The Main Belt Comets and Ice in the Solar System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Blurring Distinction Between Asteroids and Comets
Answers Research Journal 8 (2015):203–208. www.answersingenesis.org/arj/v8/asteroids-and-comets.pdf The Blurring Distinction between Asteroids and Comets Danny R. Faulkner, Answers in Genesis, PO Box 510, Hebron, Kentucky, 41048. Abstract Asteroids and comets long had been viewed as distinct objects with regards to orbits and composition. However, discoveries made in recent years have blurred those distinctions. Whether there is a continuum on which our older conception of asteroids and comets are extremes or if there still is a gap between them is not entirely clear yet. Some of the newer views of comets and asteroids may challenge the evolutionary theory of the solar system. Additionally, the new information may challenge the idea that the solar system is billions of years old. For readers not versed in nomenclature of small solar system bodies, I discuss that in the appendix. Keywords: small solar system objects, comets, asteroids (minor planets) Introduction the sun, and their orbits frequently are inclined The differences between asteroids and comets considerably to the orbits of the planets. Because of At one time, we thought of asteroids and comets as their highly elliptical orbits, most comets alternately being two very different groups of objects. Comets and are very close to the sun when near perihelion and asteroids certainly looked different. Comets can be very far from the sun when near aphelion. Comets visible to the naked eye, and have been known since spend most of the time near aphelion far from the ancient times. They have a hazy, fuzzy appearance. sun, so that their ices remain frozen. -
Alexandre Amorim -.:: GEOCITIES.Ws
Alexandre Amorim (org) 2 3 PREFÁCIO O Boletim Observe! é uma iniciativa da Coordenação de Observação Astronômica do Núcleo de Estudo e Observação Astronômica “José Brazilício de Souza” (NEOA-JBS). Durante a reunião administrativa do NEOA-JBS em maio de 2010 foi apresentada a edição de Junho de 2010 para apreciação dos demais coordenadores do Núcleo onde houve aprovação unânime em usar o Boletim Observe! como veículo de informação das atividades e, principalmente, observações astronômicas. O Boletim Observe! é publicado mensalmente em formato eletrônico ou impresso separadamente, prezando pela simplicidade das informações e encorajando os leitores a observar, registrar e publicar os eventos astronômicos. Desde a sua primeira edição o Boletim Observe! conta com a colaboração espontânea de diversos astrônomos amadores e profissionais. Toda edição do Observe! do mês de dezembro é publicado um índice dos artigos do respectivo ano. Porém, desde aquela edição de Junho de 2010 foram publicados centenas de artigos e faz-se necessário consultar assuntos que foram tratados nas edições anteriores do Observe! e seus respectivos autores. Para isso publicaremos anualmente esse Índice de Assuntos, permitindo a consulta rápida dos temas abordados. Florianópolis, 1º de dezembro de 2018 Alexandre Amorim Coordenação de Observação Astronômica do NEOA-JBS 4 Ano I (2010) Nº 1 – Junho 2010 Eclipse da Lua em 26 de junho de 2010 Amorim, A. Júpiter sem a Banda Equatorial Sul Amorim, A. Conjunção entre Júpiter e Urano Amorim, A. Causos do Avelino Alves, A. A. Quem foi Eugênia de Bessa? Amorim, A. Nº 2 – Julho 2010 Aprendendo a dimensionar as distâncias angulares no céu Neves, M. -
Gemini Observations of Active Asteroid 354P/LINEAR (2010 A2)
Gemini Observations of Active Asteroid 354P/LINEAR (2010 A2) Yoonyoung Kim, Masateru Ishiguro Seoul National University (Korea) Science & Evolution of Gemini Observatory 2018 Fisherman’s Wharf, San Francisco Contents • Overview • Active asteroids resulting from impacts • The case of 354P/LINEAR (2010 A2) • Concluding remark Overview “Small Solar System bodies are primitive, but...” Solar System Formation “Snow line” Credit: Univ. of Hawaii Primitive small bodies Kuiper Belt ~30-55 AU Oort Cloud ~104-105 AU Yeomans 2000 Primitive small bodies (easy to observe) are comets and asteroids Kuiper Belt ~30-55 AU Oort Cloud ~104-105 AU Yeomans 2000 but, primitive small bodies also evolved... by solar radiative heating by impacts NASA/JPL/Univ. of Maryland but, primitive small bodies also evolved... by solar radiative heating by impacts NASA/JPL/Univ. of Maryland Purpose of this study • We aim to figure out one of the major evolutionary processes in the Solar System (impacts) through observational studies of • Active asteroids resulting from impacts • The case of 354P/LINEAR (2010 A2) Comets Active Asteroids Active asteroids Dormant Comets Asteroids resulting from impacts : The case of 354P/LINEAR (2010 A2) Kim, Y., Ishiguro, M., et al. 2017, AJ Kim, Y., Ishiguro, M., & Lee, M. G. 2017, ApJL Background “Evidences of past impacts” Credit: D. Jewitt The case of (596) Scheila Ishiguro+2011 The case of 354P/2010 A2 Jewitt+2011 The case of 354P/2010 A2 The case of 354P/2010 A2 Previous modelings (Jewitt+10,13; Snodgrass+10; Hainaut+12; Agarwal+13; Kleyna+13) Jewitt+2013 Kleyna+2013 Observation 2010 Model Observation Agarwal+2013 Obs. -
The Minor Planet Bulletin 44 (2017) 142
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin. -
Secular Light Curves of Comets, II: 133P
1 C:\Atlas2\133Pv9.doc\060704 / Version 9.0 Icarus MS Number I09469 Accepted for publication in Icarus, 2006 07 21 “Secular Light Curves of Comets, II: 133P/Elst-Pizarro, an Asteroidal Belt Comet” Ignacio Ferrín, Center for Fundamental Physics, University of the Andes, Mérida, VENEZUELA. [email protected] Received October11th, 2005 , Accepted July 21st, 2006 No. Of Pages 44 No. Of Figures 10 No. Of Tables 5 No. Of References 163 - The observations described in this work were carried out at the National Observatory of Venezuela (ONV), managed by the Center for Research in Astronomy (CIDA), for the Ministry of Science and Technology. 2 Proposed Running Head: “ Secular Light Curve of Comet 133P/Elst-Pizarro “ Name and address for Editorial Correspondence: Dr. Ignacio Ferrín, Apartado 700, Mérida 5101-A, VENEZUELA South America Email address: [email protected] 3 Abstract We present the secular light curve (SLC) of 133P/Elst-Pizarro, and show ample and sufficient evidence to conclude that it is evolving into a dormant phase. The SLC provides a great deal of information to characterize the object, the most important being that it exhibits outburst-like activity without a corresponding detectable coma. 133P will return to perihelion in July of 2007 when some of our findings may be corroborated. The most significant findings of this investigation are: (1) We have compiled from 127 literature references, extensive databases of visual colors (37 comets), rotational periods and peak-to-valley amplitudes (64 comets). 2-Dimensional plots are created from these databases, which show that comets do not lie on a linear trend but in well defined areas of these phase spaces. -
The Search for Water Ice on Comets and Asteroids
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS TESIS DOCTORAL The Search for water ice on Comets and Asteroids La búsqueda de hielo de agua en Cometas y Asteroides MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Laurence O’Rourke DIRECTOR Michael Küppers Madrid © Laurence O’Rourke, 2021 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS TESIS DOCTORAL La búsqueda de hielo de agua en Cometas y Asteroides MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Laurence O’Rourke DIRECTOR Dr. Michael Küppers The Search for water ice on Comets and Asteroids La búsqueda de hielo de agua en Cometas y Asteroides TESIS DOCTORAL LAURENCE O’ROURKE Departamento de Física de la Tierra y Astrofísica Facultad de Ciencias Físicas Universidad Complutense de Madrid A thesis submitted for the degree of Doctor en Astrofisica September 2020 Director: Dr. Michael Küppers Tutor: Prof. David Montes Gutiérrez Dedication I would like to dedicate this thesis to my wife Cristina & our children David and Paulina, and to my parents, Laurence and Rita (neé Curley) O’Rourke, who have both passed away but who would no doubt have been very proud of me for this achievement. Acknowledgements This work has been possible thanks to the great support and help provided by my PhD director Michael Küppers and by my UCM tutor, David Montes Gutiérrez. The published papers presented, provide an excellent overview of the significant collaborations I have had across the planetary science community with nearly 50 different co-authors represented in the papers. Their professionalism, expertise and friendship were vital to ensure that the papers I wrote were at the highest level. -
The Castalia Mission to Main Belt Comet 133P/Elst-Pizarro C
The Castalia mission to Main Belt Comet 133P/Elst-Pizarro C. Snodgrass, G.H. Jones, H. Boehnhardt, A. Gibbings, M. Homeister, N. Andre, P. Beck, M.S. Bentley, I. Bertini, N. Bowles, et al. To cite this version: C. Snodgrass, G.H. Jones, H. Boehnhardt, A. Gibbings, M. Homeister, et al.. The Castalia mission to Main Belt Comet 133P/Elst-Pizarro. Advances in Space Research, Elsevier, 2018, 62 (8), pp.1947- 1976. 10.1016/j.asr.2017.09.011. hal-02350051 HAL Id: hal-02350051 https://hal.archives-ouvertes.fr/hal-02350051 Submitted on 28 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Available online at www.sciencedirect.com ScienceDirect Advances in Space Research 62 (2018) 1947–1976 www.elsevier.com/locate/asr The Castalia mission to Main Belt Comet 133P/Elst-Pizarro C. Snodgrass a,⇑, G.H. Jones b, H. Boehnhardt c, A. Gibbings d, M. Homeister d, N. Andre e, P. Beck f, M.S. Bentley g, I. Bertini h, N. Bowles i, M.T. Capria j, C. Carr k, M. -
THE STRANGE CASE of 133P/ELST-PIZARRO: a COMET AMONG the ASTEROIDS1 Henry H
The Astronomical Journal, 127:2997–3017, 2004 May # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE STRANGE CASE OF 133P/ELST-PIZARRO: A COMET AMONG THE ASTEROIDS1 Henry H. Hsieh, David C. Jewitt, and Yanga R. Ferna´ndez Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822; [email protected], [email protected], [email protected] Received 2003 August 7; accepted 2004 January 20 ABSTRACT We present a new investigation of the comet-asteroid transition object 133P/(7968) Elst-Pizarro. We find mean optical colors (BÀV =0.69Æ 0.02, VÀR =0.42Æ 0.03, RÀI =0.27Æ 0.03) and a phase-darkening coefficient ( =0.044Æ 0.007 mag degÀ1) that are comparable both to other comet nuclei and to C-type asteroids. As in 1996, when this object’s comet-like activity was first noted, data from 2002 show a long, narrow dust trail in the projected orbit of the object. Observations over several months reveal changes in the structure and brightness of this trail, showing that it is actively generated over long periods of time. Finson-Probstein modeling is used to constrain the parameters of the dust trail. We find optically dominant dust particle sizes of ad 10 mreleased À1 with low ejection velocities (vg 1.5 m s ) over a period of activity lasting at least 5 months in 2002. The double- peaked light curve of the nucleus indicates an aspherical shape (axis ratio a/b 1.45 Æ 0.07) and rapid rotation (period Prot = 3.471 Æ 0.001 hr). -
Searching for Main-Belt Comets Using the Canada–France–Hawaii Telescope Legacy Survey ∗ Alyssa M
ARTICLE IN PRESS YICAR:8889 JID:YICAR AID:8889 /FLA [m5G; v 1.80; Prn:5/03/2009; 8:23] P.1 (1-5) Icarus ••• (••••) •••–••• Contents lists available at ScienceDirect Icarus www.elsevier.com/locate/icarus Searching for main-belt comets using the Canada–France–Hawaii Telescope Legacy Survey ∗ Alyssa M. Gilbert ,PaulA.Wiegert Department of Physics & Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada article info abstract Article history: The Canada–France–Hawaii Telescope Legacy Survey, specifically the Very Wide segment of data, is used Received 4 December 2008 to search for possible main-belt comets. In the first data set, 952 separate objects with asteroidal orbits Revised 12 January 2009 within the main-belt are examined using a three-level technique. First, the full-width-half-maximum Accepted 22 January 2009 of each object is compared to stars of similar magnitude, to look for evidence of a coma. Second, the Available online xxxx brightness profiles of each object are compared with three stars of the same magnitude, which are Keywords: nearby on the image to ensure any extended profile is not due to imaging variations. Finally, the star Asteroids profiles are subtracted from the asteroid profile and the residuals are compared with the background Comets using an unpaired T-test. No objects in this survey show evidence of cometary activity. The second survey includes 11438 objects in the main-belt, which are examined visually. One object, an unknown comet, is found to show cometary activity. Its motion is consistent with being a main-belt asteroid, but the observed arc is too short for a definitive orbit calculation. -
C Copyright 2014 Aomawa L. Shields
c Copyright 2014 Aomawa L. Shields The Effect of Star-Planet Interactions on Planetary Climate Aomawa L. Shields A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Victoria Meadows, Chair Cecilia Bitz Rory Barnes Program Authorized to Offer Degree: Astronomy University of Washington Abstract The Effect of Star-Planet Interactions on Planetary Climate Aomawa L. Shields Chair of the Supervisory Committee: Professor Victoria Meadows Astronomy The goal of the work presented here is to explore the unique interactions between a host star, an orbiting planet, and additional planets in a stellar system, and to develop and test methods that include both radiative and gravitational effects on planetary climate and habitability. These methods can then be used to identify and assess the possible climates of potentially habitable planets in observed planetary systems. In this work I explored key star-planet interactions using a hierarchy of models, which I modified to incorporate the spectrum of stars of different spectral types. Using a 1- D energy-balance climate model, a 1-D line-by-line, radiative-transfer model, and a 3-D general circulation model, I simulated planets covered by ocean, land, and water ice of varying grain size, with incident radiation from stars of different spectral types. I find that terrestrial planets orbiting stars with higher near-UV radiation exhibit a stronger ice-albedo feedback. Ice extent is much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and ice-covered conditions occur on an F-dwarf planet with only a 2% reduction in instellation (incident stellar radiation) relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth). -
Spectral Properties of Binary Asteroids Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, Jérôme Berthier
Spectral properties of binary asteroids Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, Jérôme Berthier To cite this version: Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, et al.. Spectral prop- erties of binary asteroids. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2018, 477 (4), pp.5590-5604. 10.1093/mnras/sty1013. hal-01948168 HAL Id: hal-01948168 https://hal.sorbonne-universite.fr/hal-01948168 Submitted on 7 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 00, 1 (2018) doi:10.1093/mnras/sty1013 Advance Access publication 2018 April 24 Spectral properties of binary asteroids Myriam Pajuelo,1,2‹ Mirel Birlan,1,3 Benoˆıt Carry,1,4 Francesca E. DeMeo,5 Richard P. Binzel1,5 and Jer´ omeˆ Berthier1 1IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ Paris 06, Univ. Lille, France 2Seccion´ F´ısica, Departamento de Ciencias, Pontificia Universidad Catolica´ del Peru,´ Apartado 1761, Lima, Peru´ 3Astronomical Institute of the Romanian Academy, 5 Cutitul de Argint, 040557 Bucharest, Romania 4Observatoire de la Coteˆ d’Azur, UniversiteC´ oteˆ d’Azur, CNRS, Lagrange, France 5Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Accepted 2018 April 16. -
Astronomical Observations of Volatiles on Asteroids
Astronomical Observations of Volatiles on Asteroids Andrew S. Rivkin The Johns Hopkins University Applied Physics Laboratory Humberto Campins University of Central Florida Joshua P. Emery University of Tennessee Ellen S. Howell Arecibo Observatory/USRA Javier Licandro Instituto Astrofisica de Canarias Driss Takir Ithaca College and Planetary Science Institute Faith Vilas Planetary Science Institute We have long known that water and hydroxyl are important components in meteorites and asteroids. However, in the time since the publication of Asteroids III, evolution of astronomical instrumentation, laboratory capabilities, and theoretical models have led to great advances in our understanding of H2O/OH on small bodies, and spacecraft observations of the Moon and Vesta have important implications for our interpretations of the asteroidal population. We begin this chapter with the importance of water/OH in asteroids, after which we will discuss their spectral features throughout the visible and near-infrared. We continue with an overview of the findings in meteorites and asteroids, closing with a discussion of future opportunities, the results from which we can anticipate finding in Asteroids V. Because this topic is of broad importance to asteroids, we also point to relevant in-depth discussions elsewhere in this volume. 1 Water ice sublimation and processes that create, incorporate, or deliver volatiles to the asteroid belt 1.1 Accretion/Solar system formation The concept of the “snow line” (also known as “water-frost line”) is often used in discussing the water inventory of small bodies in our solar system. The snow line is the heliocentric distance at which water ice is stable enough to be accreted into planetesimals.