Finder Chart for Jim's Pick of the Month July 2021 Messier 17: Omega Nebula

Total Page:16

File Type:pdf, Size:1020Kb

Finder Chart for Jim's Pick of the Month July 2021 Messier 17: Omega Nebula Finder Chart for Jim’s Pick of the Month July 2021 Messier 17: Omega Nebula FACTS Object: Nebula Type: Emission Designations: Omega Nebula, Messier 17, M17, NGC 6618, Sharpless 45, RCW 160, Gum 81, Collinder 377, LBN 60, Swan Nebula, Lobster Nebula, Horseshoe Nebula, Checkmark Nebula Constellation: Sagittarius Right ascension: 18h 20m 26s Declination: -16°10’36” Distance: 5,000-6,000 light years (1,533-1,840 parsecs) Apparent magnitude: +6.0 Image: ESO, 2015 Messier 17 (M17), also known as the Omega Nebula, is a famous star-forming nebula located in the southern constellation Sagittarius. The diffuse emission nebula lies near the constellation’s northern border with Scutum, at a distance of 5,000 to 6,000 light years from Earth. It has an apparent magnitude of 6.0. Also known as the Swan Nebula, Lobster Nebula, Horseshoe Nebula and Checkmark Nebula, the Omega Nebula is one of the brightest star-forming nebulae of the Milky Way. Its designation in the New General Catalogue is NGC 6618. With a total mass of roughly 800 solar masses, M17 is also one of the most massive H II regions of our galaxy. The nebula occupies an area roughly 15 light years in diameter and is part of a larger cloud, which is about 40 light years in diameter. Messier 17 is located in the Sagittarius Arm of the Milky Way, the next inward spiral arm to our own, and may be part of the same giant cloud complex as its close neighbor, Messier 16 (the Eagle Nebula), located in the constellation Serpens. The Omega Nebula is just on the limit of naked eye detection in good conditions, with clear, dark skies and no light pollution. It is best observed in low-powered telescopes and binoculars. It lies in the same binocular field of view as Messier 16 and Messier 18, a faint open cluster in Sagittarius. .
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Experiencing Hubble
    PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster.
    [Show full text]
  • Summer 2021 Edition of Aries
    Summer 2021 Aries derbyastronomy.org © Peter Hill © Rob Seymour Derby & District Astronomical Society Society Astronomical & District Derby Member Gallery— Peter Hill Visit the D.D.A.S website for more informaon on how Peter obtained these wonderful images. H Alpha Ca K White Light Images © Peter Hill Emerging Sunspot AR2827 ….. Peter Hill 1. Front Cover Member’s Gallery ….. Peter Hill 2. Inside front cover Index & Newsletter Information 3 COVID Statement & Committee Member Details 4 EDITORIAL ….. Anthony Southwell 5-6 Meet your Committee ….. Vice Chair & Ordinary Member 7-8 Chairman’s Challenge ….. Peter Branson 9 NEW - Chairman’s Challenge Competition 9 Derby Ram Trail and the Flamstead Ram ….. Anthony Southwell 10 Astro News - China on Mars: Zhurong Rover 11 Astro News - Dark Matter Map Reveals Cosmic Mystery 12 Astro News - James Webb Space Telescope Launch Delay “Likely,” 13 Astro News - Ingenuity set for 7th Red Planet flight 14 Astro News - NASA Announces Two New Missions to Venus 15 Observatory Rules & Regulations 16-17 BOOK REVIEW ….. The Apollo Guidance Computer ….. Reviewed by Malcolm Neal 18 What’s inside this issue... this inside What’s Library List ….. Titles for loan from the society library 19 inside back cover Programme of events ….. Rolling Calendar of DDAS Meengs and Events 20 back cover Member Gallery Book Reviewers WANTED Did you win a book in the Raffle? Or have you borrowed one from the Society Library. Each issue we would like to feature some of the fantastic Why not tell us what you thought about it in our Book Review . photos taken by members of Guide others through the maze the society.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]
  • Binocular Observing Olympics Stellafane 2018
    Binocular Observing Olympics Stellafane 2018 Compiled by Phil Harrington www.philharrington.net • To qualify for the BOO pin, you must see 15 of the following 20 binocular targets. Check off each as you spot them. Seen # Object Const. Type* RA Dec Mag Size Nickname 1. M4 Sco GC 16 23.6 -26 32 6.0 26' Cat’s Eye Globular 2. M13 Her GC 16 41.7 +36 28 5.9 16' Great Hercules Globular 3. M6 Sco OC 17 40.1 -32 13 4.2 15' Butterfly Cluster 4. IC 4665 Oph OC 17 46.3 +05 43 4.2 41' Summer Beehive 5. M7 Sco OC 17 53.9 -34 49 3.3 80' Ptolemy’s Cluster 6. M20 Sgr BN/OC 18 02.6 -23 02 8.5 29'x27' Trifid Nebula 7. M8 Sgr BN/OC 18 03.8 -24 23 5.8 90'x40' Lagoon Nebula 8. M17 Sgr BN 18 20.8 -16 11 7 46'x37' Swan or Omega Nebula 9. M22 Sgr GC 18 36.4 -23 54 5.1 24' Great Sagittarius Cluster 10. M11 Sct OC 18 51.1 -06 16 5.8 14' Wild Duck Cluster 11. M57 Lyr PN 18 53.6 +33 02 9.7 70"x150" Ring Nebula 12. Collinder 399 Vul AS 19 25.4 +20 11 3.6 60' Coathanger/Brocchi’s Cluster 13. PK 64+5.1 Cyg PN 19 34.8 +30 31 9.6p 8" Campbell's Hydrogen Star 14. M27 Vul PN 19 59.6 +22 43 8.1 8’x6’ Dumbbell Nebula 15.
    [Show full text]
  • Introduction No. 104 July 2020
    No. 104 July 2020 Introduction I hope you are in good health as July’s Binocular Sky Newsletter reaches you. Although it is primarily targeted at binocular (and small telescope) observers in the UK, this particular community extends well south of the Equator. So welcome! Astronomical darkness, albeit short, return for locations south of about 53.5°N this month and, as binocular observers with our combination of maximum portability and minimal set-up time, we are well suited to take advantage of what this darkness reveals. I hesitate to write this, given recent history of our dashed expectations of “promising” comets, but we have another one, C/2020 F3 (NEOWISE). It’s visible in SOHO images and might just live up to expectations. (But it might not!) The binocular planets, Uranus and Neptune are becoming visible in the pre-dawn sky, as is Ceres but the short darkness means that there is only one suitable lunar occultations of a star, a dark-limb reappearance. If you would like to receive the newsletter automatically each month, please complete and submit the subscription form. You can get “between the newsletters” alerts, etc. via and . Binocular Sky Newsletter – July 2020 The Deep Sky (Hyperlinks will take you to finder charts and more information on the objects.) The all-sky chart on the next page reveals a lot about the structure of the Milky Way galaxy. Running in a strip down the middle, coinciding with the Milky Way itself, is the orange band of open clusters. Here, we are looking along the plane of the spiral arms which, of course, is where the star-forming (and, hence, open cluster forming) regions are.
    [Show full text]
  • The Messier Marathon Search Sequence
    2/28/2020 Messier Marathon Search Sequence List This file presents the Messier objects in the order of the Marathon Search Sequence given by Don Machholz in his Messier Marathon Observer's Guide. The Messier Marathon Search Sequence compiled online by Hartmut Frommert, using work of Don Machholz. Depending on geographic location, it may be impossible to find them all, and may be better to slightly modify this list. In case of doubt consult Don Machholz's book. This list should be good for northern latitudes 20 to 40. 1. M77 spiral galaxy in Cetus 2. M74 spiral galaxy in Pisces 3. M33 The Triangulum Galaxy (also Pinwheel) spiral galaxy in Triangulum 4. M31 The Andromeda Galaxy spiral galaxy in Andromeda 5. M32 Satellite galaxy of M31 elliptical galaxy in Andromeda 6. M110 Satellite galaxy of M31 elliptical galaxy in Andromeda 7. M52 open cluster in Cassiopeia 8. M103 open cluster in Cassiopeia 9. M76 The Little Dumbell, Cork, or Butterfly planetary nebula in Perseus 10. M34 open cluster in Perseus 11. M45 Subaru, the Pleiades--the Seven Sisters open cluster in Taurus 12. M79 globular cluster in Lepus 13. M42 The Great Orion Nebula diffuse nebula in Orion 14. M43 part of the Orion Nebula (de Mairan's Nebula) diffuse nebula in Orion 15. M78 diffuse reflection nebula in Orion 16. M1 The Crab Nebula supernova remnant in Taurus 17. M35 open cluster in Gemini 18. M37 open cluster in Auriga 19. M36 open cluster in Auriga 20. M38 open cluster in Auriga 21. M41 open cluster in Canis Major 22.
    [Show full text]
  • Filters Table
    #8 #11 #12 #15 #21 #23A #25 #29 #38A #47 #56 #58 #80A #82A ND13 Light Yellow- Yellow Dark Orange Light Red Dark Dark Violet Light Green Blue Light Blue Neutral Yellow Green Yellow Red Red Blue Green Density Moon: Detail Feature Contrast Low Contrast Features Glare Reduction Mercury: Planet/Sky Contrast Features Venus: Planet/Sky Contrast Clouds Terminator Mars: Clouds Maria Blue-Green Areas Dust Storms Polar Caps Low Contrast Features Jupiter: Clouds Belts Rilles Festoons Atmosphere Red-Orange Features Orange-Red Zonal Red/Blue Contrast Blue/Light Contrast Great Red Spot Galilean Moon Transits #8 #11 #12 #15 #21 #23A #25 #29 #38A #47 #56 #58 #80A #82A ND13 Light Yellow- Yellow Dark Orange Light Red Red Dark Dark Violet Light Green Blue Light Blue Neutral Yellow Green Yellow Red Blue Green Density Jupiter: Red/Blue/Light Contrast Polar Regions Disc Low Contrast Features Saturn: Clouds Belts Polar Regions Rings Cassini Division Red/Blue Contrast Red/Orange Features Low Contrast Features Uranus: Dusky Detail Neptune: Dusky Detail Double Stars: Bright Primary H- Deep H- Deep H- Deep UHC O-III UHC O-III UHC O-III Beta Sky Beta Sky Beta Sky Nebula: Nebula: Nebula: M1 Crab nebula NGC2436 NGC7822 M8 Lagoon Nebula NGC2438 in M46 IC405 Flaming Star Nebula M16 Eagle Nebula NGC2440 IC410 M17 Swan Nebula NGC3242 Ghost of Jupiter IC417 H-Beta M20 Trifid Nebula NGC4361 IC434/B33 Horsehead Nebula M27 Dumbbell Nebula NGC6210 IC1318 M42 Orion Nebula NGC6302
    [Show full text]
  • Appendix C a List of the Messier Objects
    Appendix C A List of the Messier Objects DS=DoubleStar OC=OpenCluster GC=GlobularCluster EG = Elliptical Galaxy SG = Spiral Galaxy IG = Irregular Galaxy PN = Planetary Nebula DN = Diffuse Nebula SR = Supernova Remnant Object Common Name Type of Object Location mv Dist. (kly) M1 Crab Nebula SR Taurus 9.0 6.3 M2 GC Aquarius 7.5 36 M3 GC Canes Venatici 7.0 31 M4 GC Scorpius 7.5 7 M5 GC Serpens 7.0 23 M6 Butterfly Cluster OC Scorpius 4.5 2 M7 Ptolemy’s Cluster OC Scorpius 3.5 1 M8 Lagoon Nebula DN Sagittarius 5.0 6.5 M9 GC Ophiuchus 9.0 26 M10 GC Ophiuchus 7.5 13 M11 Wild Duck Cluster OC Scutum 7.0 6 M12 GC Ophiuchus 8.0 18 M13 Great Hercules Cluster GC Hercules 5.8 22 M14 GC Ophiuchus 9.5 27 M15 GC Pegasus 7.5 33 M16 Part of Eagle Nebula OC Serpens 6.5 7 M17 Horseshoe Nebula DN Sagittarius 7.0 5 M18 OC Sagittarius 8.0 6 M19 GC Ophiuchus 8.5 27 M20 Trifid Nebula DN Sagittarius 5.0 2.2 M21 OC Sagittarius 7.0 3 M22 GC Sagittarius 6.5 10 M23 OC Sagittarius 6.0 4.5 135 Object Common Name Type of Object Location mv Dist. (kly) M24 Milky Way Patch Star cloud Sagittarius 11.5 10 M25 OC Sagittarius 4.9 2 M26 OC Scutum 9.5 5 M27 Dumbbell Nebula PN Vulpecula 7.5 1.25 M28 GC Sagittarius 8.5 18 M29 OC Cygnus 9.0 7.2 M30 GC Capricornus 8.5 25 M31 Andromeda Galaxy SG Andromeda 3.5 2500 M32 Satellite galaxy of M31 EG Andromeda 10.0 2900 M33 Triangulum Galaxy SG Triangulum 7.0 2590 M34 OC Perseus 6.0 1.4 M35 OC Gemini 5.5 2.8 M36 OC Auriga 6.5 4.1 M37 OC Auriga 6.0 4.6 M38 OC Auriga 7.0 4.2 M39 OC Cygnus 5.5 0.3 M40 Winnecke 4 DS Ursa Major 9.0 M41 OC Canis
    [Show full text]
  • Summer Sp Target Information
    SUMMER SP TARGET INFORMATION ALGIEBA (g LEO) BASIC INFORMATION OBJECT TYPE: Binary Star CONSTELLATION: Leo BEST VIEW: Late April DISCOVERY: Known to Ancients DISTANCE: 131 ly BINARY SEPARATION: 4” (170 AU) ORBITAL PERIOD: ~500 yr. APPARENT MAGNITUDE: 1.98 DISTANCE DETERMINATION After measuring the shift in position of the star relative to background stars as Earth orbits the Sun, simple trigonometry can yield the distance. The Hipparcos satellite was launched in 1989 to create a comprehensive catalog of trigonometric parallax measurements from space. The distance quoted above is from this catalog. NOTABLE FEATURES/FACTS • William Herschel discovered Algieba’s binary nature in 1782. • Both components of Algieba have evolved beyond the main sequence. They began their lives as B-type stars, and they will end their lives as white dwarfs. • In 2010, a team including former UT astronomer Arte Hatzes discovered a planet orbiting Algieba A. The planet is nine times the mass of Jupiter and orbits the star in 1.2 years at an average distance of 1.2 AU. SUMMER SP TARGET INFORMATION MESSIER 97 (THE OWL NEBULA) BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Ursa Major BEST VIEW: Early May DISCOVERY: Pierre Mechain, 1781 DISTANCE: ~2000 ly DIAMETER: 1.8 ly APPARENT MAGNITUDE: +9.9 APPARENT DIMENSIONS: 3.3’ DISTANCE DETERMINATION The distances to most planetary nebulae are very poorly known. A variety of methods can be used, providing mixed results. In many cases, astronomers resort to statistical methods to estimate the distances to planetary nebulae. Although we don’t have accurate distances for most of the planetary nebulae in the Milky Way, we do know exactly how far away the Large Magellanic Cloud is.
    [Show full text]