Lectures on Supersymmetry

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on Supersymmetry Lectures on Supersymmetry Matteo Bertolini SISSA March 27, 2017 1 Foreword This is a write-up of a course on Supersymmetry I have been giving for several years to first year PhD students attending the curriculum in Theoretical Particle Physics at SISSA, the International School for Advanced Studies of Trieste. There are several excellent books on supersymmetry and many very good lecture courses are available on the archive. The ambition of this set of notes is not to add anything new in this respect, but to offer a set of hopefully complete and self- consistent lectures, which start from the very basic and arrive to some of the more recent and advanced topics. The price to pay is that the material is pretty huge. The advantage is to have all such material in a single, possibly coherent file, and that no prior exposure to supersymmetry is required. There are many topics I do not address and others I only briefly touch. I discuss only rigid supersymmetry in four dimensions, while no reference to supergravity is given. Moreover, I mainly focus on N = 1 supersymmetry. Extended supersym- metry is discussed, and N = 2 and N = 4 Lagrangians presented; but no detailed discussion of their quantum dynamics is provided. Finally, this is a theoretical course and phenomenological aspects are only briefly sketched. One single chapter is dedicated to present basic phenomenological ideas, including a bird eyes view on models of gravity and gauge mediation and their properties. There is no bibliography at the end of the file. However, each chapter contains its own bibliography where the basic references (mainly books and/or reviews available on-line) I used to prepare the material are reported { including explicit reference to corresponding pages and chapters, so to let the reader have access to the original font (and to let me give proper credit to authors). I hope this effort can be of some help to as many students as possible! Disclaimer: I expect the file to contain many typos and errors. Everybody is welcome to let me know them, dialing at [email protected]. Your help will be very much appreciated. 2 Contents 1 Supersymmetry: a bird eyes view 7 1.1 What is supersymmetry? . 8 1.2 What is supersymmetry useful for? . 9 1.3 Some useful references . 18 2 The supersymmetry algebra 22 2.1 Lorentz and Poincar´egroups . 22 2.2 Spinors and representations of the Lorentz group . 25 2.3 The supersymmetry algebra . 29 2.4 Exercises . 37 3 Representations of the supersymmetry algebra 38 3.1 Massless supermultiplets . 40 3.2 Massive supermultiplets . 47 3.3 Representation on fields: a first try . 53 3.4 Exercises . 56 4 Superspace and superfields 57 4.1 Superspace as a coset . 57 4.2 Superfields as fields in superspace . 60 4.3 Supersymmetric invariant actions - general philosophy . 64 4.4 Chiral superfields . 65 4.5 Real (aka vector) superfields . 68 4.6 (Super)Current superfields . 70 4.6.1 Internal symmetry current superfields . 71 4.6.2 Supercurrent superfields . 72 4.7 Exercises . 75 5 Supersymmetric actions: minimal supersymmetry 76 5.1 N = 1 Matter actions . 76 5.1.1 Non-linear sigma model I . 83 3 5.2 N = 1 SuperYang-Mills . 87 5.3 N = 1 Gauge-matter actions . 91 5.3.1 Classical moduli space: examples . 95 5.3.2 The SuperHiggs mechanism . 102 5.3.3 Non-linear sigma model II . 104 5.4 Exercises . 106 6 Theories with extended supersymmetry 108 6.1 N = 2 supersymmetric actions . 108 6.1.1 Non-linear sigma model III . 111 6.2 N = 4 supersymmetric actions . 112 6.3 On non-renormalization theorems . 114 7 Supersymmetry breaking 122 7.1 Vacua in supersymmetric theories . 122 7.2 Goldstone theorem and the goldstino . 124 7.3 F-term breaking . 126 7.4 Pseudomoduli space: quantum corrections . 136 7.5 D-term breaking . 141 7.6 Indirect criteria for supersymmetry breaking . 143 7.6.1 Supersymmetry breaking and global symmetries . 144 7.6.2 Topological constraints: the Witten Index . 146 7.6.3 Genericity and metastability . 151 7.7 Exercises . 153 8 Mediation of supersymmetry breaking 155 8.1 Towards dynamical supersymmetry breaking . 155 8.2 The Supertrace mass formula . 157 8.3 Beyond Minimal Supersymmetric Standard Model . 159 8.4 Spurions, soft terms and the messenger paradigm . 160 8.5 Mediating the breaking . 163 8.5.1 Gravity mediation . 165 4 8.5.2 Gauge mediation . 167 8.6 Exercises . 172 9 Non-perturbative effects and holomorphy 173 9.1 Instantons and anomalies in a nutshell . 173 9.2 't Hooft anomaly matching condition . 177 9.3 Holomorphy . 179 9.4 Holomorphy and non-renormalization theorems . 181 9.5 Holomorphic decoupling . 190 9.6 Exercises . 193 10 Supersymmetric gauge dynamics: N = 1 195 10.1 Confinement and mass gap in QCD, YM and SYM . 195 10.2 Phases of gauge theories: examples . 205 10.2.1 Coulomb phase and free phase . 206 10.2.2 Continuously connected phases . 207 10.3 N=1 SQCD: perturbative analysis . 208 10.4 N=1 SQCD: non-perturbative dynamics . 210 10.4.1 Pure SYM: gaugino condensation . 211 10.4.2 SQCD for F < N: the ADS superpotential . 213 10.4.3 Integrating in and out: the linearity principle . 219 10.4.4 SQCD for F = N and F = N +1................223 10.4.5 Conformal window . 230 10.4.6 Electric-magnetic duality (aka Seiberg duality) . 233 10.5 The phase diagram of N=1 SQCD . 241 10.6 Exercises . 242 11 Dynamical supersymmetry breaking 245 11.1 Calculable and non-calculable models: generalities . 245 11.2 The one GUT family SU(5) model . 248 11.3 The 3-2 model: instanton driven SUSY breaking . 250 11.4 The 4-1 model: gaugino condensation driven SUSY breaking . 256 5 11.5 The ITIY model: SUSY breaking with classical flat directions . 258 11.6 DSB into metastable vacua. A case study: massive SQCD . 260 11.6.1 Summary of basic results . 261 11.6.2 Massive SQCD in the free magnetic phase: electric description 262 11.6.3 Massive SQCD in the free magnetic phase: magnetic description264 11.6.4 Summary of the physical picture . 271 6 1 Supersymmetry: a bird eyes view Coming years could represent a new era of unexpected and exciting discoveries in high energy physics, since a long time. For one thing, the CERN Large Hadron Collider (LHC) has been operating for some time, now, and many experimental data have already being collected. So far, the greatest achievement of the LHC has been the discovery of the missing building block of the Standard Model, the Higgs particle (or, at least, a particle which most likely is the Standard Model Higgs particle). On the other hand, no direct evidence of new physics beyond the Standard Model has been found, yet. However, there are many reasons to believe that new physics should in fact show-up at, or about, the TeV scale. The most compelling scenario for physics beyond the Standard Model (BSM) is supersymmetry. For this reason, knowing what is supersymmetry is rather impor- tant for a high energy physicist, nowadays. Understanding how supersymmetry can be realized (and then spontaneously broken) in Nature, is in fact one of the most important challenges theoretical high energy physics has to confront with. This course provides an introduction to such fascinating subject. Before entering into any detail, in this first lecture we just want to give a brief overview on what is supersymmetry and why is it interesting to study it. The rest of the course will try to provide (much) more detailed answers to these two basic questions. Disclaimer: The theory we are going to focus our attention in the two hundred and fifty pages which follow, can be soon proved to be the correct mathematical framework to understand high energy physics at the TeV scale, and become a piece of basic knowledge any particle physicist should have. But it can well be that BSM physics is more subtle and Nature not so kind to make supersymmetry be realized at low enough energy that we can make experiment of. Or worse, it can also be that all this will eventually turn out to be just a purely academic exercise about a theory that nothing has to do with Nature. An elegant way mankind has worked out to describe in an unique and self-consistent way elementary particle physics, which however is not the one chosen by Nature (but can we ever safely say so?). As I will briefly outline below, and discuss in more detail in the second part of this course, even in the worst case scenario... studying supersymmetry and its fascinating properties might still be helpful and instructive in many respects. 7 1.1 What is supersymmetry? Supersymmetry (SUSY) is a space-time symmetry mapping particles and fields of integer spin (bosons) into particles and fields of half integer spin (fermions), and viceversa. The generators Q act as Q jF ermioni = jBosoni and viceversa (1.1) From its very definition, this operator has two obvious but far-reaching properties that can be summarized as follows: • It changes the spin of a particle (meaning that Q transforms as a spin-1/2 particle) and hence its space-time properties. This is why supersymmetry is not an internal symmetry but a space-time symmetry. • In a theory where supersymmetry is realized, each one-particle state has at least a superpartner. Therefore, in a SUSY world, instead of single particle states, one has to deal with (super)multiplets of particle states.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Compactifying M-Theory on a G2 Manifold to Describe/Explain Our World – Predictions for LHC (Gluinos, Winos, Squarks), and Dark Matter
    Compactifying M-theory on a G2 manifold to describe/explain our world – Predictions for LHC (gluinos, winos, squarks), and dark matter Gordy Kane CMS, Fermilab, April 2016 1 OUTLINE • Testing theories in physics – some generalities - Testing 10/11 dimensional string/M-theories as underlying theories of our world requires compactification to four space-time dimensions! • Compactifying M-theory on “G2 manifolds” to describe/ explain our vacuum – underlying theory - fluxless sector! • Moduli – 4D manifestations of extra dimensions – stabilization - supersymmetry breaking – changes cosmology first 16 slides • Technical stuff – 18-33 - quickly • From the Planck scale to EW scale – 34-39 • LHC predictions – gluino about 1.5 TeV – also winos at LHC – but not squarks - 40-47 • Dark matter – in progress – surprising – 48 • (Little hierarchy problem – 49-51) • Final remarks 1-5 2 String/M theory a powerful, very promising framework for constructing an underlying theory that incorporates the Standard Models of particle physics and cosmology and probably addresses all the questions we hope to understand about the physical universe – we hope for such a theory! – probably also a quantum theory of gravity Compactified M-theory generically has gravity; Yang- Mills forces like the SM; chiral fermions like quarks and leptons; softly broken supersymmetry; solutions to hierarchy problems; EWSB and Higgs physics; unification; small EDMs; no flavor changing problems; partially observable superpartner spectrum; hidden sector DM; etc Simultaneously – generically Argue compactified M-theory is by far the best motivated, and most comprehensive, extension of the SM – gets physics relevant to the LHC and Higgs and superpartners right – no ad hoc inputs or free parameters Take it very seriously 4 So have to spend some time explaining derivations, testability of string/M theory Don’t have to be somewhere to test theory there – E.g.
    [Show full text]
  • Report of the Supersymmetry Theory Subgroup
    Report of the Supersymmetry Theory Subgroup J. Amundson (Wisconsin), G. Anderson (FNAL), H. Baer (FSU), J. Bagger (Johns Hopkins), R.M. Barnett (LBNL), C.H. Chen (UC Davis), G. Cleaver (OSU), B. Dobrescu (BU), M. Drees (Wisconsin), J.F. Gunion (UC Davis), G.L. Kane (Michigan), B. Kayser (NSF), C. Kolda (IAS), J. Lykken (FNAL), S.P. Martin (Michigan), T. Moroi (LBNL), S. Mrenna (Argonne), M. Nojiri (KEK), D. Pierce (SLAC), X. Tata (Hawaii), S. Thomas (SLAC), J.D. Wells (SLAC), B. Wright (North Carolina), Y. Yamada (Wisconsin) ABSTRACT Spacetime supersymmetry appears to be a fundamental in- gredient of superstring theory. We provide a mini-guide to some of the possible manifesta- tions of weak-scale supersymmetry. For each of six scenarios These motivations say nothing about the scale at which nature we provide might be supersymmetric. Indeed, there are additional motiva- tions for weak-scale supersymmetry. a brief description of the theoretical underpinnings, Incorporation of supersymmetry into the SM leads to a so- the adjustable parameters, lution of the gauge hierarchy problem. Namely, quadratic divergences in loop corrections to the Higgs boson mass a qualitative description of the associated phenomenology at future colliders, will cancel between fermionic and bosonic loops. This mechanism works only if the superpartner particle masses comments on how to simulate each scenario with existing are roughly of order or less than the weak scale. event generators. There exists an experimental hint: the three gauge cou- plings can unify at the Grand Uni®cation scale if there ex- I. INTRODUCTION ist weak-scale supersymmetric particles, with a desert be- The Standard Model (SM) is a theory of spin- 1 matter tween the weak scale and the GUT scale.
    [Show full text]
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • String Theory. Volume 1, Introduction to the Bosonic String
    This page intentionally left blank String Theory, An Introduction to the Bosonic String The two volumes that comprise String Theory provide an up-to-date, comprehensive, and pedagogic introduction to string theory. Volume I, An Introduction to the Bosonic String, provides a thorough introduction to the bosonic string, based on the Polyakov path integral and conformal field theory. The first four chapters introduce the central ideas of string theory, the tools of conformal field theory and of the Polyakov path integral, and the covariant quantization of the string. The next three chapters treat string interactions: the general formalism, and detailed treatments of the tree-level and one loop amplitudes. Chapter eight covers toroidal compactification and many important aspects of string physics, such as T-duality and D-branes. Chapter nine treats higher-order amplitudes, including an analysis of the finiteness and unitarity, and various nonperturbative ideas. An appendix giving a short course on path integral methods is also included. Volume II, Superstring Theory and Beyond, begins with an introduction to supersym- metric string theories and goes on to a broad presentation of the important advances of recent years. The first three chapters introduce the type I, type II, and heterotic superstring theories and their interactions. The next two chapters present important recent discoveries about strongly coupled strings, beginning with a detailed treatment of D-branes and their dynamics, and covering string duality, M-theory, and black hole entropy. A following chapter collects many classic results in conformal field theory. The final four chapters are concerned with four-dimensional string theories, and have two goals: to show how some of the simplest string models connect with previous ideas for unifying the Standard Model; and to collect many important and beautiful general results on world-sheet and spacetime symmetries.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • Coupling Constant Unification in Extensions of Standard Model
    Coupling Constant Unification in Extensions of Standard Model Ling-Fong Li, and Feng Wu Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 May 28, 2018 Abstract Unification of electromagnetic, weak, and strong coupling con- stants is studied in the extension of standard model with additional fermions and scalars. It is remarkable that this unification in the su- persymmetric extension of standard model yields a value of Weinberg angle which agrees very well with experiments. We discuss the other possibilities which can also give same result. One of the attractive features of the Grand Unified Theory is the con- arXiv:hep-ph/0304238v2 3 Jun 2003 vergence of the electromagnetic, weak and strong coupling constants at high energies and the prediction of the Weinberg angle[1],[3]. This lends a strong support to the supersymmetric extension of the Standard Model. This is because the Standard Model without the supersymmetry, the extrapolation of 3 coupling constants from the values measured at low energies to unifi- cation scale do not intercept at a single point while in the supersymmetric extension, the presence of additional particles, produces the convergence of coupling constants elegantly[4], or equivalently the prediction of the Wein- berg angle agrees with the experimental measurement very well[5]. This has become one of the cornerstone for believing the supersymmetric Standard 1 Model and the experimental search for the supersymmetry will be one of the main focus in the next round of new accelerators. In this paper we will explore the general possibilities of getting coupling constants unification by adding extra particles to the Standard Model[2] to see how unique is the Supersymmetric Standard Model in this respect[?].
    [Show full text]
  • An Introduction to Supersymmetry
    An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems.
    [Show full text]
  • Clifford Algebras, Spinors and Supersymmetry. Francesco Toppan
    IV Escola do CBPF – Rio de Janeiro, 15-26 de julho de 2002 Algebraic Structures and the Search for the Theory Of Everything: Clifford algebras, spinors and supersymmetry. Francesco Toppan CCP - CBPF, Rua Dr. Xavier Sigaud 150, cep 22290-180, Rio de Janeiro (RJ), Brazil abstract These lectures notes are intended to cover a small part of the material discussed in the course “Estruturas algebricas na busca da Teoria do Todo”. The Clifford Algebras, necessary to introduce the Dirac’s equation for free spinors in any arbitrary signature space-time, are fully classified and explicitly constructed with the help of simple, but powerful, algorithms which are here presented. The notion of supersymmetry is introduced and discussed in the context of Clifford algebras. 1 Introduction The basic motivations of the course “Estruturas algebricas na busca da Teoria do Todo”consisted in familiarizing graduate students with some of the algebra- ic structures which are currently investigated by theoretical physicists in the attempt of finding a consistent and unified quantum theory of the four known interactions. Both from aesthetic and practical considerations, the classification of mathematical and algebraic structures is a preliminary and necessary require- ment. Indeed, a very ambitious, but conceivable hope for a unified theory, is that no free parameter (or, less ambitiously, just few) has to be fixed, as an external input, due to phenomenological requirement. Rather, all possible pa- rameters should be predicted by the stringent consistency requirements put on such a theory. An example of this can be immediately given. It concerns the dimensionality of the space-time.
    [Show full text]
  • First Determination of the Electric Charge of the Top Quark
    First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge.
    [Show full text]
  • On the Definition of the Renormalization Constants in Quantum Electrodynamics
    On the Definition of the Renormalization Constants in Quantum Electrodynamics Autor(en): Källén, Gunnar Objekttyp: Article Zeitschrift: Helvetica Physica Acta Band(Jahr): 25(1952) Heft IV Erstellt am: Mar 18, 2014 Persistenter Link: http://dx.doi.org/10.5169/seals-112316 Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und unter deren Einhaltung weitergegeben werden. Die Speicherung von Teilen des elektronischen Angebots auf anderen Servern ist nur mit vorheriger schriftlicher Genehmigung möglich. Die Rechte für diese und andere Nutzungsarten der Inhalte liegen beim Herausgeber bzw. beim Verlag. Ein Dienst der ETH-Bibliothek Rämistrasse 101, 8092 Zürich, Schweiz [email protected] http://retro.seals.ch On the Definition of the Renormalization Constants in Quantum Electrodynamics by Gunnar Källen.*) Swiss Federal Institute of Technology, Zürich. (14.11.1952.) Summary. A formulation of quantum electrodynamics in terms of the renor- malized Heisenberg operators and the experimental mass and charge of the electron is given. The renormalization constants are implicitly defined and ex¬ pressed as integrals over finite functions in momentum space. No discussion of the convergence of these integrals or of the existence of rigorous solutions is given. Introduction. The renormalization method in quantum electrodynamics has been investigated by many authors, and it has been proved by Dyson1) that every term in a formal expansion in powers of the coupling constant of various expressions is a finite quantity.
    [Show full text]