Production of Fluorine in a Proton Exchange Membrane Reactor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide
II.C SeparaTioNS II.C.1 Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide overall footprint than can be achieved by utilizing Shain J. Doong separate components for each required unit process/unit Gas Technology Institute (GTI) operation. Specifically, research is sought to perform a 1700 South Mount Prospect Road combination of theoretical and experimental research Des Plaines, IL 60018 to provide a scientific basis needed to develop a novel Phone: (847) 768-0884 “one-box” process to combine synthesis gas cleanup, E-mail: [email protected] water-gas shift reaction, hydrogen separation and carbon dioxide separation. A successful strategy will have the DOE Technology Development Manager: potential to selectively remove pure hydrogen, carbon Dan Cicero dioxide and synthesis gas impurities in a single reactor Phone: (412) 386-4826 configuration that can operate simultaneously at high E-mail: [email protected] temperature and high conversion, possibly without the DOE Project Officer: Elaine Everitt requirement of excess steam. Phone: (304) 285-4491 E-mail: [email protected] Approach Contract Number: DE-FC26-05NT42450 The objective of this research is to develop a Start Date: June 2005 “one-box” approach that can consolidate two or Projected End Date: May 2007 more downstream reaction/separation units of a coal gasification system in a single module for production of a pure stream of hydrogen. The project will evaluate the technical feasibility of using two or three types Objectives of membranes to selectively separate pure hydrogen, carbon dioxide and hydrogen sulfide in a single reactor • Develop a novel membrane process concept configuration that can operate simultaneously at high that would combine hydrogen sulfide removal, temperatures (e.g., 700-900ºC). -
Historical Group
Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 64 Summer 2013 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield | Prof J Betteridge (Twickenham, 4, Harpole Close, Swanwick, Derbyshire, | Middlesex) DE55 1EW | Dr N G Coley (Open University) [e-mail [email protected]] | Dr C J Cooksey (Watford, Secretary: Prof. J. W. Nicholson | Hertfordshire) School of Sport, Health and Applied Science, | Prof E Homburg (University of St Mary's University College, Waldegrave | Maastricht) Road, Twickenham, Middlesex, TW1 4SX | Prof F James (Royal Institution) [e-mail: [email protected]] | Dr D Leaback (Biolink Technology) Membership Prof W P Griffith | Dr P J T Morris (Science Museum) Secretary: Department of Chemistry, Imperial College, | Mr P N Reed (Steensbridge, South Kensington, London, SW7 2AZ | Herefordshire) [e-mail [email protected]] | Dr V Quirke (Oxford Brookes Treasurer: Dr J A Hudson | University) Graythwaite, Loweswater, Cockermouth, | Prof. H. Rzepa (Imperial College) Cumbria, CA13 0SU | Dr. A Sella (University College) [e-mail [email protected]] Newsletter Dr A Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Dr G P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp 1 RSC Historical Group Newsletter No. 64 Summer 2013 Contents From the Editor 2 Obituaries 3 Professor Colin Russell (1928-2013) Peter J.T. -
Chemical Name Federal P Code CAS Registry Number Acutely
Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime. -
The Automated Flow Synthesis of Fluorine Containing Organic Compounds
The automated flow synthesis of fluorine containing organic compounds by CHANTAL SCHOLTZ Submitted in partial fulfilment of the requirements for the degree PHILOSOPHAE DOCTOR In the Faculty of Natural & Agricultural Sciences UNIVERSITY OF PRETORIA PRETORIA Supervisor: Dr D.L. Riley February 2019 DECLARATION I, Chantal Scholtz declare that the thesis/dissertation, which I hereby submit for the degree PhD Chemistry at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. Signature :.......................................... Date :..................................... ii ACKNOWLEDGEMENTS I would herewith sincerely like to show my gratitude to the following individuals for their help, guidance and assistance throughout the duration of this project: My supervisor, Doctor Darren Riley, for his knowledge and commitment. Thank you for being a fantastic supervisor and allowing me the opportunity to learn so many valuable skills. My husband, Clinton, for all your love, support and patience and for always being there for me. You are the best. My family, for all the encouragement and support you gave me as well as always believing in me. I will always appreciate what you have done for me. Mr Drikus van der Westhuizen and Mr Johan Postma for their assistance at the Pelchem laboratories with product isolation and characterisation. Dr Mamoalosi Selepe for NMR spectroscopy services, Jeanette Strydom for XRF services and Gerda Ehlers at the UP library for her invaluable assistance. All my friends and colleagues for the continuous moral support, numerous helpful discussions and necessary coffee breaks. My colleagues at Chemical Process Technologies for their ongoing support and motivation, especially Dr Hannes Malan and Prof. -
Catalytic Membrane Reactors: the Industrial Applications Perspective
catalysts Review Catalytic Membrane Reactors: The Industrial Applications Perspective Catia Algieri 1,*, Gerardo Coppola 2, Debolina Mukherjee 2, Mahaad Issa Shammas 3, Vincenza Calabro 2 , Stefano Curcio 2 and Sudip Chakraborty 2,* 1 Institute on Membrane Technology, National Research Council of Italy (ITM–CNR), Cubo 17C, Via Pietro Bucci, 87036 Rende, Italy 2 Department of DIMES, University of Calabria, Via Pietro Bucci, Cubo 42A, 87036 Rende, Italy; [email protected] (G.C.); [email protected] (D.M.); [email protected] (V.C.); [email protected] (S.C.) 3 Department of Civil & Environmental Engineering at Dhofar University, Salalah 211, Sultanate of Oman; [email protected] * Correspondence: author: [email protected] (C.A.); [email protected] (S.C.) Abstract: Catalytic membrane reactors have been widely used in different production industries around the world. Applying a catalytic membrane reactor (CMR) reduces waste generation from a cleaner process perspective and reduces energy consumption in line with the process intensification strategy. A CMR combines a chemical or biochemical reaction with a membrane separation process in a single unit by improving the performance of the process in terms of conversion and selectivity. The core of the CMR is the membrane which can be polymeric or inorganic depending on the operating conditions of the catalytic process. Besides, the membrane can be inert or catalytically active. The Citation: Algieri, C.; Coppola, G.; number of studies devoted to applying CMR with higher membrane area per unit volume in multi- Mukherjee, D.; Shammas, M.I.; phase reactions remains very limited for both catalytic polymeric and inorganic membranes. -
Process Intensification with Integrated Water-Gas-Shift Membrane Reactor Reactor Concept (Left)
INDUSTRIAL TECHNOLOGIES PROGRAM Process Intensification with Integrated Water-Gas-Shift Membrane Reactor Reactor concept (left). Flow diagram (middle): Hydrogen (H2) permeates the membrane where nitrogen (N2) sweeps the gas to Hydrogen-Selective Membranes for High- produce a high-pressure H2/N2 gas stream. Membrane diagram Pressure Hydrogen Separation (right): The H2-selective membrane allows the continuous removal of the H2 produced in the water-gas-shift (WGS) reaction. This allows for the near-complete conversion of carbon monoxide (CO) This project will develop hydrogen-selective membranes for an innovative water-gas-shift reactor that improves gas separation to carbon dioxide (CO2) and for the separation of H2 from CO2. efficiency, enabling reduced energy use and greenhouse gas Image Courtesy of General Electric Company, Western Research Institute, emissions. and Idaho National Laboratory. Benefits for Our Industry and Our Nation Introduction The development of an integrated WGS-MR for hydrogen The goal of process intensification is to reduce the equipment purification and carbon capture will result in fuel flexibility footprint, energy consumption, and environmental impact of as well as environmental, energy, and economic benefits. manufacturing processes. Commercialization of this technology has the potential to achieve the following: One candidate for process intensification is gasification, a common method by which hydrocarbon feedstocks such as coal, • A reduction in energy use during the separation process by biomass, and organic waste are reacted with a controlled amount replacing a conventional WGS reactor and CO2 removal system of oxygen and steam to produce synthesis gas (syngas), which with a WGS-MR and downsized CO2 removal unit is composed primarily of hydrogen (H2) and carbon monoxide (CO). -
Membrane Reactor for Methanol Synthesis Using Si-Rich LTA Zeolite Membrane
membranes Article Membrane Reactor for Methanol Synthesis Using Si-Rich LTA Zeolite Membrane Masahiro Seshimo 1,*, Bo Liu 1,† , Hey Ryeon Lee 1, Katsunori Yogo 1, Yuichiro Yamaguchi 1,‡, Nobuyuki Shigaki 2, Yasuhiro Mogi 2, Hidetoshi Kita 1,3 and Shin-ichi Nakao 1 1 Inorganic Membranes Research Center, Research Institute of Innovative Technology for the Earth (RITE), 1-7 Hikaridai, Seika-cho, Souraku-gun, Kyoto 619-0237, Japan; [email protected] (B.L.); [email protected] (H.R.L.); [email protected] (K.Y.); [email protected] (Y.Y.); [email protected] (H.K.); [email protected] (S.-i.N.) 2 Steel Research Laboratry, JFE Steel Corporation, 1 Kokan-cho, Fukuyama 721-8510, Japan; [email protected] (N.S.); [email protected] (Y.M.) 3 Environmental Science and Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan * Correspondence: [email protected]; Tel.: +81-774-95-5086 † Present address: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China. ‡ Present address: Energy Solution Business Unit, Administration Department, Osaka Gas Co., Ltd., 4-1-2 Hiranomachi, Chuo–ku, Osaka 541-0046, Japan. Abstract: We successfully demonstrated the effect of a membrane reactor for methanol synthesis to improve one-pass CO2 conversion. An Si-rich LTA membrane for dehydration from a methanol synthesis reaction field was synthesized by the seed-assisted hydrothermal synthesis method. The −6 −2 −1 −1 H2O permselective performance of the membrane showed 1.5 × 10 mol m s Pa as H2O permeance and around 2000 as selectivity of H O/MeOH at 473 K. -
Evaluating Hydrogen Production in Biogas Reforming in a Membrane Reactor
Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 32, No. 01, pp. 201 - 210, January - March, 2015 dx.doi.org/10.1590/0104-6632.20150321s00002820 EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR F. S. A. Silva*, M. Benachour and C. A. M. Abreu Department of Chemical Engineering, Federal University of Pernambuco, CEP: 50740-520, Recife - PE, Brazil. Phone: + (55) (81) 2126-8901 E-mail: [email protected] (Submitted: July 1, 2013 ; Revised: February 25, 2014 ; Accepted: April 29, 2014) Abstract - Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85) using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel 5 catalyst (Ni 3.31% weight)/γ-Al2O3) at 773 K, 823 K, and 873 K and 1.01×10 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions. Keywords: Membrane reactor; Biogas; Methane; Syngas; Hydrogen. INTRODUCTION reforming (Kolbitsch et al., 2008; Lau et al., 2011). Biogas is produced from organic household waste, The increasing availability of methane has gener- industrial waste, and animal dung. -
Photocatalytic Membrane Reactors (Pmrs) in Water Treatment: Configurations and Influencing Factors
catalysts Review Photocatalytic Membrane Reactors (PMRs) in Water Treatment: Configurations and Influencing Factors Xiang Zheng 1, Zhi-Peng Shen 1, Lei Shi 1, Rong Cheng 1,* ID and Dong-Hai Yuan 2,* 1 School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China; [email protected] (X.Z.); [email protected] (Z.-P.S.); [email protected] (L.S.) 2 Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China * Correspondence: [email protected] (R.C.); [email protected] (D.-H.Y.); Tel.: +86-10-8250-2065 (R.C.) Received: 7 June 2017; Accepted: 17 July 2017; Published: 25 July 2017 Abstract: The lack of access to clean water remains a severe issue all over the world. Coupling photocatalysis with the membrane separation process, which is known as a photocatalytic membrane reactor (PMR), is promising for water treatment. PMR has developed rapidly during the last few years, and this paper presents an overview of the progress in the configuration and operational parameters of PMRs. Two main configurations of PMRs (PMRs with immobilized photocatalyst; PMRs with suspended photocatalyst) are comprehensively described and characterized. Various influencing factors on the performance of PMRs, including photocatalyst, light source, water quality, aeration and membrane, are detailed. Moreover, a discussion on the current problems and development prospects of PMRs for practical application are presented. Keywords: heterogeneous photocatalysis; membrane process; photocatalytic membrane reactor (PMR); configuration; influencing factor 1. Introduction With the fast expansion of industrialization and population growth, in addition to increasing water pollution, shortage of clean water sources has turned into a severe problem all over the world. -
Potassium Hydrogen Difluoride Product Information Cas № 7789-29
POTASSIUM HYDROGEN DIFLUORIDE PRODUCT INFORMATION CAS № 7789-29 POTASSIUM HYDROGEN DIFLUORIDE A TOXIC SUBSTANCE. Fire- and explosion-safe. Hygroscopic. Please refer to manufacturer’s SDS for further information POTASSIUM HYDROGEN DIFLUORIDE CAS № 7789-29-9 APPLICATIONS: PACKAGING: NUCLEAR INDUSTRY Polyethylene bags AIRCRAFT ENGINES inserted in convolute drums. FLUORINE CHEMISTRY Net weight 35 Kg. FERROUS AND NON- FERROUS METALLURGY Guaranteed shelf-life GLASS INDUSTRY 3 years following the date of manufacture provided that the storage Technology: reaction of an excess of concentrated hydrofluoric acid with conditions are met. concemtrated solution of potassium hydroxide KOH + 2 HF 2 KHF2 + CO2 ELEMENT Standard COMPONENT Standard as per (GOST 10067-80) TU 95-183-90 LU Mass fraction of potassium bifluoride (KF•HF), % 98-102 Mass fraction of hydrogen fluoride, %, within 25.0-26.0 the range of Mass fraction of clorides (Cl), %, max. 0,005 Mass fraction of silicon (Si), %, max. 0.1 Mass fraction of sulfates (SO4), %, max. 0,01 Mass fraction of sulfates (SO4), %, max. 0.1 Mass fraction of iron (Fe), %, max. 0,001 Mass fraction of iron (Fe), %, max. 0.10 Mass fraction of silicon (Si), %, max. 0,01 Mass fraction of insoluble sediment, %, max. 0.5 Mass fraction of lead, copper and manganese 0,001 (Pb+Cu+Mn), %, max. Appearance: white or grey powder. Lumps of various forms and sizes in the powder are acceptable. Manufactured in accordance with GOST 10067-80 “Potassium Hydrogen Difluoride” or TU 95-183-90 LU Production capacity: up to 180 tpa AECC is a ROSATOM Fuel Company «TVEL» Enterprise The plant is deemed to be one of the most state-of-the-art hi-tech companies of Russia’s nuclear industry with 60-year experience in manufacturing hi-quality products, and it is continuously expanding its presence on the domestic and international markets. -
XCEL NF Flux, 09-NF-00
JOHNSON MANUFACTURING COMPANY Safety Data Sheet To comply with 29CFR 1910.1200 OSHA's Hazard Communication Standard XCEL NF Flux, 09-NF-00 1. PRODUCT AND COMPANY INFORMATION Johnson Manufacturing Company Emergency Telephone 1-(563)-289-5123 114 Lost Grove Road CHEMTREC AFTER HOURS 1-(800)-424-9300 Princeton IA 52768 Revised 1/1/2021 by JMC Product Safety 2. HAZARD IDENTIFICATION GHS Classification: Acute Tox. 3 Chronic tox 3 Skin corr 3 Eye corr 3 GHS Label Elements: POTASSIUM BIFLUORIDE & BORIC ACID DANGER H Codes: H301, H314, H331, H360 Toxic if swallowed Toxic if inhaled Causes severe skin burns & eye damage May damage fertility or the unborn child P Codes: P264, 270, 201, 202, 281, 308+313, 280, 301+312, 330, 501, 271, 311, $03+233, 302, 352, 308+313, 363, 304+340, 321, 405, Do not breath dust/mist/vapors/fumes/spray. Do not get in eyes, on skin, or on clothing. Use in a well ventilated area. Wear protective gloves/protective clothing/eye protection/face protection. In case of inadequate ventilation use respiratory protection. Do not eat, drink or smoke when using this product. IF SWALLOWED: Rinse mouth. DO NOT induce vomiting. Immediately call a POISON CENTER/Doctor. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Wash with soap & water. If skin irritation occurs, get medical advise/attention. IF INHALED: Remove victim to to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER/Doctor. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. -
Dissertation
DISSERTATION Titel Synthesis and Application of Fluorinated Carbohydrates and other Bioactive Compounds angestrebter akademischer Titel Doktorin der Naturwissenschaften (Dr. rer. nat.) Verfasserin: DI Michaela Braitsch Matrikelnummer: 9726189 Dissertationsgebiet Chemie Betreuer: Univ. Prof. Dr. Walther Schmid Wien im Oktober 2009 für Nicolas 7. 12. 1989 – 21. 2. 2008 Erfolgsrezept Ich will das Geheimnis verraten, dass mich zum Ziel geführt hat. Meine Stärke liegt einzig und allein in meiner Beharrlichkeit. LOUIS PASTEUR DANKSAGUNG Die vorliegende Arbeit entstand im Zeitraum von Feburar 2005 bis Oktober 2009 am Institut für Organische Chemie der Universität Wien. An dieser Stelle möchte ich mich bei allen, die zum Entstehen und Gelingen dieser Arbeit beigetragen haben, recht herzlich bedanken: Meinem Betreuer Prof. Walther Schmid für die interessante Themenstellung, sowie seine Hilfe und Unterstützung über die gesamte Zeit. Meinen Arbeitskollegen Michael Fischer, Stefan Hader, Ralph Hollaus, Christoph Lentsch, Roman Lichtenecker, Michael Nagl, Norberth Neuwirth, ChrisTina Nowikow, Christoph Schmölzer, Helga Wolf für die freundschaftliche Zusammenarbeit und das kollegiale Arbeitsklima. Den fleißigen Bienchen Gerlinde Benesch, Martina Drescher und Jale Özgur fürs Organisieren des Laborhaushaltes. Der NMR‐Abteilung Hanspeter Kählig, Lothar Brecker und Susanne Felsinger fürs Messen von zahlreichen Spektren. Der HPLC‐ und MS‐Abteilung Sabine Schneider und Peter Unteregger. Meiner Familie, im speziellen meinen Eltern und meiner Schwester Cornelia