Summary of Euler's Equation

Total Page:16

File Type:pdf, Size:1020Kb

Summary of Euler's Equation Summary of Euler’s Equation COMPLETE ANALYSIS FOR STABILITY OF A RIGID BODY IN MOTION SOLUTION OF EULER’S EQUATIONS GIVES WHETHER MOTION OF RIGID BODY IS BOUND OR UNBOUND BOUND MOTION = STABLE UNBOUND MOTION = UNSTABLE STABILITY ANALYSIS FROM EULER’S EQUATIONS ARE VALID FOR SMALL PERTURBATIONS ONLY d I1 II 0 Small and negligible 1dt 3 2 3 2 2 d I I I I 2 2 1 3 1 2 2 d 2 1 2 0 2 dt I I 2 A2 0 2 3 dt 2 d 2 0 2C 1cos tC 2 sin t Bound (stable) A dt 2 2 d 2 t t Unbound 2 2Ce 2 Ce 3 A 2 0 (unstable) dt 2 Fictitious Forces Plan Inertial and Non-Inertial frames Rotating frame of reference Relating the Frames Fictitious Forces in rotating frame Practice Problems Rotating or Accelerating Frame of Reference Newton’s laws hold only in inertial frames of reference. However, there are many non-inertial (that is, accelerated or rotating) frames of reference that we might reasonably want to study (such as elevators, merry-go-rounds, as so on). Is there any possible way to modify Newton’s laws so that they hold in non-inertial frames, or do we have to give up entirely on F = ma? Inertial frame: Non-Rotating frame Non-Inertial frame: Rotating frame In this chapter we consider effects in rotating frame only DERIVATION OF FICTITIOUS FORCES IN ROTATING FRAME OF REFERENCE Lab frame Vs Body frame 3 2 1 Lab frame: Non-Rotating frame or Inertial Frame Body frame: Rotating frame or Non-Inertial frame y1 Relating the Co-ordinates r Angular velocity O1 x1 Lab frame: Non-Rotating frame Body frame: Rotating frame dr dr Velocity as observed in Non-Rotating frame/Lab frame r dtNR dt R Relating the Co-ordinates NON-ROTATING TO ROTATING dr dr r dtNR dt R How to get this relation? Relating the Co-ordinates dr dr r dtNR dt R r dr P2 r NR r P1 r dr r r r reˆ NR NR R r r reˆ tNR t R t t 0 r r reˆ dr dr R r reˆ dtNR dt R r eˆ dr dr r dtNR dt R Vector nature of angular velocity and angular momentum dr d r sin dt dt Direction of velocity is tangential to the circle dr dt r( t ) r rt( t ) r( t ) dr d dA nrˆ r A dt dt dt Whaty1 will be the acceleration in Non-Rotating frame? dr dr r r dtNR dt R dr O1 x1 dt NR 2 d r d d dt2 dt dt NR NR NR d d d d dt dt dtNR dt R NR R Acceleration 2 d r d d dt2 dt dt NR R R dr dt R r 2 2 dr dr dr d r 2 2 r dt dt dt dt NR R R R 2 2 d r d r dr d dr 2 2 r r dt NR dt R dtR dt dt R Acceleration and Force in rotating frame 2 2 d r d r dr d 2 2 2 r r dt NR dt R dtR dt d aa 2 v r r NR R R dt d aa r 2 v r RNR R dt d F Fm rmvm 2 r R R NR dt Inertial frame: Non-Rotating frame Non-Inertial frame: Rotating frame y1 Force d F Fm rmvm 2 r ni ni i dt O 1 Earth in rotating frame x1 d F Fm rmvm 2 r ni ni i dt Centrifugal force Coriolis force Azimuthal force Accelerated Frame of Reference Newton’s laws hold only in inertial frames of reference. However, there are many non-inertial (that is, accelerated) frames of reference that we might reasonably want to study (such as elevators, merry-go-rounds, as so on). Is there any possible way to modify Newton’s laws so that they hold in non-inertial frames, or do we have to give up entirely on F = ma? F ma i F mani i ni d aa r 2 v r ni i ni dt Practice Problems 1. Consider a person standing motionless with respect to a carousel, a distance r from the center. Let the carousel rotate in the X-Y plane with angular velocity = ez. (1)What are the fictitious forces present? (2)What is the direction of centrifugal force? (3)What is the magnitude of the centrifugal force felt by the person? Z r (1)What are the fictitious forces present? • On a Carousel r Only Centrifugal force will be present If person is not moving with respect to carousel, and if is constant, then Centrifugal force is the only non-zero fictitious force. d F Fm rmvm 2 r ni ni i dt Centrifugal force Coriolis force Azimuthal force =0 =0 (2)What is the direction of centrifugal force? • On a Carousel r r r F m r centrifugal What is the direction of m r ? 2 2 F mremre( ˆr ) ˆ r centrifugal Points radially outwards 2a. Consider a person moving radially inward on a carousel with a velocity v. Let the carousel rotate in the X-Y plane with angular velocity = ez. (1)What are the fictitious forces present? (2)What is the magnitude and direction of coriolis force? Z What are the fictitious forces present? Z v Centrifugal force and Coriolis force What is the magnitude and direction of Coriolis force? • Moving radially on a carousel F2 mv Z coriolis Fcoriolis ( magnitude ) 2 m v v • Coriolis force points tangentially inward 2b. Consider a person moving tangentially inward on a carousel with a velocity v. Let the carousel rotate in the X-Y plane with angular velocity = ez. (1)What are the fictitious forces present? (2)What is the magnitude and direction of coriolis force? Z What are the fictitious forces present? Z v Centrifugal force and Coriolis force What is the magnitude and direction of Coriolis force? • Moving tangentially inward on a carousel F2 mv Z coriolis Fcoriolis ( magnitude ) 2 m v v Fcoriolis • Coriolis force points radially outward.
Recommended publications
  • On the Transformation of Torques Between the Laboratory and Center
    On the transformation of torques between the laboratory and center of mass reference frames Rodolfo A. Diaz,∗ William J. Herrera† Universidad Nacional de Colombia, Departamento de F´ısica. Bogot´a, Colombia. Abstract It is commonly stated in Newtonian Mechanics that the torque with respect to the laboratory frame is equal to the torque with respect to the center of mass frame plus a R × F factor, with R being the position of the center of mass and F denoting the total external force. Although this assertion is true, there is a subtlety in the demonstration that is overlooked in the textbooks. In addition, it is necessary to clarify that if the reference frame attached to the center of mass rotates with respect to certain inertial frame, the assertion is not true any more. PACS {01.30.Pp, 01.55.+b, 45.20.Dd} Keywords: Torque, center of mass, transformation of torques, fictitious forces. In Newtonian Mechanics, we define the total external torque of a system of n particles (with respect to the laboratory frame that we shall assume as an inertial reference frame) as n Next = ri × Fi(e) , i=1 X where ri, Fi(e) denote the position and total external force for the i − th particle. The relation between the position coordinates between the laboratory (L) and center of mass (CM) reference frames 1 is given by ′ ri = ri + R , ′ with R denoting the position of the CM about the L, and ri denoting the position of the i−th particle with respect to the CM, in general the prime notation denotes variables measured with respect to the CM.
    [Show full text]
  • Explain Inertial and Noninertial Frame of Reference
    Explain Inertial And Noninertial Frame Of Reference Nathanial crows unsmilingly. Grooved Sibyl harlequin, his meadow-brown add-on deletes mutely. Nacred or deputy, Sterne never soot any degeneration! In inertial frames of the air, hastening their fundamental forces on two forces must be frame and share information section i am throwing the car, there is not a severe bottleneck in What city the greatest value in flesh-seconds for this deviation. The definition of key facet having a small, polished surface have a force gem about a pretend or aspect of something. Fictitious Forces and Non-inertial Frames The Coriolis Force. Indeed, for death two particles moving anyhow, a coordinate system may be found among which saturated their trajectories are rectilinear. Inertial reference frame of inertial frames of angular momentum and explain why? This is illustrated below. Use tow of reference in as sentence Sentences YourDictionary. What working the difference between inertial frame and non inertial fr. Frames of Reference Isaac Physics. In forward though some time and explain inertial and noninertial of frame to prove your measurement problem you. This circumstance undermines a defining characteristic of inertial frames: that with respect to shame given inertial frame, the other inertial frame home in uniform rectilinear motion. The redirect does not rub at any valid page. That according to whether the thaw is inertial or non-inertial In the. This follows from what Einstein formulated as his equivalence principlewhich, in an, is inspired by the consequences of fire fall. Frame of reference synonyms Best 16 synonyms for was of. How read you govern a bleed of reference? Name we will balance in noninertial frame at its axis from another hamiltonian with each printed as explained at all.
    [Show full text]
  • THE PROBLEM with SO-CALLED FICTITIOUS FORCES Abstract 1
    THE PROBLEM WITH SO-CALLED FICTITIOUS FORCES Härtel Hermann; University Kiel, Germany Abstract Based on examples from modern textbooks the question will be raised if the traditional approach to teach the basics of Newton´s mechanics is still adequate, especially when inertial forces like centrifugal forces are described as fictitious, applicable only in non-inertial frames of reference. In the light of some recent research, based on Mach´s principles and early work of Weber, it is argued that the so-called fictitious forces could be described as real interactive forces and therefore should play quite a different role in the frame of Newton´s mechanics. By means of some computer supported learning material it will be shown how a fruitful discussion of these ideas could be supported. 1. Introduction When treating classical mechanics the interaction forces are usually clearly separated from the so- called inertial forces. For interaction forces Newton´s basic laws are valid, while for inertial forces especially the 3rd Newtonian principle cannot be applied. There seems to be no interaction force which can be related to the force of inertia and therefore this force is called fictitious and is assigned to a fictitious world. The following citations from a widespread German textbook (Bergmann Schaefer 1998) may serve as a typical example, which is found in similar form in many other German as well as American textbooks. • Zu den in der Natur beobachtbaren Kräften gehören schließlich auch die sogenannten Scheinkräfte oder Trägheitskräfte, die nur in Bezugssystemen wirken, die gegenüber dem Fundamentalsystem der fernen Galaxien beschleunigt sind. Dazu gehören die Zentrifugalkraft und die Corioliskraft.
    [Show full text]
  • PHYSICS of ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3
    Chapter 2 PHYSICS OF ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3 1 Ohio University, Athens, Ohio, USA 2 NASA Johnson Space Center, Houston, Texas, USA 3 Centre National de la Recherche Scientifique, Toulouse, France This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented. Figure 2-01. Artist's concept of one of NASA early (1962) concepts for a manned space station with artificial gravity: a self- inflating 22-m-diameter rotating hexagon. Photo courtesy of NASA. 1 ARTIFICIAL GRAVITY: WHAT IS IT? 1.1 Definition Artificial gravity is defined in this book as the simulation of gravitational forces aboard a space vehicle in free fall (in orbit) or in transit to another planet. Throughout this book, the term artificial gravity is reserved for a spinning spacecraft or a centrifuge within the spacecraft such that a gravity-like force results. One should understand that artificial gravity is not gravity at all. Rather, it is an inertial force that is indistinguishable from normal gravity experience on Earth in terms of its action on any mass. A centrifugal force proportional to the mass that is being accelerated centripetally in a rotating device is experienced rather than a gravitational pull.
    [Show full text]
  • LECTURES 20 - 29 INTRODUCTION to CLASSICAL MECHANICS Prof
    LECTURES 20 - 29 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford HT 2017 1 OUTLINE : INTRODUCTION TO MECHANICS LECTURES 20-29 20.1 The hyperbolic orbit 20.2 Hyperbolic orbit : the distance of closest approach 20.3 Hyperbolic orbit: the angle of deflection, φ 20.3.1 Method 1 : using impulse 20.3.2 Method 2 : using hyperbola orbit parameters 20.4 Hyperbolic orbit : Rutherford scattering 21.1 NII for system of particles - translation motion 21.1.1 Kinetic energy and the CM 21.2 NII for system of particles - rotational motion 21.2.1 Angular momentum and the CM 21.3 Introduction to Moment of Inertia 21.3.1 Extend the example : J not parallel to ! 21.3.2 Moment of inertia : mass not distributed in a plane 21.3.3 Generalize for rigid bodies 22.1 Moment of inertia tensor 2 22.1.1 Rotation about a principal axis 22.2 Moment of inertia & energy of rotation 22.3 Calculation of moments of inertia 22.3.1 MoI of a thin rectangular plate 22.3.2 MoI of a thin disk perpendicular to plane of disk 22.3.3 MoI of a solid sphere 23.1 Parallel axis theorem 23.1.1 Example : compound pendulum 23.2 Perpendicular axis theorem 23.2.1 Perpendicular axis theorem : example 23.3 Example 1 : solid ball rolling down slope 23.4 Example 2 : where to hit a ball with a cricket bat 23.5 Example 3 : an aircraft landing 24.1 Lagrangian mechanics : Introduction 24.2 Introductory example : the energy method for the E of M 24.3 Becoming familiar with the jargon 24.3.1 Generalised coordinates 24.3.2 Degrees of Freedom 24.3.3 Constraints 3 24.3.4 Configuration
    [Show full text]
  • Coriolis Force PDF File
    Conservation of angular momentum – the Coriolis force Bill Watterson Conservation of momentum in the ocean – Navier Stokes equation dv F / m (Newton) dt dv - 1/r 흏p/흏z + horizontal component dt + Coriolis force + g vertical vector + tidal forces + friction 2 Attention: Newton‘s law only valid in absolute reference system. I.e. in a reference system which is at rest or in constant motion. What happens when reference system is rotating? Then „inertial forces“ will appear. A mass at rest will experience a centrifugal force. A mass that is in motion will experience a Coriolis force. 3 Which reference system do we want to use? z y x 4 Stewart, 2007 Which reference system do we want to use? We like to use a Cartesian coordinate system at the ocean surface convention: x eastward y northward z upward This reference system rotates with the earth around its axis. Newton‘s 2. law does only apply, when taking an „inertial force“ into account. 5 Coriolis ”force” - fictitious force in a rotating reference frame Coriolis force on a merrygoround … https://www.youtube.com/watch?v=_36MiCUS1ro https://www.youtube.com/watch?v=PZPSfv_YssA 6 Coriolis ”force” - fictitious force in a rotating reference frame Plate turns. View on the plate from outside. View from inside the plate. 7 Disc world (Terry Pratchett) Angular velocity is the same everywhere w = 360°/24h Tangential velocity varies with the distance from rotation axis: w NP 푣푇 = 2휋 ∙ 푟 /24ℎ r vT (on earth at 54°N: vT= 981 km/h) Eq 8 Disc world Tangential velocity varies with distance from rotation axis: 푣푇 = 2휋 ∙ 푟 /24ℎ NP r Eq vT 9 Disc world Tangential velocity varies with distance from rotation axis: 푣푇 = 2휋 ∙ 푟 /24ℎ NP Hence vT is smaller near the North Pole than at the equator.
    [Show full text]
  • Action Principle for Hydrodynamics and Thermodynamics, Including General, Rotational Flows
    th December 15, 2014 Action Principle for Hydrodynamics and Thermodynamics, including general, rotational flows C. Fronsdal Depart. of Physics and Astronomy, University of California Los Angeles 90095-1547 USA ABSTRACT This paper presents an action principle for hydrodynamics and thermodynamics that includes general, rotational flows, thus responding to a challenge that is more that 100 years old. It has been lifted to the relativistic context and it can be used to provide a suitable source of rotating matter for Einstein’s equation, finally overcoming another challenge of long standing, the problem presented by the Bianchi identity. The new theory is a combination of Eulerian and Lagrangian hydrodynamics, with an extension to thermodynamics. In the first place it is an action principle for adia- batic systems, including the usual conservation laws as well as the Gibbsean variational principle. But it also provides a framework within which dissipation can be introduced in the usual way, by adding a viscosity term to the momentum equation, one of the Euler-Lagrange equations. The rate of the resulting energy dissipation is determined by the equations of motion. It is an ideal framework for the description of quasi-static processes. It is a major development of the Navier-Stokes-Fourier approach, the princi- pal advantage being a hamiltonian structure with a natural concept of energy as a first integral of the motion. Two velocity fields are needed, one the gradient of a scalar potential, the other the time derivative of a vector field (vector potential). Variation of the scalar potential gives the equation of continuity and variation of the vector potential yields the momentum equation.
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]
  • Chapter 2B More on the Momentum Principle
    Chapter 2b More on the Momentum Principle 2b.1 Derivative form of the Momentum Principle 114 2b.1.1 An approximate result: F = ma 115 2b.2 Momentum not changing 116 2b.2.1 Static equilibrium 116 2b.2.2 Uniform motion 116 2b.2.3 Momentarily at rest vs.static equilibrium 117 2b.2.4 Finding the rate of change of momentum 118 2b.2.5 Example: Hanging block (static equilibrium) 119 2b.2.6 Preview of the Angular Momentum Principle 120 2b.3 Curving motion 120 2b.3.1 Example: The Moon around the Earth (curving motion) 121 2b.3.2 Example: Tarzan swings from a vine (curving motion) 122 2b.3.3 The Momentum Principle relates different things 123 2b.3.4 Example: Sitting in an airplane (curving motion) 123 2b.3.5 Example: A turning car (curving motion) 125 2b.4 A special case: Circular motion at constant speed 126 2b.4.1 The initial conditions required for a circular orbit 127 2b.4.2 Nongravitational situations 128 2b.4.3 Period 129 2b.4.4 Example: Circular pendulum (curving motion) 129 2b.4.5 Comment: Forward reasoning 131 2b.4.6 Example: An amusement park ride (curving motion) 131 2b.5 Systems consisting of several objects 132 2b.5.1 Collisions: Negligible external forces 133 2b.5.2 Momentum flow within a system 134 2b.6 Conservation of momentum 134 2b.7 Predicting the future of complex gravitating systems 136 2b.7.1 The three-body problem 136 2b.7.2 Sensitivity to initial conditions 137 2b.8 Determinism 137 2b.8.1 Practical limitations 138 2b.8.2 Chaos 138 2b.8.3 Breakdown of Newton’s laws 139 2b.8.4 Probability and uncertainty 139 2b.9 *Derivation of the multiparticle Momentum Principle 140 2b.10 Summary 142 2b.11 Review questions 143 2b.12 Problems 144 2b.13 Answers to exercises 151 114 Chapter 2: The Momentum Principle Chapter 2b More on the Momentum Principle In this chapter we continue to apply the Momentum Principle to a variety of systems.
    [Show full text]
  • Chapter 6 the Equations of Fluid Motion
    Chapter 6 The equations of fluid motion In order to proceed further with our discussion of the circulation of the at- mosphere, and later the ocean, we must develop some of the underlying theory governing the motion of a fluid on the spinning Earth. A differen- tially heated, stratified fluid on a rotating planet cannot move in arbitrary paths. Indeed, there are strong constraints on its motion imparted by the angular momentum of the spinning Earth. These constraints are profoundly important in shaping the pattern of atmosphere and ocean circulation and their ability to transport properties around the globe. The laws governing the evolution of both fluids are the same and so our theoretical discussion willnotbespecifictoeitheratmosphereorocean,butcanandwillbeapplied to both. Because the properties of rotating fluids are often counter-intuitive and sometimes difficult to grasp, alongside our theoretical development we will describe and carry out laboratory experiments with a tank of water on a rotating table (Fig.6.1). Many of the laboratory experiments we make use of are simplified versions of ‘classics’ that have become cornerstones of geo- physical fluid dynamics. They are listed in Appendix 13.4. Furthermore we have chosen relatively simple experiments that, in the main, do nor require sophisticated apparatus. We encourage you to ‘have a go’ or view the atten- dant movie loops that record the experiments carried out in preparation of our text. We now begin a more formal development of the equations that govern the evolution of a fluid. A brief summary of the associated mathematical concepts, definitions and notation we employ can be found in an Appendix 13.2.
    [Show full text]
  • Chapter 13: the Conditions of Rotary Motion
    Chapter 13 Conditions of Rotary Motion KINESIOLOGY Scientific Basis of Human Motion, 11 th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Revised by Hamilton & Weimar REVISED FOR FYS by J. Wunderlich, Ph.D. Agenda 1. Eccentric Force àTorque (“Moment”) 2. Lever 3. Force Couple 4. Conservation of Angular Momentum 5. Centripetal and Centrifugal Forces ROTARY FORCE (“Eccentric Force”) § Force not in line with object’s center of gravity § Rotary and translatory motion can occur Fig 13.2 Torque (“Moment”) T = F x d F Moment T = F x d Arm F d = 0.3 cos (90-45) Fig 13.3 T = F x d Moment Arm Torque changed by changing length of moment d arm W T = F x d d W Fig 13.4 Sum of Torques (“Moments”) T = F x d Fig 13.8 Sum of Torques (“Moments”) T = F x d § Sum of torques = 0 • A balanced seesaw • Linear motion if equal parallel forces overcome resistance • Rowers Force Couple T = F x d § Effect of equal parallel forces acting in opposite direction Fig 13.6 & 13.7 LEVER § “A rigid bar that can rotate about a fixed point when a force is applied to overcome a resistance” § Used to: – Balance forces – Favor force production – Favor speed and range of motion – Change direction of applied force External Levers § Small force to overcome large resistance § Crowbar § Large Range Of Motion to overcome small resistance § Hitting golf ball § Balance force (load) § Seesaw Anatomical Levers § Nearly every bone is a lever § The joint is fulcrum § Contracting muscles are force § Don’t necessarily resemble
    [Show full text]
  • Chapter 8: Rotational Motion
    TODAY: Start Chapter 8 on Rotation Chapter 8: Rotational Motion Linear speed: distance traveled per unit of time. In rotational motion we have linear speed: depends where we (or an object) is located in the circle. If you ride near the outside of a merry-go-round, do you go faster or slower than if you ride near the middle? It depends on whether “faster” means -a faster linear speed (= speed), ie more distance covered per second, Or - a faster rotational speed (=angular speed, ω), i.e. more rotations or revolutions per second. • Linear speed of a rotating object is greater on the outside, further from the axis (center) Perimeter of a circle=2r •Rotational speed is the same for any point on the object – all parts make the same # of rotations in the same time interval. More on rotational vs tangential speed For motion in a circle, linear speed is often called tangential speed – The faster the ω, the faster the v in the same way v ~ ω. directly proportional to − ω doesn’t depend on where you are on the circle, but v does: v ~ r He’s got twice the linear speed than this guy. Same RPM (ω) for all these people, but different tangential speeds. Clicker Question A carnival has a Ferris wheel where the seats are located halfway between the center and outside rim. Compared with a Ferris wheel with seats on the outside rim, your angular speed while riding on this Ferris wheel would be A) more and your tangential speed less. B) the same and your tangential speed less.
    [Show full text]