COMMUNITY of STREAMS in PAULDING COUNTY, COLEOPTERA) Paul M. the Requirements for the Degree of DOCTOR of PHILOSOPHY August 1

Total Page:16

File Type:pdf, Size:1020Kb

COMMUNITY of STREAMS in PAULDING COUNTY, COLEOPTERA) Paul M. the Requirements for the Degree of DOCTOR of PHILOSOPHY August 1 AN ANALYSIS OF THE SHORE BEETLE COMMUNITY OF CHANNELIZED STREAMS IN PAULDING COUNTY, OHIO (INSECTA: COLEOPTERA) Paul M. Holeski A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 1976 il ABSTRACT A study of the shore beetle community of the channelized streams in the Little Auglaize Watershed in Paulding County, Ohio was conducted between 1972 and 1974. Species composing the community belonged to several families (Carabidae, Heteroceridae, Staphylinidae, Hydrophilidae, etc.) and are restricted to a narrow zone of habitat at the water-shore interface. All of the streams studied had undergone channelization several times, the most recent ranging from 1937 to 1973. Collections were made six to eight times a season at nine sites selected to provide a variation in time period since channelization and to be as inclusive of conditions in the watershed as was possible. Ninety species of shore beetles were collected from the nine sites. The largest variety of species taken at one site over the total period was 47. Between 13 and 32 species were collected at any one site each season. Quantitative analyses (Margalef and Shannon & Weaver) of species diversity were generally high at all of the sites and although the fewest individuals were collected at the most recently channelized site, the quantitative differences among streams grouped by time post-channelization were not statistically significant. Qualitative analysis to determine species composition showed that the communities at sites changed very little throughout the season of activity and that the communities at different sites (streams) did not differ greatly. It appeared that the species making up the shore beetle community are adapted to quick recolonization of an area after normal natural Ill disruptions such as floods or drought periods and thus were able to also quickly recolonize an area after a man-made disruption of their habitat. Stream channelization, therefore, did not significantly alter the species diversity or composition of the community. Many species in the community appeared to have unique associations, always occurring together or never being found in the presence of one another. Several species apparently not previously reported from Ohio were collected. Also included is a listing of the species collected and their distributions, and information on the area studied. iv ACKNOWLEDGEMENTS I would like to acknowledge Professor Carl Lindroth, Dr. George Ball, Dr. J.M. Campbell, and Dr. Ales Smetana for help with certain determina­ tions; Dr. Rex Lowe, Mr. Richard Eroelich, Mr. Tim Dunsworth, and Dr. F. MacMorris for the use of computer programs; and Mr. Richard Nagel, SCS for technical information. I also wish to thank my advisor, Dr. Robert C. Graves for his aid and my wife, Sue Holeski, for her aid and constant support. This project was supported in part by grants from the Ohio Biological Survey. ¿1 71 77/ /$ lAt V TABLE OF CONTENTS Page INTRODUCTION .......................................................................................................................... 1 THE AREA AND ITS HISTORY............................................................................................. 3 Geography and history ........................................................................................ 3 Streams........................................... 7 Geology....................................................................................... 17 Soils.....................................................................................................................................17 Climate.......................................................................................................................... 18 THE INSECTS.................................................................................................................................... 20 METHODS AND MATERIALS............................................................................................................ 23 Collecting sites............................................................................................................ 27 RESULTS..............................................................................................................................................56 Quantitative results.................................................................................................. 56 Qualitative results ............................................................................................ 64 Results of physical and chemical measurements ........................................................................................ 114 DISCUSSION.................................................................................................................................. 116 SUMMARY............................................................................................................................................130 LITERATURE CITED 131 vi LIST OF TABLES Table I Dates and locations of first Page stream modifications.......................................................... .... 8 Table II Dates of modification to streams in the area of the sample locations.......................................................9 Table III Location of the sample sites...............................................................28 Table IV Summaries of quantitative data.......................................................... 58 Table V Stations most similar in species composition................................................................................................. 68 Table VI Coefficients of Similarity for stations based on yearly species totals......................................................74 Table VII Mean Coefficients of Similarity for each site based on seasonal comparisons............................................77 Table VIII Species collected in the Little Auglaize Watershed...................................................................................................... 79 Table IX List of species collected at each site....................................83 Table X Distribution of individuals by families listed for each collecting site.................................................92 Table XI Distribution of individuals by families Three year totals...................................................................................102 Table XII Species not collected at various sites..................................... 108 Table XIII Pairs of species found together................................................... 110 Table XIV Pairs of species not found together..........................................113 Table XV Soil analysis (particle size) for each site...................... 115 Vll LIST OF FIGURES Page Figure 1 Map of Ohio showing area of study..............................................5 Figure 2 Map of the Little Auglaize Watershed.................................... 13 Figure 3 Map showing the locations of the sampling stations................................................................................... 15 Figure 4 The sampling frame..................................................................................26 Figure 5 Site IT-48 The Little Auglaize River...................................... 26 Figure 6 Low water at site IT-48........................................................................30 Figure 7 Close view of substrate at site IT-48.....................................30 Figure 8 Site 2T-12 Dog Creek............................................................................. 33 Figure 9 Close view of substrate at site 2T-12. .........................33 Figure 10 Site 3T-12 Middle Creek . .................................................... 36 Figure 11 Site 3T-12 (36) Middle Creek...........................................................36 Figure 12 The shore area at site 3T-12(36)............................................... 39 Figure 13 Close view of the substrate at site 3T-12(36). .39 Figure 14 Site 3T-48 Middle Creek.................................................................. 41 Figure 15 Site 3T-48 showing second channel cut..................................... 41 Figure 16 The shore area at site 3T-48................................... 43 Figure 17 Close view of the substrate at site3 T-48..............................43 Figure 18 Site 5T-123 Hagerman Creek........................................................... .46 Figure 19 Site 5T-123 Typical shore beetle habitat...........................46 Figure 20 Site 4T-60 West Branch (Hoaglin Creek)................................48 Figure 21 Close view of the shore area at site 4T-60.............................................................................................48 Figure 22 Vegetation in the channel of West Branch.............................................................................................51 viii Page Figure 23 Site 6T-137 Prairie Creek....................................................................... 51 Figure 24 Site 6T-151 Prairie Creek....................................................................... 53 Figure 25 The shore area at site 6T-151............................................................. 53 Figure 26 The shore area at site 6T-137............................................................. 55 Figure 27 Close view of thè shore at site 6T-137...........................................
Recommended publications
  • Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle
    Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle. Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science Vol. 34, No. 2 Appendix S1. References for trait state determination. Order Family Taxon Body Voltinism Dispersal Respiration FFG Diapause Locomotion Source size Amphipoda Crustacea Hyalella 3 3 1 2 2 2 3 1, 2 Annelida Hirudinea Hirudinea 2 2 3 3 6 2 5 3 Anostraca Anostraca Anostraca 2 3 3 2 4 1 5 1, 3 Basommatophora Ancylidae Ferrissia 1 2 1 1 3 3 4 1 Ancylidae Ancylidae 1 2 1 1 3 3 4 3, 4 Class:Arachnida subclass:Acari Acari 1 2 3 1 5 1 3 5,6 Coleoptera Dryopidae Helichus lithophilus 1 2 4 3 3 3 4 1,7, 8 Helichus suturalis 1 2 4 3 3 3 4 1 ,7, 9, 8 Helichus triangularis 1 2 4 3 3 3 4 1 ,7, 9,8 Postelichus confluentus 1 2 4 3 3 3 4 7,9,10, 8 Postelichus immsi 1 2 4 3 3 3 4 7,9, 10,8 Dytiscidae Agabus 1 2 4 3 6 1 5 1,11 Desmopachria portmanni 1 3 4 3 6 3 5 1,7,10,11,12 Hydroporinae 1 3 4 3 6 3 5 1 ,7,9, 11 Hygrotus patruelis 1 3 4 3 6 3 5 1,11 Hygrotus wardi 1 3 4 3 6 3 5 1,11 Laccophilus fasciatus 1 2 4 3 6 3 5 1, 11,13 Laccophilus maculosus 1 3 4 3 6 3 5 1, 11,13 Laccophilus mexicanus 1 2 4 3 6 3 5 1, 11,13 Laccophilus oscillator 1 2 4 3 6 3 5 1, 11,13 Laccophilus pictus 1 2 4 3 6 3 5 1, 11,13 Liodessus obscurellus 1 3 4 3 6 3 5 1 ,7,11 Neoclypeodytes cinctellus 1 3 4 3 7 3 5 14,15,1,10,11 Neoclypeodytes fryi 1 3 4 3 7 3 5 14,15,1,10,11 Neoporus 1 3 4 3 7 3 5 14,15,1,10,11 Rhantus atricolor 2 2 4 3 6 3 5 1,16 Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle.
    [Show full text]
  • Coleoptera: Cucujoidea) Matthew Immelg Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea) Matthew immelG Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Gimmel, Matthew, "Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea)" (2011). LSU Doctoral Dissertations. 2857. https://digitalcommons.lsu.edu/gradschool_dissertations/2857 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. REVISION AND RECLASSIFICATION OF THE GENERA OF PHALACRIDAE (COLEOPTERA: CUCUJOIDEA) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Matthew Gimmel B.S., Oklahoma State University, 2005 August 2011 ACKNOWLEDGMENTS I would like to thank the following individuals for accommodating and assisting me at their respective institutions: Roger Booth and Max Barclay (BMNH), Azadeh Taghavian (MNHN), Phil Perkins (MCZ), Warren Steiner (USNM), Joe McHugh (UGCA), Ed Riley (TAMU), Mike Thomas and Paul Skelley (FSCA), Mike Ivie (MTEC/MAIC/WIBF), Richard Brown and Terry Schiefer (MEM), Andy Cline (CDFA), Fran Keller and Steve Heydon (UCDC), Cheryl Barr (EMEC), Norm Penny and Jere Schweikert (CAS), Mike Caterino (SBMN), Michael Wall (SDMC), Don Arnold (OSEC), Zack Falin (SEMC), Arwin Provonsha (PURC), Cate Lemann and Adam Slipinski (ANIC), and Harold Labrique (MHNL).
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Coleoptera: Carabidae) Diversity
    VEGETATIVE COMMUNITIES AS INDICATORS OF GROUND BEETLE (COLEOPTERA: CARABIDAE) DIVERSITY BY ALAN D. YANAHAN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Master’s Committee: Dr. Steven J. Taylor, Chair, Director of Research Adjunct Assistant Professor Sam W. Heads Associate Professor Andrew V. Suarez ABSTRACT Formally assessing biodiversity can be a daunting if not impossible task. Subsequently, specific taxa are often chosen as indicators of patterns of diversity as a whole. Mapping the locations of indicator taxa can inform conservation planning by identifying land units for management strategies. For this approach to be successful, though, land units must be effective spatial representations of the species assemblages present on the landscape. In this study, I determined whether land units classified by vegetative communities predicted the community structure of a diverse group of invertebrates—the ground beetles (Coleoptera: Carabidae). Specifically, that (1) land units of the same classification contained similar carabid species assemblages and that (2) differences in species structure were correlated with variation in land unit characteristics, including canopy and ground cover, vegetation structure, tree density, leaf litter depth, and soil moisture. The study site, the Braidwood Dunes and Savanna Nature Preserve in Will County, Illinois is a mosaic of differing land units. Beetles were sampled continuously via pitfall trapping across an entire active season from 2011–2012. Land unit characteristics were measured in July 2012. Nonmetric multidimensional scaling (NMDS) ordinated the land units by their carabid assemblages into five ecologically meaningful clusters: disturbed, marsh, prairie, restoration, and savanna.
    [Show full text]
  • (Coleoptera: Curculionidae) for the Control of Salvinia
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana Katherine A. Parys Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Parys, Katherine A., "Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana" (2011). LSU Doctoral Dissertations. 1565. https://digitalcommons.lsu.edu/gradschool_dissertations/1565 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTRODUCTION AND ESTABLISHMENT OF CYRTOBAGOUS SALVINIAE CALDER AND SANDS (COLEOPTERA: CURCULIONIDAE) FOR THE CONTROL OF SALVINIA MINIMA BAKER (SALVINIACEAE), AND INTERSPECIES INTERACTIONS POSSIBLY LIMITING SUCCESSFUL CONTROL IN LOUISIANA. A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology By Katherine A. Parys B.A., University of Rhode Island, 2002 M.S., Clarion University of Pennsylvania, 2004 December 2011 ACKNOWLEDGEMENTS In pursing this Ph.D. I owe many thanks to many people who have supported me throughout this endeavor.
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Land Management Practices Interactively Affect Wetland Beetle Ecological and Phylogenetic Community Structure
    Ecological Applications, 25(4), 2015, pp. 891–900 Ó 2015 by the Ecological Society of America Land management practices interactively affect wetland beetle ecological and phylogenetic community structure 1 SANDOR L. KELLY,HOJUN SONG, AND DAVID G. JENKINS Department of Biology, University of Central Florida, Orlando, Florida 32792 USA Abstract. Management practices can disturb ecological communities in grazing lands, which represent one-quarter of land surface. But three knowledge gaps exist regarding disturbances: disturbances potentially interact but are most often studied singly; experiments with multiple ecosystems as treatment units are rare; and relatively new metrics of phylogenetic community structure have not been widely applied. We addressed all three of these needs with a factorial experiment; 40 seasonal wetlands embedded in a Florida ranch were treated with pasture intensification, cattle exclosure, and prescribed fire. Treatment responses were evaluated through four years for aquatic beetle (Coleoptera: Adephaga) assemblages using classic ecological metrics (species richness, diversity) and phylogenetic community structure (PCS) metrics. Adephagan assemblages consisted of 23 genera representing three families in a well-resolved phylogeny. Prescribed fire significantly reduced diversity one year post-fire, followed by a delayed pasture 3 fire interaction. Cattle exclosure significantly reduced one PCS metric after one year and a delayed pasture 3 fence 3 fire interaction was detected with another PCS metric. Overall, effects of long-term pasture intensification were modified by cattle exclosure and prescribed fire. Also, PCS metrics revealed effects otherwise undetected by classic ecological metrics. Management strategies (e.g., ‘‘flash grazing,’’ prescribed fires) in seasonal wetlands may successfully balance economic gains from high forage quality with ecological benefits of high wetland diversity in otherwise simplified grazing lands.
    [Show full text]
  • The Variegated Mud-Loving Beetles (Coleoptera: Heteroceridae) Of
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 12-1-2012 The variegated mud-loving beetles (Coleoptera: Heteroceridae) of Mississippi and Alabama, with discussion and keys to the species occurring in the southeastern United States Jonas G. King Vanderbilt University, [email protected] Paul K. Lago University of Mississippi, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi King, Jonas G. and Lago, Paul K., "The av riegated mud-loving beetles (Coleoptera: Heteroceridae) of Mississippi and Alabama, with discussion and keys to the species occurring in the southeastern United States" (2012). Insecta Mundi. Paper 788. http://digitalcommons.unl.edu/insectamundi/788 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0275 The variegated mud-loving beetles (Coleoptera: Heteroceridae) of Mississippi and Alabama, with discussion and keys to the species occurring in the southeastern United States Jonas G. King Department of Biological Sciences Vanderbilt University Nashville, TN, 37235 USA Paul K. Lago Department of Biology University of Mississippi University of Mississippi, MS, 38677 USA Date of Issue: December 28, 2012 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Jonas G. King and Paul K. Lago The variegated mud-loving beetles (Coleoptera: Heteroceridae) of Mississippi and Alabama, with discussion and keys to the species occurring in the southeastern United States Insecta Mundi 0275: 1- 53 ZooBank Registered: urn:lsid:zoobank.org:pub:AC2597CC-301F-4E91-9711-5C17399C9AA2 Published in 2012 by Center for Systematic Entomology, Inc.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • EPA 1999 Rapid Bioassessment Protocol
    DRAFT REVISION—September 3, 1998 EPA 841-B-99-002 Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish Second Edition http://www.epa.gov/OWOW/monitoring/techmon.html By: Project Officer: Michael T. Barbour Chris Faulkner Jeroen Gerritsen Office of Water Blaine D. Snyder USEPA James B. Stribling 401 M Street, NW DRAFT REVISION—September 3, 1998 Washington, DC 20460 Rapid Bioassessment Protocols for Use in Streams and Rivers 2 DRAFT REVISION—September 3, 1998 NOTICE This document has been reviewed and approved in accordance with U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Appropriate Citation: Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. This entire document, including data forms and other appendices, can be downloaded from the website of the USEPA Office of Wetlands, Oceans, and Watersheds: http://www.epa.gov/OWOW/monitoring/techmon.html DRAFT REVISION—September 3, 1998 FOREWORD In December 1986, U.S. EPA's Assistant Administrator for Water initiated a major study of the Agency's surface water monitoring activities. The resulting report, entitled "Surface Water Monitoring: A Framework for Change" (U.S. EPA 1987), emphasizes the restructuring of existing monitoring programs to better address the Agency's current priorities, e.g., toxics, nonpoint source impacts, and documentation of "environmental results." The study also provides specific recommendations on effecting the necessary changes.
    [Show full text]
  • Coleoptera: Carabidae) Peter W
    30 THE GREAT LAKES ENTOMOLOGIST Vol. 42, Nos. 1 & 2 An Annotated Checklist of Wisconsin Ground Beetles (Coleoptera: Carabidae) Peter W. Messer1 Abstract A survey of Carabidae in the state of Wisconsin, U.S.A. yielded 87 species new to the state and incorporated 34 species previously reported from the state but that were not included in an earlier catalogue, bringing the total number of species to 489 in an annotated checklist. Collection data are provided in full for the 87 species new to Wisconsin but are limited to county occurrences for 187 rare species previously known in the state. Recent changes in nomenclature pertinent to the Wisconsin fauna are cited. ____________________ The Carabidae, commonly known as ‘ground beetles’, with 34, 275 described species worldwide is one of the three most species-rich families of extant beetles (Lorenz 2005). Ground beetles are often chosen for study because they are abun- dant in most terrestrial habitats, diverse, taxonomically well known, serve as sensitive bioindicators of habitat change, easy to capture, and morphologically pleasing to the collector. North America north of Mexico accounts for 2635 species which were listed with their geographic distributions (states and provinces) in the catalogue by Bousquet and Larochelle (1993). In Table 4 of the latter refer- ence, the state of Wisconsin was associated with 374 ground beetle species. That is more than the surrounding states of Iowa (327) and Minnesota (323), but less than states of Illinois (452) and Michigan (466). The total count for Minnesota was subsequently increased to 433 species (Gandhi et al. 2005). Wisconsin county distributions are known for 15 species of tiger beetles (subfamily Cicindelinae) (Brust 2003) with collection records documented for Tetracha virginica (Grimek 2009).
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]