Characterization of the DNA Binding Properties of CST (CTC1-STN1-TEN1) and Their

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the DNA Binding Properties of CST (CTC1-STN1-TEN1) and Their Characterization of the DNA Binding Properties of CST (CTC1-STN1-TEN1) And Their Importance for CST Function in Telomeric as well as Genome-wide Replication A dissertation submitted to the Division of Graduate Studies and Research Of the University of Cincinnati In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Ph.D.) In the Department of Molecular Genetics, Biochemistry and Microbiology in College of Medicine at University of Cincinnati 2017 Anukana Bhattacharjee B.S., University of Calcutta, India, 2008 M.S., University of Calcutta, India, 2010 Committee Chair: Carolyn M. Price, Ph.D Committee Members: Anil Menon, Ph.D Iain Cartwright, Ph.D Rhett Kovall, Ph.D Satoshi Namekawa, Ph.D i Abstract: Telomeres are the end of chromosomes that protect DNA ends from being recognized as DNA damage and act as a buffer for loss of DNA at the chromosome terminus. Telomeric DNA has a unique structure as it is composed of kilobases of double-stranded DNA with a tandem repetitive sequence (TTAGGG. AATCCC) followed by a short single-stranded overhang region. Telomeres are bound by a number of proteins that help in protection of telomeres from damage signaling and chromosomal fusions as well as help in telomere replication and functions. In vertebrates, the primary telomere binding protein complex is shelterin, which is composed of six subunits, that bind to both double strand and single strand regions of telomere and bridges between them. Shelterin is important for protecting telomeres from damage and also brings in telomerase for telomere extension. The other major telomere binding protein complex is CST (CTC1-STN1-TEN1) which has been shown to localize at telomeres (1). Human CST is a ssDNA-binding complex that was originally identified as a DNA polymerase α stimulatory factor. CST functions in telomere replication first by aiding passage of the replication machinery through the telomere duplex and then enabling fill-in synthesis of the telomeric C-strand following telomerase action. CST also binds to ssDNA other than telomeres and has genome-wide roles in the resolution of replication stress. CST bears striking resemblance to RPA, the ssDNA binding protein responsible for moderating key transactions in DNA replication, recombination and repair. STN1 and TEN1 contain OB fold domains and are structurally similar to RPA2 and RPA3 respectively. While CTC1 is much larger than RPA1, the C-terminus is predicted to harbor three OB folds with high structural similarity to the three DNA binding motifs of RPA1 (OB folds A-C). The similarities between CST and RPA suggested that the various functions of CST might utilize subsets of OB folds for different modes of DNA binding. To address this possibility, we generated a CST DNA binding mutant by altering three residues in the STN1 OB fold (STN1-OBM). The equivalent residues in RPA2 contact or lie close to DNA in the crystal structure. In vitro studies indicated that STN1-OBM moderately decreases CST binding to short G-strand oligonucleotides; however, binding to long telomeric or non-telomeric oligonucleotides is largely unaffected. These results indicate that the STN1 OB fold is responsible for high affinity binding to short stretches of telomeric G-strand DNA. Moreover, CST appears to resemble RPA in exhibiting different ii DNA binding modes but the trajectory of DNA engagement is different. Our data suggest STN1, TEN1 OB-folds lie close to the 3’ end of ssDNA even for the shortest oligonucleotide CST binds to, in contrast to RPA where only the longest oligonucleotide contacts RPA2. To determine the in vivo effect of altered DNA binding, we asked if STN1-OBM expression alters telomere replication or genome-wide replication rescue. Interestingly, we found STN1-OBM to be a separation of function mutant. The STN1-OBM cells had increased anaphase bridges and multiple telomeric FISH signals (MTS). However, the length of the telomeric G-overhang and the rate of C-strand fill-in were normal. Likewise, the cells showed wild type sensitivity to hydroxyurea (HU) and the level of new origin firing after release from HU was unaffected. Thus, the ability to bind short stretches of ssDNA appears to be important for replication through natural barriers such as telomeres but is less critical for C-strand fill-in or stress-induced origin firing. Overall our work suggests that CST binds DNA dynamically via multiple OB folds and mediates different transactions via specific DNA binding modes. Although the architecture or modes of DNA binding differ for RPA and CST, their overall structural similarity motivated us to use RPA as a model to investigate DNA binding properties underlying CST function. RPA binds to ssDNA with high affinity via OB-fold domains. Yet individual OB-folds of RPA can micro-dissociate from the DNA promoting sliding of RPA on the DNA, melting of dsDNA or secondary structures, as well as loading or unloading of interaction partners. This dynamic binding underlies the various roles of RPA in replication, repair and recombination. By using single molecule fluorescence assays, we show that in contrast to RPA, CST cannot melt dsDNA but it can resolve secondary structures such as G4. The efficiency of G4 unfolding by CST, and its known abundance in G- rich regions genome-wide could explain its role in resolution of replication stress. Our work has also shown that CST can recognize ss-dsDNA junction. Previous studies have shown that during telomere replication, the C-strand fill-in reaction occurs via incremental extension of the 5’ terminus by lagging strand synthesis. The ss-dsDNA junction recognition explains how CST could promote this incremental iii DNA synthesis. Overall, our work provides insight into the mechanism by which CST might resolve replication issues at the telomere and genome wide. iv v Acknowledgements: My long and fruitful journey of science would not have been possible without the love and support of some amazing people in my life. I always believe that they taught me to learn, appreciate science and develop into a scientist. First, I would like to convey my sincere gratitude to Dr. Carolyn Price, my graduate advisor. She has been an incredible mentor to me. When I look back now, I realize that she taught me not only to conduct lab experiments, write scientific manuscripts and critically think about science, but she also taught me to deal with life and face challenges. I would also like to thank my committee members Dr. Rhett Kovall, Dr. Iain Cartwright, Dr. Anil Menon and Dr. Satoshi Namekawa for their insightful comments and guiding me throughout my graduate school. Today I appreciate the tough love you showed towards me. It was a pleasure learning science with you all. Next, I would like to thank the past and present members of Price lab. I have made friends who were there for me during my ups and downs. Their suggestions, lab-help and listening to me during tough times, got me going. I would like to specially thank Dr. Jason Stewart who mentored me and taught me to grow up, both as a scientist and as a person. I would also like to thank all the people in our department who had always been there for me when I needed them the most. I greatly appreciate the help from Dr. Sandra Degen and Dr. Edmund Choi who arranged financial support for me under exceptional circumstances. They made it possible for me to join Price lab for the second time when there was no funding available. On a slightly different note, a special thanks to Henrietta Lacks, whose immortal Hela cells was the fundamental cell system throughout the first part of my research. Finally, I would like to take time to thank my family- my parents and my fiancé, the strongest support and foundation of my life. The biggest influence of my scientific career are my parents, who have always encouraged me to ask questions, stimulated me to understand the “why and how” of everything. I always look up to them and if I could be half as successful as my parents are in their professional and personal life, I would consider myself to be well achieved. And last but not the least, I would like to thank my fiancé, Dr. Soumitra Ghosh, without whose support, I might have given up a long time ago. He has vi always been there to listen to me whether I am happy or frustrated, give me the right advice and push me to achieve my best. Thanks for being so patient with all my tantrums, madness and still believing in me. It all paid off well. I couldn’t have made it this far without you. vii Table of contents 1. Introduction…………………………………………………………………………………….…1 1.1 Structure of telomeric DNA………………………………………………………………..….1 1.2 Replication………………………………………………………………………………..........2 1.2.1 General eukaryotic replication regulation and replication stress………..…………....2 1.2.2 The end replication problem………………………………………….…………….…4 1.3 Telomerase………………………………………………………………………...……….….5 1.4 Telomeric replication stress……………………………………………………….….………..8 1.5 Telomeric proteins…………………………………………………………………….……….8 1.5.1 Vertebrate Shelterin………………………………………………...………..………12 1.5.2 Mammalian CST…………………………………………………...………….…….14 1.6 Telomeres and Diseases………………………………………...……………………….…...17 1.6.1 Telomere and Cancer ………………………………………………………….…….17 1.6.2 Disease associated with short telomeres …………….……………………………...18 1.7 Perspectives and conclusions…………………………………..…………………………….19 1.8 Dissertation goals ……………………………………………...………………………….…20 2. Material and Methods ……………………………………………...…………………….…….21 2.1 Generation of STN1-OB cells and verification of cell lines (HeLa)……….……………...21
Recommended publications
  • The Architecture of a Eukaryotic Replisome
    The Architecture of a Eukaryotic Replisome Jingchuan Sun1,2, Yi Shi3, Roxana E. Georgescu3,4, Zuanning Yuan1,2, Brian T. Chait3, Huilin Li*1,2, Michael E. O’Donnell*3,4 1 Biosciences Department, Brookhaven National Laboratory, Upton, New York, USA 2 Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA. 3 The Rockefeller University, 1230 York Avenue, New York, New York, USA. 4 Howard Hughes Medical Institute *Correspondence and requests for materials should be addressed to M.O.D. ([email protected]) or H.L. ([email protected]) ABSTRACT At the eukaryotic DNA replication fork, it is widely believed that the Cdc45-Mcm2-7-GINS (CMG) helicase leads the way in front to unwind DNA, and that DNA polymerases (Pol) trail behind the helicase. Here we use single particle electron microscopy to directly image a replisome. Contrary to expectations, the leading strand Pol ε is positioned ahead of CMG helicase, while Ctf4 and the lagging strand Pol α-primase (Pol α) are behind the helicase. This unexpected architecture indicates that the leading strand DNA travels a long distance before reaching Pol ε, it first threads through the Mcm2-7 ring, then makes a U-turn at the bottom to reach Pol ε at the top of CMG. Our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture, and provides a basis for further structural and biochemical replisome studies. INTRODUCTION DNA is replicated by a multi-protein machinery referred to as a replisome 1,2. Replisomes contain a helicase to unwind DNA, DNA polymerases that synthesize the leading and lagging strands, and a primase that makes short primed sites to initiate DNA synthesis on both strands.
    [Show full text]
  • Orpl, a Member of the Cdcl8/Cdc6 Family of S-Phase Regulators, Is Homologous to a Component of the Origin Recognition Complex M
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12475-12479, December 1995 Genetics Orpl, a member of the Cdcl8/Cdc6 family of S-phase regulators, is homologous to a component of the origin recognition complex M. MuzI-FALCONI AND THOMAS J. KELLY Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Thomas J. Kelly, September 11, 1995 ABSTRACT cdc18+ of Schizosaccharomyces pombe is a is the cdcJ8+ gene (1, 15). Expression of cdcJ8+ from a periodically expressed gene that is required for entry into S heterologous promoter is sufficient to rescue the lethality of a phase and for the coordination of S phase with mitosis. cdc18+ conditional temperature-sensitive (ts) cdc O's mutant. The is related to the Saccharomyces cerevisiae gene CDC6, which has cdcJ8+ gene product, a 65-kDa protein, is essential for the also been implicated in the control of DNA replication. We GI/S transition. Moreover, p65cdclS is a highly labile protein have identified a new Sch. pombe gene, orpl1, that encodes an whose expression is confined to a narrow window at the G,/S 80-kDa protein with amino acid sequence motifs conserved in boundary (unpublished data). These properties are consistent the Cdc18 and Cdc6 proteins. Genetic analysis indicates that with the hypothesis that Cdc18 may play an important role in orpi + is essential for viability. Germinating spores lacking the regulating the initiation of DNA replication at S phase. The orpl + gene are capable of undergoing one or more rounds of Cdc18 protein is homologous to the budding yeast Cdc6 DNA replication but fail to progress further, arresting as long protein, which may have a similar function (16).
    [Show full text]
  • Derepression of Htert Gene Expression Promotes Escape from Oncogene-Induced Cellular Senescence
    Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence Priyanka L. Patela, Anitha Surama, Neena Miranib, Oliver Bischofc,d, and Utz Herbiga,e,1 aNew Jersey Medical School-Cancer Center, Rutgers Biomedical and Health Sciences, Newark, NJ 07103; bDepartment of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103; cNuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France; dINSERM U993, F-75015 Paris, France; and eDepartment of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 Edited by Victoria Lundblad, Salk Institute for Biological Studies, La Jolla, CA, and approved June 27, 2016 (received for review February 11, 2016) Oncogene-induced senescence (OIS) is a critical tumor-suppressing that occur primarily at fragile sites. The ensuing DNA damage mechanism that restrains cancer progression at premalignant stages, response (DDR) triggers OIS, thereby arresting cells within a few in part by causing telomere dysfunction. Currently it is unknown cell-division cycles after oncogene expression (8, 9). Although most whether this proliferative arrest presents a stable and therefore DSBs in arrested cells are eventually resolved by cellular DSB irreversible barrier to cancer progression. Here we demonstrate that repair processes, some persist and consequently convert the other- cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, wise transient DDR into a more permanent growth arrest. We and after a prolonged period in the senescence arrested state. Cells that others have demonstrated that the persistent DDR is primarily had escaped senescence displayed high oncogene expression levels, telomeric, triggered by irreparable telomeric DSBs (1, 10, 11).
    [Show full text]
  • Association of ORC with Replication Origins 2013
    Journal of Cell Science 112, 2011-2018 (1999) 2011 Printed in Great Britain © The Company of Biologists Limited 1999 JCS0252 Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins Alison Rowles1,*, Shusuke Tada1,2,‡ and J. Julian Blow1,2,‡,§ 1ICRF Clare Hall Laboratories, South Mimms, Potters Bar, Herts EN6 3LD, UK 2CRC Chromosome Replication Research Group, Department of Biochemistry, University of Dundee, Dundee DD1 5EH, Scotland, UK *Present address: Department of Neuroscience, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park North, Harlow, Essex CM19 5AW, UK ‡Present address: CRC Chromosome Replication Research Group, Department of Biochemistry, University of Dundee, Dundee DD1 5EH, Scotland, UK §Author for correspondence Accepted 29 March; published on WWW 26 May 1999 SUMMARY During late mitosis and early G1, a series of proteins are chromatin, as evidenced by its resistance to elution by 200 assembled onto replication origins that results in them mM salt, and this state persisted when XCdc6 was assembled becoming ‘licensed’ for replication in the subsequent S phase. onto the chromatin. As a consequence of origins becoming In Xenopus this first involves the assembly onto chromatin of licensed the association of XOrc1 and XCdc6 with chromatin the Xenopus origin recognition complex XORC, and then was destabilised, and XOrc1 became susceptible to removal XCdc6, and finally the RLF-M component of the replication from chromatin by exposure to either high salt or high Cdk licensing system. In this paper we examine changes in the way levels. At this stage the essential function for XORC and that XORC associates with chromatin in the Xenopus cell- XCdc6 in DNA replication had already been fulfilled.
    [Show full text]
  • The AAA+ Proteins Pontin and Reptin Enter Adult Age: from Understanding Their Basic Biology to the Identification of Selective Inhibitors
    PERSPECTIVE published: 05 May 2015 doi: 10.3389/fmolb.2015.00017 The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors Pedro M. Matias 1, 2*, Sung Hee Baek 3, Tiago M. Bandeiras 2, Anindya Dutta 4, Walid A. Houry 5, Oscar Llorca 6 and Jean Rosenbaum 7, 8* 1 Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal, 2 Instituto de 3 Edited by: Biologia Experimental e Tecnológica, Oeiras, Portugal, Creative Research Initiative Center for Chromatin Dynamics, School 4 Rui Joaquim Sousa, of Biological Sciences, Seoul National University, Seoul, South Korea, Department of Biochemistry and Molecular Genetics, 5 The University of Texas Health University of Virginia, Charlottesville, VA, USA, Department of Biochemistry, University of Toronto, Toronto, ON, Canada, 6 Science Center, USA Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC), Madrid, Spain, 7 INSERM, U1053, Bordeaux, France, 8 Groupe de Recherches pour l’Etude du Foie, Université de Reviewed by: Bordeaux, Bordeaux, France Eileen M. Lafer, University of Texas Health Science Center at San Antonio, USA Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Pierre Goloubinoff, Associated with various cellular Activities) family. They are implicated in multiple and University of Lausanne, Switzerland seemingly unrelated processes encompassing the regulation of gene transcription, the *Correspondence: Pedro M. Matias, remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein Instituto de Tecnologia Química e and ribonucleoprotein complexes, among others. The 2nd International Workshop Biológica António Xavier, Universidade Nova de Lisboa, Av.
    [Show full text]
  • Sumoylation of Pontin Chromatin-Remodeling Complex Reveals a Signal Integration Code in Prostate Cancer Cells
    SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells Jung Hwa Kim*†, Ji Min Lee*, Hye Jin Nam*, Hee June Choi*, Jung Woo Yang*, Jason S. Lee*, Mi Hyang Kim‡, Su-Il Kim‡, Chin Ha Chung*, Keun Il Kim§, and Sung Hee Baek*¶ *Department of Biological Sciences, Research Center for Functional Cellulomics and ‡School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, South Korea; §Department of Biological Sciences, Research Center for Women’s Disease, Sookmyung Women’s University, Seoul 140-742, South Korea; and †Department of Medical Sciences, Inha University, Incheon 402-751, South Korea Communicated by Michael G. Rosenfeld, University of California at San Diego, La Jolla, CA, November 6, 2007 (received for review July 20, 2007) Posttranslational modification by small ubiquitin-like modifier mammals, they constitute parts of the Tip60 coactivator complex, (SUMO) controls diverse cellular functions of transcription factors which has intrinsic histone acetyltransferase activity (8). In ze- and coregulators and participates in various cellular processes brafish embryos, the reptin/pontin ratio serves to regulate heart including signal transduction and transcriptional regulation. Here, growth during development via the ␤-catenin pathway (9). we report that pontin, a component of chromatin-remodeling Posttranslational modification of proteins plays an important role complexes, is SUMO-modified, and that SUMOylation of pontin is in the functional regulation of transcriptional coregulators. Numer- an active control mechanism for the transcriptional regulation of ous enzymatic activities have been demonstrated to be associated pontin on androgen-receptor target genes in prostate cancer cells. with coregulator complexes, including histone acetylation/ Biochemical purification of pontin-containing complexes revealed deacetylation, phosphorylation/dephosphorylation, ubiquitination, the presence of the Ubc9 SUMO-conjugating enzyme that underlies and SUMOylation (10).
    [Show full text]
  • In Vivo Interactions of Archaeal Cdc6 Orc1 and Minichromosome
    In vivo interactions of archaeal Cdc6͞Orc1 and minichromosome maintenance proteins with the replication origin Fujihiko Matsunaga*, Patrick Forterre*, Yoshizumi Ishino†, and Hannu Myllykallio*§ *Institut de Ge´ne´ tique et Microbiologie, Universite´de Paris-Sud, 91405 Orsay, France; and †Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Communicated by Bruce W. Stillman, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, July 25, 2001 (received for review May 25, 2001) Although genome analyses have suggested parallels between basis of asymmetry in base composition between leading and archaeal and eukaryotic replication systems, little is known about lagging strands (10, 11). In Pyrococcus abyssi, the location of the the DNA replication mechanism in Archaea. By two-dimensional predicted origin coincides with an early replicating chromosomal gel electrophoreses we positioned a replication origin (oriC) within segment of 80 kb identified by radioactive labeling of chromo- 1 kb in the chromosomal DNA of Pyrococcus abyssi, an anaerobic somal DNA in cultures released from a replication block (12). hyperthermophile, and demonstrated that the oriC is physically Our in silico and labeling data also allowed us to conclude that linked to the cdc6 gene. Our chromatin immunoprecipitation as- the hyperthermophilic archaeon P. abyssi uses a single bidirec- says indicated that P. abyssi Cdc6 and minichromosome mainte- tional origin to replicate its genome. We proposed that this origin nance (MCM) proteins bind preferentially to the oriC region in the would correspond to the long intergenic region conserved in all exponentially growing cells. Whereas the oriC association of MCM three known Pyrococcus sp.
    [Show full text]
  • CUL4B Promotes Replication Licensing by Up-Regulating the CDK2–CDC6 Cascade
    JCB: Article CUL4B promotes replication licensing by up-regulating the CDK2–CDC6 cascade Yongxin Zou,1,2 Jun Mi,1 Wenxing Wang,1 Juanjuan Lu,1 Wei Zhao,1 Zhaojian Liu,1 Huili Hu,1 Yang Yang,1 Xiaoxing Gao,1 Baichun Jiang,1 Changshun Shao,1 and Yaoqin Gong1 1Ministry of Education Key Laboratory of Experimental Teratology and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China 2Section of Biochemistry and Cell Biology, Division of Life Science, and Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China ullin-RING ubiquitin ligases (CRLs) participate in loading of MCM2 to chromatin. The positive regulation of the regulation of diverse cellular processes in­ CDC6 by CUL4B depends on CDK2, which phosphory- C cluding cell cycle progression. Mutations in the lates CDC6, protecting it from APCCDH1-mediated degra- X-linked CUL4B, a member of the cullin family, cause mental dation. Thus, aside being required for cell cycle reentry retardation and other developmental abnormalities in from quiescence, CDK2 also contributes to pre-replication humans. Cells that are deficient in CUL4B are severely complex assembly in G1 phase of cycling cells. Interest- selected against in vivo in heterozygotes. Here we report ingly, the up-regulation of CDK2 by CUL4B is achieved a role of CUL4B in the regulation of replication licensing. via the repression of miR-372 and miR-373, which target Strikingly, CDC6, the licensing factor in replication, was CDK2. Our findings thus establish a CUL4B–CDK2–CDC6 positively regulated by CUL4B and contributed to the cascade in the regulation of DNA replication licensing.
    [Show full text]
  • Control of Eukaryotic DNA Replication Initiation—Mechanisms to Ensure Smooth Transitions
    G C A T T A C G G C A T genes Review Control of Eukaryotic DNA Replication Initiation—Mechanisms to Ensure Smooth Transitions Karl-Uwe Reusswig and Boris Pfander * Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, 82152 Martinsried, Germany; [email protected] * Correspondence: [email protected] Received: 31 December 2018; Accepted: 25 January 2019; Published: 29 January 2019 Abstract: DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps—licensing and firing—which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases. Keywords: DNA replication; DNA replication initiation; cell cycle; post-translational protein modification; protein degradation; cell cycle transitions 1. Introduction DNA replication control occurs with exceptional accuracy to keep genetic information stable over as many as 1016 cell divisions (estimations based on [1]) during, for example, an average human lifespan. A fundamental part of the DNA replication control system is dedicated to ensure that the genome is replicated exactly once per cell cycle. If this control falters, deregulated replication initiation occurs, which leads to parts of the genome becoming replicated more than once per cell cycle (reviewed in [2–4]).
    [Show full text]
  • Preventing Rereplication Via Multiple Mechanisms in Eukaryotic Cells
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells Emily E. Arias1 and Johannes C. Walter2 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA In eukaryotic cells, prereplication complexes (pre-RCs) ity. Thus, the ability of cells to restrict DNA replication are assembled on chromatin in the G1 phase, rendering to a single round per cell cycle is a fundamental require- origins of DNA replication competent to initiate DNA ment of cell proliferation and long-term survival. synthesis. When DNA replication commences in S phase, pre-RCs are disassembled, and multiple initia- The two-state model for cell cycle regulation tions from the same origin do not occur because new of DNA replication rounds of pre-RC assembly are inhibited. In most experi- Early insights into the regulation of eukaryotic DNA mental organisms, multiple mechanisms that prevent replication came from cell fusion experiments (Rao and pre-RC assembly have now been identified, and rerepli- Johnson 1970), which showed that union of an S-phase cation within the same cell cycle can be induced through cell with a G1 cell accelerates the rate at which the latter defined perturbations of these mechanisms. This review enters S phase. In contrast, G2 cells are refractory to this summarizes the diverse array of inhibitory pathways stimulation. These results suggested that the initiation used by different organisms to prevent pre-RC assembly, of DNA synthesis requires a positive, diffusible S-phase- and focuses on the challenge of understanding how in promoting activity, and that G1 but not G2-phase cells any one cell type, various mechanisms cooperate to are competent to respond to this signal.
    [Show full text]
  • Regulation of the Cell Cycle and DNA Damage-Induced Checkpoint Activation
    RnDSy-lu-2945 Regulation of the Cell Cycle and DNA Damage-Induced Checkpoint Activation IR UV IR Stalled Replication Forks/ BRCA1 Rad50 Long Stretches of ss-DNA Rad50 Mre11 BRCA1 Nbs1 Rad9-Rad1-Hus1 Mre11 RPA MDC1 γ-H2AX DNA Pol α/Primase RFC2-5 MDC1 Nbs1 53BP1 MCM2-7 53BP1 γ-H2AX Rad17 Claspin MCM10 Rad9-Rad1-Hus1 TopBP1 CDC45 G1/S Checkpoint Intra-S-Phase RFC2-5 ATM ATR TopBP1 Rad17 ATRIP ATM Checkpoint Claspin Chk2 Chk1 Chk2 Chk1 ATR Rad50 ATRIP Mre11 FANCD2 Ubiquitin MDM2 MDM2 Nbs1 CDC25A Rad50 Mre11 BRCA1 Ub-mediated Phosphatase p53 CDC25A Ubiquitin p53 FANCD2 Phosphatase Degradation Nbs1 p53 p53 CDK2 p21 p21 BRCA1 Ub-mediated SMC1 Degradation Cyclin E/A SMC1 CDK2 Slow S Phase CDC45 Progression p21 DNA Pol α/Primase Slow S Phase p21 Cyclin E Progression Maintenance of Inhibition of New CDC6 CDT1 CDC45 G1/S Arrest Origin Firing ORC MCM2-7 MCM2-7 Recovery of Stalled Replication Forks Inhibition of MCM10 MCM10 Replication Origin Firing DNA Pol α/Primase ORI CDC6 CDT1 MCM2-7 ORC S Phase Delay MCM2-7 MCM10 MCM10 ORI Geminin EGF EGF R GAB-1 CDC6 CDT1 ORC MCM2-7 PI 3-Kinase p70 S6K MCM2-7 S6 Protein Translation Pre-RC (G1) GAB-2 MCM10 GSK-3 TSC1/2 MCM10 ORI PIP2 TOR Promotes Replication CAK EGF Origin Firing Origin PIP3 Activation CDK2 EGF R Akt CDC25A PDK-1 Phosphatase Cyclin E/A SHIP CIP/KIP (p21, p27, p57) (Active) PLCγ PP2A (Active) PTEN CDC45 PIP2 CAK Unwinding RPA CDC7 CDK2 IP3 DAG (Active) Positive DBF4 α Feedback CDC25A DNA Pol /Primase Cyclin E Loop Phosphatase PKC ORC RAS CDK4/6 CDK2 (Active) Cyclin E MCM10 CDC45 RPA IP Receptor
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]