Introduction to Category Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MAT 4162 - Homework Assignment 2
MAT 4162 - Homework Assignment 2 Instructions: Pick at least 5 problems of varying length and difficulty. You do not have to provide full details in all of the problems, but be sure to indicate which details you declare trivial. Due date: Monday June 22nd, 4pm. The category of relations Let Rel be the category whose objects are sets and whose morphisms X ! Y are relations R ⊆ X × Y . Two relations R ⊆ X × Y and S ⊆ Y × Z may be composed via S ◦ R = f(x; z)j9y 2 Y:R(x; y) ^ S(y; z): Exercise 1. Show that this composition is associative, and that Rel is indeed a category. The powerset functor(s) Consider the powerset functor P : Set ! Set. On objects, it sends a set X to its powerset P(X). A function f : X ! Y is sent to P(f): P(X) !P(Y ); U 7! P(f)(U) = f[U] =def ff(x)jx 2 Ug: Exercise 2. Show that P is indeed a functor. For every set X we have a singleton map ηX : X !P(X), defined by 2 S x 7! fxg. Also, we have a union map µX : P (X) !P(X), defined by α 7! α. Exercise 3. Show that η and µ constitute natural transformations 1Set !P and P2 !P, respectively. Objects of the form P(X) are more than mere sets. In class you have seen that they are in fact complete boolean algebras. For now, we regard P(X) as a complete sup-lattice. A partial ordering (P; ≤) is a complete sup-lattice if it is equipped with a supremum map W : P(P ) ! P which sends a subset U ⊆ P to W P , the least upper bound of U in P . -
Relations in Categories
Relations in Categories Stefan Milius A thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Arts Graduate Program in Mathematics and Statistics York University Toronto, Ontario June 15, 2000 Abstract This thesis investigates relations over a category C relative to an (E; M)-factori- zation system of C. In order to establish the 2-category Rel(C) of relations over C in the first part we discuss sufficient conditions for the associativity of horizontal composition of relations, and we investigate special classes of morphisms in Rel(C). Attention is particularly devoted to the notion of mapping as defined by Lawvere. We give a significantly simplified proof for the main result of Pavlovi´c,namely that C Map(Rel(C)) if and only if E RegEpi(C). This part also contains a proof' that the category Map(Rel(C))⊆ is finitely complete, and we present the results obtained by Kelly, some of them generalized, i. e., without the restrictive assumption that M Mono(C). The next part deals with factorization⊆ systems in Rel(C). The fact that each set-relation has a canonical image factorization is generalized and shown to yield an (E¯; M¯ )-factorization system in Rel(C) in case M Mono(C). The setting without this condition is studied, as well. We propose a⊆ weaker notion of factorization system for a 2-category, where the commutativity in the universal property of an (E; M)-factorization system is replaced by coherent 2-cells. In the last part certain limits and colimits in Rel(C) are investigated. -
Knowledge Representation in Bicategories of Relations
Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR). -
A Few Points in Topos Theory
A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces. -
Relations: Categories, Monoidal Categories, and Props
Logical Methods in Computer Science Vol. 14(3:14)2018, pp. 1–25 Submitted Oct. 12, 2017 https://lmcs.episciences.org/ Published Sep. 03, 2018 UNIVERSAL CONSTRUCTIONS FOR (CO)RELATIONS: CATEGORIES, MONOIDAL CATEGORIES, AND PROPS BRENDAN FONG AND FABIO ZANASI Massachusetts Institute of Technology, United States of America e-mail address: [email protected] University College London, United Kingdom e-mail address: [email protected] Abstract. Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic categories of both relations and corelations can be characterised as colimits of simpler categories. This modular perspective is important as it simplifies the task of giving a complete axiomatisation for semantic equivalence of string diagrams. Moreover, our general result unifies various theorems that are independently found in literature and are relevant for program semantics, quantum computation and control theory. 1. Introduction Network-style diagrammatic languages appear in diverse fields as a tool to reason about computational models of various kinds, including signal processing circuits, quantum pro- cesses, Bayesian networks and Petri nets, amongst many others. In the last few years, there have been more and more contributions towards a uniform, formal theory of these languages which borrows from the well-established methods of programming language semantics. A significant insight stemming from many such approaches is that a compositional analysis of network diagrams, enabling their reduction to elementary components, is more effective when system behaviour is thought of as a relation instead of a function. -
Rewriting Structured Cospans: a Syntax for Open Systems
UNIVERSITY OF CALIFORNIA RIVERSIDE Rewriting Structured Cospans: A Syntax For Open Systems A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics by Daniel Cicala June 2019 Dissertation Committee: Dr. John C. Baez, Chairperson Dr. Wee Liang Gan Dr. Jacob Greenstein Copyright by Daniel Cicala 2019 The Dissertation of Daniel Cicala is approved: Committee Chairperson University of California, Riverside Acknowledgments First and foremost, I would like to thank my advisor John Baez. In these past few years, I have learned more than I could have imagined about mathematics and the job of doing mathematics. I also want to thank the past and current Baez Crew for the many wonderful discussions. I am indebted to Math Department at the University of California, Riverside, which has afforded me numerous opportunities to travel to conferences near and far. Almost certainly, I would never have had a chance to pursue my doctorate had it not been for my parents who were there for me through every twist and turn on this, perhaps, too scenic route that I traveled. Most importantly, this project would have been impossible without the full-hearted support of my love, Elizabeth. I would also like to acknowledge the previously published material in this disser- tation. The interchange law in Section 3.1 was published in [15]. The material in Sections 3.2 and 3.3 appear in [16]. Also, the ZX-calculus example in Section 4.3 appears in [18]. iv Elizabeth. It’s finally over, baby! v ABSTRACT OF THE DISSERTATION Rewriting Structured Cospans: A Syntax For Open Systems by Daniel Cicala Doctor of Philosophy, Graduate Program in Mathematics University of California, Riverside, June 2019 Dr. -
The Trace Factorisation of Stable Functors
The Trace Factorisation of Stable Functors Paul Taylor 1998 Abstract A functor is stable if it has a left adjoint on each slice. Such functors arise as forgetful functors from categories of models of disjunctive theories. A stable functor factorises as a functor with a (global) left adjoint followed by a fibration of groupoids; Diers [D79] showed that in many cases the corresponding indexation is a well-known spectrum. Independently, Berry [B78,B79] constructed a cartesian closed category of posets and stable functors, which Girard [G85] developed into a model of polymorphism; the proof of cartesian closure implicitly makes use of this factorisation. Girard [G81] had earlier developed a technique in proof theory involving dilators (stable endofunctors of the category of ordinals), also using the factorisation. Although Diers [D81] knew of the existence of this factorisation system, his work used an additional assumption of preserving equalisers. However Lamarche [L88] observed that examples such as algebraically closed fields can be incorporated if this assumption is dropped, and also that (in the the search for cartesian closed categories) evaluation does not preserve equalisers. We find that Diers' definitions can be modified in a simple and elegant way which also throws light on the General Adjoint Functor Theorem and on factorisation systems. In this paper the factorisation system is constructed in detail and related back to Girard's examples; following him we call the intermediate category the trace. We also consider nat- ural and cartesian transformations between stable functors. We find that the latter (which must be the morphisms of the \stable functor category") have a simple connection with the factorisation, and induce a rigid adjunction (whose unit and counit are cartesian) between traces. -
The Category of Sheaves Is a Topos Part 2
The category of sheaves is a topos part 2 Patrick Elliott Recall from the last talk that for a small category C, the category PSh(C) of presheaves on C is an elementary topos. Explicitly, PSh(C) has the following structure: • Given two presheaves F and G on C, the exponential GF is the presheaf defined on objects C 2 obC by F G (C) = Hom(hC × F; G); where hC = Hom(−;C) is the representable functor associated to C, and the product × is defined object-wise. • Writing 1 for the constant presheaf of the one object set, the subobject classifier true : 1 ! Ω in PSh(C) is defined on objects by Ω(C) := fS j S is a sieve on C in Cg; and trueC : ∗ ! Ω(C) sends ∗ to the maximal sieve t(C). The goal of this talk is to refine this structure to show that the category Shτ (C) of sheaves on a site (C; τ) is also an elementary topos. To do this we must make use of the sheafification functor defined at the end of the first talk: Theorem 0.1. The inclusion functor i : Shτ (C) ! PSh(C) has a left adjoint a : PSh(C) ! Shτ (C); called sheafification, or the associated sheaf functor. Moreover, this functor commutes with finite limits. Explicitly, a(F) = (F +)+, where + F (C) := colimS2τ(C)Match(S; F); where Match(S; F) is the set of matching families for the cover S of C, and the colimit is taken over all covering sieves of C, ordered by reverse inclusion. -
E(6,<F>) = {Geg1:(,(G) = <L>(G)}
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 1, January 1974 THE FIRST DERIVED EQUALISER OF A PAIR OF ABELIAN GROUP HOMOMORPHISMS TIM PORTER Abstract. In this note we attack the problem of classifying a pair of abelian group homomorphisms by introducing a con- struction which we call "the derived equaliser". After developing fairly simple methods for the calculation of these objects, we work an example in a simple case. Introduction. The simplicity of the classification, up to isomorphism, of group homomorphisms by their kernels and cokernels tends to over- shadow the problem for two or more homomorphisms. Recall that the First Isomorphism Theorem allows one to write any homomorphism as a composite of an epimorphism and an inclusion of a subgroup; the epi- morphism is determined (up to isomorphism of group homomorphisms) by its kernel, and the inclusion can either be regarded as an invariant itself or it can be determined by its cokernel. The diagram (1) Gi=*G* where d and <f>have isomorphic kernels and cokernels, may be very different indeed from the diagram, (2) <?i=*Gt where the two maps also have isomorphic kernels and cokernels. A first approximation to a classification of such pairs of homomorphisms is via their "equaliser" or "difference kernel" [1] which measures how much they differ. The equaliser of 6 and <f>in (1) is the subgroup E(6,<f>)= {geG1:(,(g)= <l>(g)}. This is by no means a complete invariant, but in this paper we will in- vestigate certain "derived invariants" of this for the case that Gr and G2 are abelian groups. -
Math 395: Category Theory Northwestern University, Lecture Notes
Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere. -
Ten Questions for Mathematics Teachers
Teaching strategies Cognitive activation Lessons drawn Classroom climate Students’ attitudes Memorisation Pure & applied maths Control Socio-economic status Elaboration strategies Ten Questions for Mathematics Teachers ... and how PISA can help answer them PISA Ten Questions for Mathematics Teachers ... and how PISA can help answer them This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and the arguments employed herein do not necessarily reflect the official views of the OECD member countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Please cite this publication as: OECD (2016), Ten Questions for Mathematics Teachers ... and how PISA can help answer them, PISA, OECD Publishing, Paris, http://dx.doi.or /10.1787/9789264265387-en. ISBN 978-9264-26537-0 (print) ISBN 978-9264-26538-7 (online) Series: PISA ISSN 1990-85 39 (print) ISSN 1996-3777 (online) The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law. Latvia was not an OECD member at the time of preparation of this publication. Accordingly, Latvia is not included in the OECD average. Corrigenda to OECD publications may be found on line at: www.oecd.org/publishing/corrigenda. © OECD 2016 You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgement of OECD as source and copyright owner is given. -
Toposes Toposes and Their Logic
Building up to toposes Toposes and their logic Toposes James Leslie University of Edinurgh [email protected] April 2018 James Leslie Toposes Building up to toposes Toposes and their logic Overview 1 Building up to toposes Limits and colimits Exponenetiation Subobject classifiers 2 Toposes and their logic Toposes Heyting algebras James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Products Z f f1 f2 X × Y π1 π2 X Y James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Coproducts i i X 1 X + Y 2 Y f f1 f2 Z James Leslie Toposes e : E ! X is an equaliser if for any commuting diagram f Z h X Y g there is a unique h such that triangle commutes: f E e X Y g h h Z Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Equalisers Suppose we have the following commutative diagram: f E e X Y g James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Equalisers Suppose we have the following commutative diagram: f E e X Y g e : E ! X is an equaliser if for any commuting diagram f Z h X Y g there is a unique h such that triangle commutes: f E e X Y g h h Z James Leslie Toposes The following is an equaliser diagram: f ker G i G H 0 Given a k such that following commutes: f K k G H ker G i G 0 k k K k : K ! ker(G), k(g) = k(g).