Great Plains Earless Lizard

Total Page:16

File Type:pdf, Size:1020Kb

Great Plains Earless Lizard Great Plains Earless Lizard - Holbrookia maculata maculata Abundance: Unknown Status: NSSU NatureServe: G5TNR S2 Population Status: Restricted distribution, population numbers and threats are unknown. Limiting Factor: Habitat: limited habitat. Species found in southeastern Wyoming in sandy areas. Degree of habitat loss is unknown. Comment: None. Introduction The Great Plains Earless Lizard may be found in Goshen and Laramie Counties. This lizard is commonly active from April to October. However, juveniles and hatchlings are more active in the fall than adults (Hammerson 1999). When temperatures exceed preferred conditions, this species will retreat into vegetation or burrows. Breeding begins in April. Adult females will deposit 3-6 eggs in June or July. Large females can lay 2 clutches per year (Hammerson 1999). Hatchlings commonly begin to appear in August. The Great Plains Earless Lizard primarily feeds upon insects and other small invertebrates. Habitat In Wyoming, the Great Plains Earless Lizard inhabits grassland communities in the plains zone (Baxter and Stone 1985). Within these habitats, this lizard prefers yucca and exposed sandy habitats. This species may also be found along streams, prairie-dog towns, and other flat open expanses of ground (Hammerson 1999). Problems h Lack of basic information on the species presence, distribution, and ecology in Wyoming. h This species may have limited habitat in Wyoming and degree of this habitat loss is unknown. Conservation Actions h Develop management recommendations based on resulting data. h Survey and monitor population distribution, status, and habitat assocations. Monitoring/Research Conduct baseline surveys to gain better understanding of species distribution within the state. Recent Developments Baseline reptile and amphibian surveys were conducted in southeast Wyoming in 2011 and 2012 (Snoberger and Walker 2013, 2014). Several Great Plains Earless Lizards were documented during these surveys and detailed habitat data was collected at these locations (Snoberger and Walker 2013, 2014). Reptiles have received increased attention within Wyoming. Incidental observations are encouraged to be reported to the herpetology program. References Hammerson, G.A. 1999. Amphibians and Reptiles in Colorado: A Colorado Field Guide, Second Edition. University Press of Colorado and Colorado Division of Wildlife. 484 pp. Baxter, G.T. and M.D. Stone. 1985. Amphibians and Reptiles of Wyoming. Second Edition. Wyoming Game and Fish Department, Cheyenne. 137pp. Snoberger, C.E. and Z.J. Walker. 2013. Southeast Wyoming reptile and amphibian surveys 2011-2012. Wyoming Game and Fish Department Administrative Report. Cheyenne, Wyoming. Snoberger, C.E. and Z.J. Walker. 2014. Reptile and amphibian habitat associations in southeast Wyoming. Wyoming Game and Fish Department Administrative Report. Cheyenne, Wyoming. 2017.
Recommended publications
  • Spot-Tailed Earless Lizard Update: January 2017
    Spot-Tailed Earless Lizard Update: January 2017 Travis LaDuc Roel Lopez UT Austin Texas A&M Brad Wolaver Wade Ryberg UT Austin Texas A&M Mike Duran Toby Hibbitts The Nature Conservancy Texas A&M Ben Labay Matt Fujita UT Austin UT Arlington Jon Paul Pierre Corey Roelke UT Austin UT Arlington Ian Wright UT Austin Gautam Surya UT Austin Cody Shank UT Austin Photo by Mike Duran Thursday, January 26, 2017 Goals and Agenda Update of scien7fic progress since Sept. 2016 Discussion of ongoing research Findings So Far 1. Field data update for 2016 2. Insect survey update 3. Gene7cs status 4. Habitat modeling 1. Status 2. Road bias 3. Ground-truthing + possible addi7onal research… Study Area 2015 Surveys • April 22 – Sept 24 • 274 surveys in 57 counes • 18 coun7es with posive H. lacerata surveys • 174 H. lacerata observed 2016 Surveys • April 6 – Sept 28 • 171 surveys in 28 counes • 53 surveys in 7 coun7es with posive H. lacerata surveys • 170 H. lacerata observed • 91 animals marked; 2 recaptures 2016 Surveys • 171 surveys (April 6 – August 26) • 52 walking; 18 lizards seen (0.04 lizards/hr) • 119 driving; 152 lizards seen (0.30 lizards/hr) • 28 counes across historical range • Areas of 2015 sigh7ngs • Historical range where no 2015 sigh7ngs • 170 Holbrookia lacerata sighted • No new coun7es with H. lacerata from 2015 (save Suon Co.) • Juveniles observed in every unit 2016 Surveys • Mark-recapture: • 91 individuals iden7fied (all photographed, 61 toe-clipped) • Two recaptures • Combinaon road and walking surveys Diet / Insect Surveys Diet data obtained
    [Show full text]
  • An Inventory of a Subset of Historically Known Populations of The
    Section 6 (Texas Traditional) Report Review Form emailed to FWS S6 coordinator (mm/dd/yyyy): 9/11/2017 TPWD signature date on report: 8/31/2017 Project Title: To provide more evidence for the presence/absence of the southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis; STEL) in southern Texas. Final or Interim Report? Final Grant #: TX-E-165-R Reviewer Station: Austin ESFO Lead station concurs with the following comments: NA (reviewer from lead station) Interim Report (check one): Final Report (check one): Acceptable (no comments) Acceptable (no comments) Needs revision prior to final report (see Needs revision (see comments below) comments below) Incomplete (see comments below) Incomplete (see comments below) Comments: FINAL PERFORMANCE REPORT As Required by THE ENDANGERED SPECIES PROGRAM TEXAS Grant No. TX E-165-R (F14AP00824) Endangered and Threatened Species Conservation An Inventory of a Subset of Historically Known Populations of the Spot-tailed Earless Lizard (Holbrookia lacerata) Prepared by: Mike Duran Carter Smith Executive Director Clayton Wolf Director, Wildlife 31 August 2017 Final Report TPWD Contract #458178—31 August 2017 FINAL REPORT STATE: ____Texas_______________ GRANT NUMBER: ___ TX E-165-R-1__ GRANT TITLE: An Inventory of a Subset of Historically Known Populations of the Spot-tailed Earless Lizard (Holbrookia lacerata). REPORTING PERIOD: ____1 September 2014 to 31 August 2017 OBJECTIVE(S). To provide more evidence for the presence/absence of the southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis; STEL) in southern Texas. Segment Objectives: Task 1. March 1 – June 30, 2015 – Spring surveys. Task 2. September 15 – October 31, 2015 – Fall surveys.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • News Release Albuquerque, NM 87103 505/248-6911 505/248-6915 (Fax)
    U.S. Fish and Wildlife Service Public Affairs Office PO Box 1306 News Release Albuquerque, NM 87103 505/248-6911 505/248-6915 (Fax) Southwest Region (Arizona ● New Mexico ● Oklahoma ●Texas) www.fws.gov/southwest/ For Release: May 23, 2011 Contacts: Alisa Shull, (512) 490-0057 Lesli Gray, (972) 569-8588 THE SPOT-TAILED EARLESS LIZARD MAY WARRANT PROTECTION UNDER THE ENDANGERED SPECIES ACT The spot-tailed earless lizard (Holbrookia lacerata) may warrant federal protection as a threatened or endangered species, the U.S. Fish and Wildlife Service (Service) announced today, following an initial review of a petition seeking to protect the spot-tailed earless lizard under the Endangered Species Act (ESA). The Service finds that the petition presents substantial scientific or commercial information indicating that listing the spot-tailed earless lizard may be warranted. This finding is based on potential threats posed by predation from fire ants. Fire ants are known to adversely impact native fauna in general, including reptiles. Fire ants occur across a large part of the spot-tailed earless lizard’s range and may pose a threat through direct predation on adults, hatchlings and eggs. The spot-tailed earless lizard is divided into two distinct subspecies, based on morphological (physical) differences and geographic separation. The northern spot-tailed earless lizard subspecies (Holbrookia lacerata lacerata) historically occurred throughout the Edwards Plateau in Texas. The southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis) historically occurred through south Texas into parts of Mexico’s States of Coahuila, Nuevo Leon, and Tamaulipas. The present population of the spot-tailed earless lizard’s population status is largely unknown.
    [Show full text]
  • Sprint Performance of Phrynosomatid Lizards, Measured on a High-Speed Treadmill, Correlates with Hindlimb Length
    J. Zool., Lond. (1999) 248, 255±265 # 1999 The Zoological Society of London Printed in the United Kingdom Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length Kevin E. Bonine and Theodore Garland, Jr Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706-1381, U.S.A. (Accepted 19 September 1998) Abstract We measured sprint performance of phrynosomatid lizards and selected outgroups (n = 27 species). Maximal sprint running speeds were obtained with a new measurement technique, a high-speed treadmill (H.S.T.). Animals were measured at their approximate ®eld-active body temperatures once on both of 2 consecutive days. Within species, individual variation in speed measurements was consistent between trial days and repeatabilities were similar to values reported previously for photocell-timed racetrack measure- ments. Multiple regression with phylogenetically independent contrasts indicates that interspeci®c variation in maximal speed is positively correlated with hindlimb span, but not signi®cantly related to either body mass or body temperature. Among the three phrynosomatid subclades, sand lizards (Uma, Callisaurus, Cophosaurus, Holbrookia) have the highest sprint speeds and longest hindlimbs, horned lizards (Phryno- soma) exhibit the lowest speeds and shortest limbs, and the Sceloporus group (including Uta and Urosaurus) is intermediate in both speed and hindlimb span. Key words: comparative method, lizard, locomotion, morphometrics, phrynosomatidae, sprint speed INTRODUCTION Fig. 1; Montanucci, 1987; de Queiroz, 1992; Wiens & Reeder, 1997) that exhibit large variation in locomotor Evolutionary physiologists and functional morpholo- morphology and performance, behaviour, and ecology gists emphasize the importance of direct measurements (Stebbins, 1985; Conant & Collins, 1991; Garland, 1994; of whole-animal performance (Arnold, 1983; Garland & Miles, 1994a).
    [Show full text]
  • Amphibians and Reptiles of the State of Coahuila, Mexico, with Comparison with Adjoining States
    A peer-reviewed open-access journal ZooKeys 593: 117–137Amphibians (2016) and reptiles of the state of Coahuila, Mexico, with comparison... 117 doi: 10.3897/zookeys.593.8484 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states Julio A. Lemos-Espinal1, Geoffrey R. Smith2 1 Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM. Avenida los Barrios 1, Los Reyes Iztacala, Tlalnepantla, edo. de México, Mexico – 54090 2 Department of Biology, Denison University, Granville, OH, USA 43023 Corresponding author: Julio A. Lemos-Espinal ([email protected]) Academic editor: A. Herrel | Received 15 March 2016 | Accepted 25 April 2016 | Published 26 May 2016 http://zoobank.org/F70B9F37-0742-486F-9B87-F9E64F993E1E Citation: Lemos-Espinal JA, Smith GR (2016) Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining statese. ZooKeys 593: 117–137. doi: 10.3897/zookeys.593.8484 Abstract We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list com- prises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction.
    [Show full text]
  • Herpetofauna in Riparian Habitats Along the Colorado River in Grand Canyon 1
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Herpetofauna in Riparian Habitats Along the Colorado River in Grand Canyon 1 2 Peter L. Warren and Cecil R. Schwalbe Abstract.--Lizard population densities and species composition were sampled in riparian and non-riparian habitats along the Colorado River. The highest densities were found in shoreline habitats, moderate densities in riparian habitats and lowest densities in non-riparian habitats. Rapidly fluctuating river flow levels may have a deleterious effect on lizard populations by trapping populations on alluvial bars and inundating nest sites. For years riparian habitats have been recognized as making a contribution to the densities in upland vegetation may actually be structural diversity and species richness of higher. natural communities that exceeds the relative areal extent of those habitats. The availability One group that has received relatively little of additional water permits growth of plant attention with respect to the importance of species and growth forms that are lacking in the riparian habitats to their density and diversity surrounding upland vegetation. Their occurrence is the reptiles. It is common to find comments in in turn provides food and habitat resources the literature about the higher density of some without which some animal populations may not species in riparian sites (Lowe and Johnson, 1977; otherwise persist in the upland community. To Vitt and Ohmart, 1977; Tinkle, 1982) and some most biologists these patterns are obvious, but in studies of lizard demography have been performed many cases they are surprisingly poorly in riparian areas (Tinkle, 1976; Tinkle and documented.
    [Show full text]
  • Natural History of Sceloporus Goldmani (Squamata: Phrynosomatidae) in Its Southern Distribution
    Herpetology Notes, volume 10: 161-167 (2017) (published online on 19 April 2017) Natural History of Sceloporus goldmani (Squamata: Phrynosomatidae) in its southern distribution Rubén Alonso Carbajal-Márquez1, 3,* and Gustavo Ernesto Quintero-Díaz2, 3 Introduction. frequency of appearance (FA) was calculated as the total frequency of a component, divided by the total number The bunchgrass lizard Sceloporus goldmani Smith, of scats. To consider the importance of all species, the 1937, belonging to the S. scalaris group, was believed percentage of occurrence (PA) was also calculated as the to be extinct due to habitat destruction, and surveys total frequency of a component, divided by the sum of with unsuccessful results in the historical localities in all frequencies (Aranda et al., 1995). The activities were the states of Coahuila, Nuevo León and San Luis Potosí, carried out under authorization of scientific collection for this reason have not been included in the most recent through document number SGPA / DGVS / 05143/14 analyses (Smith and Hall, 1974; Thomas and Dixon, and SGPA / DGVS / 030709/16. 1976; Sinervo et al., 2010; Bryson et al., 2012; Leaché et al., 2013; Grummer et al., 2014; Grummer and Bryson, Results. 2014). Recently new populations of this species were found in the states of Aguascalientes, Jalisco, San Luis Morphology. The specimens of Sceloporus goldmani Potosí and Zacatecas (Carbajal-Márquez and Quintero- reported here agree with the characters of Smith’s (1937) Díaz, 2016). Here we provide a brief description of original description. The specimens (N = 21; 10 males, these new specimens, as well as observations on their 11 females) measured on average 44.08 mm ± 11.15 mm natural history, which until now were poorly known.
    [Show full text]
  • I Exploring the Relationship Between Paleobiogeography, Deep-Diving
    Exploring the Relationship between Paleobiogeography, Deep-Diving Behavior, and Size Variation of the Parietal Eye in Mosasaurs By Andrew M. Connolly Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Arts. __________________________________ Stephen T. Hasiotis, Chairperson __________________________________ Rafe M. Brown __________________________________ Jennifer A. Roberts Date Defended: March 25, 2016 i The Thesis Committee for Andrew M. Connolly certifies that this is the approved version of the following thesis: Exploring the Relationship between Paleobiogeography, Deep-Diving Behavior, and Size Variation of the Parietal Eye in Mosasaurs __________________________________ Stephen T. Hasiotis, Chairperson Date Approved: March 25, 2016 ii ABSTRACT Andrew M. Connolly, M.S. Department of Geology, March 2015 University of Kansas The parietal eye (PE) in modern squamates (Reptilia) plays a major role in regulating body temperature, maintaining circadian rhythms, and orientation via the solar axis. This study is the first to determine the role, if any, of the PE in an extinct group of lizards. We analyzed variation in relative size of the parietal foramen (PF) of five mosasaur genera to explore the relationship between PF size and paleolatitudinal distribution. We also surveyed the same specimens for the presence of avascular necrosis—a result of deep- diving behavior—in the vertebrae. Plioplatecarpus had the largest PF followed by Platecarpus, Tylosaurus, Mosasaurus, and Clidastes. A weak relationship exists between paleolatitudinal distribution and PF size among genera, as Plioplatecarpus had the highest paleolatitudinal distribution (~78°N) and the largest PF among genera.
    [Show full text]
  • Comparative Study. Primarily Those of Stejneger (1890)
    59.81, 1H(7) Article XII.-A REVIEW OF THE NORTH AMERICAN GENUS OF LIZARDS HOLBROOKIA BY KARL PATTERSON SCHMIDT Plates LVIII to LX The taxonomy of the North American lizards of the genusHolbrookia Girard offers one of the most interesting and difficult problems in North American herpetology. The American Museum of Natural History is in possession of extensive series of the species of Holbrookia acquired pri- marily through the interest and efforts of Miss Mary C. Dickerson, former Curator of the Department of Herpetology. These have been accumu- lated by purchase from San Antonio, Texas; by purchase from Mr. R. D. Camp of collections from Brownsville, Texas, and the Huachuca Moun- tains, Arizona; from department expeditions of Ruthven (1906) anA Dickerson (1912); and by gift from Mr. Charles Lewis Camp of specimens collected in northern and central Arizona while connected with an ex- pedition of the Museum of Paleontology of the University of California. In addition to the American Museum material, the United States National Museum, through the kindness of Dr. Leonhard Stejneger, has loaned extensive collections of Holbrookia from Mexico and Arizona for comparative study. The identification of this material has necessitated an examination of the genus, with considerable changes in the current views, which are primarily those of Stejneger (1890), Cope (1900), and Stejneger and Barbour (1917). Advance diagnoses of two new species and a new sub- species of Holbrookia, and a key to the species of the genus as understood by me, have already been published in a preliminary paper (1921, Amer. Mus. Nov., No. 22).
    [Show full text]
  • Amphibians and Reptiles Of
    U.S. Fish and Wildlife Service Amphibians and Reptiles of Aransas National Wildlife Refuge Abundance Common Name Abundance Common Name Abundance C Common; suitable habitat is available, Scientific Name Scientific Name should not be missed during appropriate season. Toads and Frogs Texas Tortoise R Couch’s Spadefoot C Gopherus berlandieri U Uncommon; present in moderate Scaphiopus couchi Guadalupe Spiny Soft-shelled Turtle R numbers (often due to low availability Hurter’s Spadefoot C Trionyx spiniferus guadalupensis of suitable habitat); not seen every Scaphiopus hurteri Loggerhead O visit during season Blanchard’s Cricket Frog U Caretta caretta Acris crepitans blanchardi Atlantic Green Turtle O O Occasional; present, observed only Green Tree Frog C Chelonia mydas mydas a few times per season; also includes Hyla cinerea Atlantic Hawksbill O those species which do not occur year, Squirrel Tree Frog U Eretmochelys imbricata imbricata while in some years may be Hyla squirella Atlantic Ridley(Kemp’s Ridley) O fairly common. Spotted Chorus Frog U Lepidocheyls kempi Pseudacris clarki Leatherback R R Rare; observed only every 1 to 5 Strecker’s Chorus Frog U Dermochelys coriacea years; records for species at Aransas Pseudacris streckeri are sporadic and few. Texas Toad R Lizards Bufo speciosus Mediterranean Gecko C Introduction Gulf Coast Toad C Hemidactylus turcicus turcicus Amphibians have moist, glandular skins, Bufo valliceps valliceps Keeled Earless Lizard R and their toes are devoid of claws. Their Bullfrog C Holbrookia propinqua propinqua young pass through a larval, usually Rana catesbeiana Texas Horned Lizard R aquatic, stage before they metamorphose Southern Leopard Frog C Phrynosoma cornutum into the adult form.
    [Show full text]
  • A Taxonomic Revision of the Phrynosoma Douglasii Species Complex (Squamata: Phrynosomatidae)
    Zootaxa 4015 (1): 001–177 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4015.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:6C577904-2BCC-4F84-80FB-E0F0EEDF654B ZOOTAXA 4015 A taxonomic revision of the Phrynosoma douglasii species complex (Squamata: Phrynosomatidae) RICHARD R. MONTANUCCI1 1Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by A. Bauer: 16 Jun. 2015; published: 11 Sept. 2015 RICHARD R. MONTANUCCI A taxonomic revision of the Phrynosoma douglasii species complex (Squamata: Phrynosomatidae) ( Zootaxa 4015) 177 pp.; 30 cm. 11 Sept. 2015 ISBN 978-1-77557-789-8 (paperback) ISBN 978-1-77557-790-4 (Online edition) FIRST PUBLISHED IN 2015 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2015 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4015 (1) © 2015 Magnolia Press MONTANUCCI Table of contents Abstract . 3 Introduction . 3 Materials and methods . 5 Results and discussion .
    [Show full text]