. The effective radius is 0.6 km (Lamy et al. 1998; Boehnhardt et al. 2002), making it one of the smallest periodic comets (Snodgrass et al. 2011). The comet made an historic flyby of Earth in 2018, passing just 0.0775 au away (1.16×107 km) on 2018 December 16 (JPL Horizons orbital solution K181/21). The geometry with respect to the Earth and Sun was exceptionally favorable, with long observing opportunities and a total apparent magnitude peaking near V ∼ 5 mag (IAU Minor Planet Center Database). In many respects, comet Wirtanen is considered a near-twin of comet 103P/Hartley 2. They have similar orbits, dust and gas production rates, and nuclear radii (A'Hearn et al. 1995, 2011). As a consequence, both comets are considered to be hyperactive, i.e., their water production rates suggest a sublimating surface area comparable to the total nuclear surface area, whereas most comets have a ratio . 10% (A'Hearn et al. 1995). Comet Hartley 2 was a flyby target of the Deep Impact spacecraft (A'Hearn et al. 2011) and the subject of a large observational campaign in 2010 (Meech et al. 2011). Thus, the 2018 perihelion passage of comet Wirtanen presented an opportunity to apply the knowledge gained from the studies of comet Hartley 2 to comet Wirtanen and the broader comet population. One important difference between Wirtanen and Hartley 2 is the lack of cometary outbursts in the latter (A'Hearn et al. 2011). Cometary outbursts are brief increases in mass loss (Hughes 1990), instigated by mechanical or thermophysical processes, such as cliff collapse (Pajola et al. 2017), avalanches (Steckloff & Melosh 2016), nuclear fragmentation (Boehnhardt 2004), or structural failure and release of pressure from a sub-surface gas reservoir (Agarwal et al. 2017), charged by, e.g., water ice phase changes (Patashnick 1974; Prialnik & Bar-Nun 1990) or gas dissolution from a liquid (Miles 2016). Outbursts of many comets have been observed, e.g., comets Kohoutek 1973f, Bowell 1980b, 9P/Tempel 1, and 67P/Churyumov-Gerasimenko (A'Hearn & Cowan 1975; A'Hearn et al. 1984, 2005, 2016), but none have been confirmed for comet Hartley 2. This result is in spite of the 2010 observational campaign, and near-continuous photometry from the Deep Impact spacecraft. In contrast, clear outbursts of comet Wirtanen were observed in 1991, 2002, 2008, and 2018 (Yoshida 2013; Kidger 2004, 2008; Kronk et al. 2017; Combi et al. 2020; Farnham et al. 2019). Dense, long-term photometric and spectroscopic coverage of comets is needed to advance our understanding of cometary activity (A'Hearn 2017). Present-day wide- field time-domain surveys, such as the Zwicky Transient Facility (ZTF; Bellm et al. 2019a; Graham et al. 2019) and the Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry et al. 2018a), can partially address this challenge with broad-band photometric imaging at a near-daily cadence.
Recommended publications
  • ABSTRACTS Volume 8
    ISSN 2464-9147 ONLINE Scientific Research ABSTRACTS Volume 8 III International Conference on Atmospheric Dust III INTERNATIONAL CONFERENCE ON ATMOSPHERIC DUST DUST 2018 Villa Romanazzi Carducci Conference Centre | BARI | Italy May, 29-31, 2018 SCIENTIFIC RESEARCH ABSTRACTS VOLUME 8 Copyright © 2018 by the Authors. Published by Digilabs (Italy) under request of Associazione Italiana per lo Studio delle Argille - onlus. Selection by the Scientific Committee of DUST 2018. The policy of Scientific Research Abstracts is to provide full access to the bibliographic contents if a correct citation to the original publication is given (rules as in CC 3.0). Therefore, the authors authorize to i) print the ab- stracts; ii) redistribute or republish (e.g., display in repositories, web platforms, etc.) the abstracts; iii) translate the abstracts; iv) reuse portions of the abstracts (text, data, tables, figures) in other publications (articles, book, etc.). III International Conference on Atmospheric Dust - DUST 2018 BARI, Italy, May 29-31, 2018 Organized by Italian Association for the Study of Clays (AISA - onlus) Institute of Methodologies for Environmental Analysis (IMAA) - CNR Scientific Research Abstracts - Volume 8 Editor: Saverio Fiore ISSN 2464-9147 (Online) ISBN: 978-88-7522-088-4 Publisher: Digilabs - Bari, Italy Cover: Digilabs - Bari, Italy Printed in Italy - Global Print Srl - Gorgonzola (MI) Citations of abstracts in this volume should be referenced as follows: <Authors> (2018). <Title>. In: S. Fiore (Editor). III International Conference on Atmospheric Dust - DUST 2018 BARI, Italy. Digilabs Pub., Bari, Italy, pp. 185. Scientific Research Abstracts Vol. 8, p. 1, 2018 ISSN 2464-9147 (Online) Atmospheric Dust - DUST 2018 © Author(s) 2018.
    [Show full text]
  • Spis Treści Y!
    Spis treści Drodzy Czytelnicy! Te osobliwe obiekty szczególnie intrygują badaczy ze względu na możliwość zderzenia takich planetoid dużą przyjemnością przekazuję z naszą planetą. Państwu ten powakacyjny numer Z„Fizyki w Szkole”. Mam nadzieję, że znajdą Państwo czas, aby do niego zaj- rzeć. Jest w nim duży artykuł poświęcony Edisonowi. Tu pojawia się pytanie czy Tomasz Alva Edison był fizykiem czy nie? Trudno jednoznacznie odpowiedzieć na to pytanie. Był jednak zdecydowanie człowiekiem, który z osiągnięć fizyki umiał twórczo korzystać. Do grona urzą- dzeń, które stworzył należał gramofon. Stworzył więc z jednej strony podstawy przemysłu fonograficznego z drugiej zaś strony pokazał użyteczność akustyki jako nauki. Drugim jego wielkim osiągnię- 44 Osobliwe planetoidy ¢ Krzysztof Ziołkowski ciem, które na prawie sto lat zmieniło obraz naszego świata było ulepszanie i komercjalizacja żarówki, czyli oświetle- Fizyka wczoraj, dziś, jutro nia elektrycznego. Był też współtwórcą 4 Oganesson 118: czy to koniec tablicy Mendelejewa? radiofonii. Zrewolucjonizował też samą ¢ Grzegorz Karwasz metodologię pracy badawczej tworząc 8 Od zdrowych nerek do dializy, pierwsze zinstytucjonalizowane zespoły czyli o biofizyce układu wydalniczego badawcze i tworząc pierwszy nowocze- ¢ Tomasz Kubiak sny instytut naukowy. 16 Termodynamika: główne koncepcje Innym miłośnikom historii nauki chcie- i etapy rozwoju. Cz. 1. libyśmy zaprezentować pierwsze artykuły ¢ Alfred Zmitrowicz z dwóch cyklów, W cyklu poświęconym 22 Od fonografu do elektrowni, czyli krótka termodynamice, autor omawia pojęcia, historia ponad 1000 wynalazków koncepcje i kolejne etapy jej rozwoju. Edisona Thomasa Alvy ¢ Kazimierz Mikulski Dugi cykl poświęcony jest generatorom elektrostatycznym, a rozpoczyna go arty- 28 Generatory elektrostatyczne – różne podejścia do wytwarzania kuł o historii rozwoju metod wytwarzania wysokich napięć stałych – cz. I.
    [Show full text]
  • Annual Report Volume 21 Fiscal 2018
    ISSN 1346-1192 Annual Report of the National Astronomical Observatory of Japan Volume 21 Fiscal 2018 Cover Caption This image shows the galaxy cluster MACS J1149.5+2223 taken with the NASA/ESA Hubble Space Telescope and the inset image is the galaxy MACS1149-JD1 located 13.28 billion light- years away observed with ALMA. Here, the oxygen distribution detected with ALMA is depicted in green. Credit: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope, W. Zheng (JHU), M. Postman (STScI <http://www.stsci.edu/>), the CLASH Team, Hashimoto et al. Postscript Publisher National Institutes of Natural Sciences National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588, Japan TEL: +81-422-34-3600 FAX: +81-422-34-3960 https://www.nao.ac.jp/ Printer Kyodo Telecom System Information Co., Ltd. 4-34-17 Nakahara, Mitaka-shi, Tokyo 181-0005, Japan TEX: +81-422-46-2525 FAX: +81-422-46-2528 Annual Report of the National Astronomical Observatory of Japan Volume 21, Fiscal 2018 Preface Saku TSUNETA Director General I Scientific Highlights April 2018 – March 2019 001 II Status Reports of Research Activities 01. Subaru Telescope 048 02. Nobeyama Radio Observatory 053 03. Mizusawa VLBI Observatory 056 04. Solar Science Observatory (SSO) 061 05. NAOJ Chile Observatory (NAOJ ALMA Project / NAOJ Chile) 064 06. Center for Computational Astrophysics (CfCA) 067 07. Gravitational Wave Project Office 070 08. TMT-J Project Office 072 09. JASMINE Project Office 075 10. RISE (Research of Interior Structure and Evolution of Solar System Bodies) Project Office 077 11. Solar-C Project Office 078 12.
    [Show full text]
  • Photometry, Imaging and Rotation Period of Comet 46P/Wirtanen During Its 2018 Apparition Abstract 1. Observation & Data Redu
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1036-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Photometry, imaging and rotation period of comet 46P/Wirtanen during its 2018 apparition Youssef Moulane (1,2,3), Emmanuel Jehin (2), Francisco José Pozuelos (2), Cyrielle Opitom (1), Jean Manfroid (2), Bin Yang (1), and Zouhair Benkhaldoun (3) (1) European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile ([email protected]), (2) Space sciences, Technologies & Astrophysics Research (STAR) Institute, University of Liège, Belgium , (3) Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Morocco. Abstract HB narrow band cometary filters [2], to column den- sities and we have adjusted their profiles with a Haser We report on photometry, imaging and the rotation pe- model [3]. The model adjustment is performed around riod of the Jupiter Family Comet (JFC) 46P/Wirtanen a physical distance of 10000 km from the nucleus. We (hereafter 46P) observed with both TRAPPIST tele- derived the water production rate from our OH produc- 0.5 scopes (TN and TS [1]). We monitored the comet reg- tion rates using Q(H2O)=1.36 r− Q(OH) [4]. We ularly during 8 months, following the evolution of the derived the Afρ parameter, proxy of dust production production rates of the gaseous species, e.g. OH, NH, [5], from the dust profiles using the HB cometary dust CN, C3 and C2, as well as the evolution of the A(θ)fρ continuum BC, GC and RC filters and the broad-band parameter, a dust proxy.
    [Show full text]
  • 2019 가을 학술대회 [구 SS-12] Generation of High Cadence SDO/AIA Images Using a Video Frame Interpolation Method, Supersl
    2019 가을 학술대회 Information & communications Technology Technology, Japan Promotion(IITP) grant funded by the Korea government(MSIP) (2018-0-01422, Study on Comets, one of the least-altered leftovers from analysis and prediction technique of solar flares). the nascent solar system, have probably preserved the primitive structure inside, whereas their [구 SS-12] Generation of high cadence surfaces become modified from the initial states SDO/AIA images using a video frame after repetitive orbital revolutions around the Sun. interpolation method, SuperSloMo Resurfacing makes the surface drier and more consolidated than the bulk nuclei, creating inert refractory dust layer (“dust mantle”). Suk-Kyung Sung1, Seungheon Shin2, TaeYoung Near-infrared (NIR; 1.25—2.25 m) polarimetry is Kim3, Jin-Yi Lee2, Eunsu Park1, Yong-Jae Moon1, theoretically expected to maximize contrast of the Il-Hoon Kim4 porosity between inner fresh and evolved dust 1School of Space Research, Kyung Hee University, particles, by harboring more dust constituents in 2Department of Astronomy and Space Science, the single wavelength than the optical; thus, Kyung Hee University, 3InSpace Co. Ltd., 4SL lab intensifies electromagnetic interaction in dust Inc. aggregates. Despite such an advantage, only a few studies have been made in this approach mainly We generate new intermediate images between due to the limited accessibility of available observed consecutive solar images using NVIDIA’s facilities. Herein, we present our new multi-band SuperSloMo that is a novel video interpolation NIR polarimetric study of near-Earth object method. This technique creates intermediate 252P/LINEAR over 12 days near perihelion, frames between two successive frames to form a together with the results of optical (0.48—0.80m) coherent video sequence for both spatially and imaging observations and backward dynamical temporally.
    [Show full text]
  • Small Asteroid to Shave Safely by Earth Friday 9 February 2018
    Small asteroid to shave safely by Earth Friday 9 February 2018 The asteroid is estimated to be between 50 and 130 feet (15 and 40 meters) in size. "Although 2018 CB is quite small, it might well be larger than the asteroid that entered the atmosphere over Chelyabinsk, Russia, almost exactly five years ago, in 2013," said Chodas. Another small asteroid, about the same size, also skimmed by Earth this week. Asteroid 2018 CC passed Tuesday at 3:10 pm (2010 GMT) at a distance of about 114,000 miles (184,000 kilometers). Both were discovered this month by astronomers at the NASA-funded Catalina Sky Survey (CSS) near Tucson, Arizona. © 2018 AFP A composite image of the Western hemisphere of the Earth. Credit: NASA An asteroid bigger than a city bus is on track to zoom by Earth Friday at a safe but close distance, less than one-fifth as far away as the Moon, NASA said. "Asteroids of this size do not often approach this close to our planet—maybe only once or twice a year," said Paul Chodas, manager of the Center for Near-Earth Object Studies at NASA's Jet Propulsion Laboratory. Called asteroid 2018 CB, the space rock will shave by our planet at around 5:30 pm (2230 GMT), the US space agency said. It will remain about 39,000 miles (64,000 kilometers) from Earth, which is less than one-fifth the distance to the Moon. 1 / 2 APA citation: Small asteroid to shave safely by Earth Friday (2018, February 9) retrieved 1 October 2021 from https://phys.org/news/2018-02-small-asteroid-safely-earth-friday.html This document is subject to copyright.
    [Show full text]
  • The Design Reference Asteroid for the OSIRIS-Rex Mission Target (101955) Bennu
    The Design Reference Asteroid for the OSIRIS-REx Mission Target (101955) Bennu An OSIRIS-REx DOCUMENT 2014-April-14 Carl W. Hergenrother1, Maria Antonietta Barucci2, Olivier Barnouin3, Beau Bierhaus4, Richard P. Binzel5, William F. Bottke6, Steve Chesley7, Ben C. Clark4, Beth E. Clark8, Ed Cloutis9, Christian Drouet d’Aubigny1, Marco Delbo10, Josh Emery11, Bob Gaskell12, Ellen Howell13, Lindsay Keller14, Michael Kelley15, John Marshall16, Patrick Michel10, Michael Nolan13, Bashar Rizk1, Dan Scheeres17, Driss Takir8, David D. Vokrouhlický18, Ed Beshore1, Dante S. Lauretta1 E-mail contact: [email protected] 1Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 2LESIA-Observatoire de Paris, CNRS, Univ. Paris-Diderot, Meudon, France 3Applied Physics Laboratory, John Hopkins University, Laurel, Maryland 4Space Systems Company, Lockheed Martin, Denver, Colorado 5Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 6Southwest Research Institute, Boulder, Colorado 7Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 8Dept. of Physics, Ithaca College, Ithaca, New York 9Dept. of Geography, University of Winnipeg, Winnipeg, Canada 10Laboratoire Lagrange, UNS-CNRS, Observatoire de la Cote d'Azur, Nice, France 11Earth and Planetary Science Dept., University of Tennessee, Knoxville, Tennessee 12Planetary Science Institute, Tucson, Arizona 13Arecibo Observatory, Arecibo, Puerto Rico 14NASA Johnson Space Center, Houston, Texas 15Dept.
    [Show full text]
  • In Search of Bennu Analogs: Hapke Modeling of Meteorite Mixtures F
    In search of Bennu analogs: Hapke modeling of meteorite mixtures F. Merlin, J. D. P. Deshapriya, S. Fornasier, M. A. Barucci, A. Praet, P. H. Hasselmann, B. E. Clark, V. E. Hamilton, A. A. Simon, D. C. Reuter, et al. To cite this version: F. Merlin, J. D. P. Deshapriya, S. Fornasier, M. A. Barucci, A. Praet, et al.. In search of Bennu analogs: Hapke modeling of meteorite mixtures. Astronomy and Astrophysics - A&A, EDP Sciences, 2021, 648, pp.A88. 10.1051/0004-6361/202140343. hal-03199736 HAL Id: hal-03199736 https://hal.archives-ouvertes.fr/hal-03199736 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 648, A88 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140343 & © F. Merlin et al. 2021 Astrophysics In search of Bennu analogs: Hapke modeling of meteorite mixtures F. Merlin1, J. D. P. Deshapriya1, S. Fornasier1,2, M. A. Barucci1, A. Praet1, P. H. Hasselmann1, B. E. Clark3, V. E. Hamilton4, A. A. Simon5, D. C. Reuter5, X.-D. Zou6, J.-Y. Li6, D. L. Schrader7, and D. S. Lauretta6 1 LESIA, Observatoire de Paris, Université
    [Show full text]
  • Molecular Composition of Comet 46P/Wirtanen from Millimetre-Wave Spectroscopy?,?? N
    A&A 648, A49 (2021) Astronomy https://doi.org/10.1051/0004-6361/202040125 & © N. Biver et al. 2021 Astrophysics Molecular composition of comet 46P/Wirtanen from millimetre-wave spectroscopy?,?? N. Biver1, D. Bockelée-Morvan1, J. Boissier2, R. Moreno1, J. Crovisier1, D. C. Lis3, P. Colom1, M. A. Cordiner4,5, S. N. Milam4, N. X. Roth4, B. P. Bonev6, N. Dello Russo7, R. J. Vervack Jr7, and M. A. DiSanti8 1 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 IRAM, 300 rue de la Piscine, 38406 Saint Martin d’Hères, France 3 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 4 Solar System Exploration Division, Astrochemistry Laboratory Code 691, NASA-GSFC, Greenbelt, MD 20771, USA 5 Department of Physics, Catholic University of America, Washington, DC 20064, USA 6 Department of Physics, American University, Washington, DC, USA 7 Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA 8 Solar System Exploration Division, Planetary System Laboratory Code 693, NASA-GSFC, Greenbelt, MD 20771, USA Received 14 December 2020 / Accepted 10 February 2021 ABSTRACT We present the results of a molecular survey of comet 46P/Wirtanen undertaken with the IRAM 30-m and NOEMA radio telescopes in December 2018. Observations at IRAM 30-m during the 12–18 December period comprise a 2 mm spectral survey covering 25 GHz and a 1 mm survey covering 62 GHz. The gas outflow velocity and kinetic temperature have been accurately constrained by the observations.
    [Show full text]
  • Terrestrial Deuterium-To-Hydrogen Ratio in Water in Hyperactive Comets Dariusz C
    A&A 625, L5 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935554 & c ESO 2019 Astrophysics LETTER TO THE EDITOR Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets Dariusz C. Lis1,2, Dominique Bockelée-Morvan3, Rolf Güsten4, Nicolas Biver3, Jürgen Stutzki5, Yan Delorme2, Carlos Durán4, Helmut Wiesemeyer4, and Yoko Okada5 1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA e-mail: [email protected] 2 Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, 75005 Paris, France 3 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France 4 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 5 I. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany Received 26 March 2019 / Accepted 11 April 2019 ABSTRACT The D/H ratio in cometary water has been shown to vary between 1 and 3 times the Earth’s oceans value, in both Oort cloud comets and Jupiter-family comets originating from the Kuiper belt. This has been taken as evidence that comets contributed a relatively small fraction of the terrestrial water. We present new sensitive spectroscopic observations of water isotopologues in the Jupiter- family comet 46P/Wirtanen carried out using the GREAT spectrometer aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The derived D/H ratio of (1:61 ± 0:65) × 10−4 is the same as in the Earth’s oceans. Although the statistics are limited, we show that interesting trends are already becoming apparent in the existing data.
    [Show full text]
  • (101955) Bennu from Thermal Infrared Spectroscopy V
    A&A 650, A120 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039728 & © ESO 2021 Astrophysics Evidence for limited compositional and particle size variation on asteroid (101955) Bennu from thermal infrared spectroscopy V. E. Hamilton1 , P. R. Christensen2, H. H. Kaplan3, C. W. Haberle2, A. D. Rogers4, T. D. Glotch4, L. B. Breitenfeld4, C. A. Goodrich5, D. L. Schrader2, T. J. McCoy6, C. Lantz7, R. D. Hanna8, A. A. Simon3, J. R. Brucato9, B. E. Clark10, and D. S. Lauretta11 1 Southwest Research Institute, Boulder, CO, USA e-mail: [email protected] 2 Arizona State University, Tempe, AZ, USA 3 NASA Goddard Space Flight Center, Greenbelt, MD, USA 4 Stony Brook University, Stony Brook, NY, USA 5 Lunar and Planetary Institute, Houston, TX, USA 6 Smithsonian Institution, National Museum of Natural History, Washington, DC, USA 7 Institut d’Astrophysique Spatiale, CNRS/Université Paris Sud, Orsay, France 8 University of Texas, Austin, TX, USA 9 INAF-Astrophysical Observatory of Arcetri, Firenze, Italy 10 Ithaca College, Ithaca, NY, USA 11 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA Received 20 October 2020 / Accepted 31 March 2021 ABSTRACT Context. Asteroid (101955) Bennu is the target of NASA’s Origins, Spectral Interpretation, Resource Identification, and Security– Regolith Explorer (OSIRIS-REx) mission. The spacecraft’s instruments have characterized Bennu at global and local scales to select a sampling site and provide context for the sample that will be returned to Earth. These observations include thermal infrared spectral characterization by the OSIRIS-REx Thermal Emission Spectrometer (OTES). Aims. To understand the degree of compositional and particle size variation on Bennu, and thereby predict the nature of the returned sample, we studied OTES spectra, which are diagnostic of these properties.
    [Show full text]
  • Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets
    ALBEDOS, EQUILIBRIUM TEMPERATURES, AND SURFACE TEMPERATURES OF HABITABLE PLANETS Anthony D. Del Genio1, Nancy Y. Kiang1, Michael J. Way1, David S. Amundsen1,2, Linda E. Sohl1,3, Yuka Fujii4, Mark Chandler1,3, Igor Aleinov1,3, Christopher M. Colose5, Scott D. Guzewich6, and Maxwell Kelley1,7 Submitted to The Astrophysical Journal December 16, 2018 Short title: Habitable planet albedos and temperatures 1NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 2Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 3Center for Climate Systems Research, Columbia University, New York, NY 10027 4Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152- 8550, Japan 5 NASA Postdoctoral Program, Goddard Institute for Space Studies, New York, NY 10025 6NASA Goddard Space Flight Center, Greenbelt, MD 20771 7SciSpace LLC, 2880 Broadway, New York, NY 10025 Corresponding author: Anthony D. Del Genio NASA Goddard Institute for Space Studies 2880 Broadway New York, NY 10025 Phone: 212-678-5588 Email: [email protected] 1 ABSTRACT The potential habitability of known exoplanets is often categorized by a nominal equilibrium temperature assuming a Bond albedo of either ~0.3, similar to Earth, or 0. As an indicator of habitability, this leaves much to be desired, because albedos of other planets can be very different, and because surface temperature exceeds equilibrium temperature due to the atmospheric greenhouse effect. We use an ensemble of 3-dimensional general circulation model simulations to show that for a range of habitable planets, much of the variability of Bond albedo, equilibrium temperature, and even surface temperature can be predicted with useful accuracy from incident stellar flux and stellar temperature, two known external parameters for every confirmed exoplanet.
    [Show full text]