A Framework to Implement Openid Connect Protocol for Federated Identity Management in Enterprises

Total Page:16

File Type:pdf, Size:1020Kb

A Framework to Implement Openid Connect Protocol for Federated Identity Management in Enterprises A Framework To Implement OpenID Connect Protocol For Federated Identity Management In Enterprises Akshay Rasiwasia Information Security, master's level (120 credits) 2017 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Luleå University of Technology | Master Thesis Abstract Federated Identity Management (FIM) and Single-Sign-On (SSO) concepts improve both productivity and security for organizations by assigning the responsibility of user data management and authentication to one single central entity called identity provider, and consequently, the users have to maintain only one set of credential to access resources at multiple service provider. The implementation of any FIM and SSO protocol is complex due to the involvement of multiple organizations, sensitive user data, and myriad security issues. There are many instances of faulty implementations that compromised on security for ease of implementation due to lack of proper guidance. OpenID Connect (OIDC) is the latest protocol which is an open standard, lightweight and platform independent to implement Federated Identity Management; it offers several advantages over the legacy protocols and is expected to have widespread use. An implementation framework that addresses all the important aspects of the FIM lifecycle is required to ensure the proper application of the OIDC protocol at the enterprise level. In this research work, an implementation framework was designed for OIDC protocol by incorporating all the important requirements from a managerial, technical and security perspective of an enterprise level federated identity management. The research work closely follows the design science research process, and the framework was evaluated for its completeness, efficiency, and usability. Akshay Rasiwasia i Luleå University of Technology | Master Thesis Contents 1. Introduction .......................................................................................................................................... 1 1.1. Background ................................................................................................................................... 1 1.2. Problem Description ..................................................................................................................... 3 1.3. Knowledge Gap ............................................................................................................................. 3 1.4. Research Goal ............................................................................................................................... 4 1.5. Research Outcome ........................................................................................................................ 4 1.6. Structure of the Thesis .................................................................................................................. 4 1.7. Summary ....................................................................................................................................... 4 2. Literature Review .................................................................................................................................. 7 2.1. Literature Review Process ............................................................................................................. 7 2.2. Summary ....................................................................................................................................... 9 3. Foundation Concepts .......................................................................................................................... 11 3.1. Digital Identity Management ...................................................................................................... 11 3.2. Authentication ............................................................................................................................ 13 3.3. Authorization .............................................................................................................................. 13 3.4. Federated Identity Management (FIM) ...................................................................................... 13 3.5. Single Sign-On (SSO) .................................................................................................................... 15 3.6. Summary ..................................................................................................................................... 16 4. Key Issues in Identity Management .................................................................................................... 17 4.1. Identity Management & Privacy ................................................................................................. 17 4.2. Attribute Management ............................................................................................................... 18 4.3. Cloud and Identity Management ................................................................................................ 19 4.4. Security Attacks on Identity Management ................................................................................. 20 4.5. Logging out in FIM ....................................................................................................................... 22 4.6. Summary ..................................................................................................................................... 22 5. Existing Protocols and Solution ........................................................................................................... 25 5.1. Kerberos ...................................................................................................................................... 25 5.2. Security Assertion Markup Language (SAML) ............................................................................. 26 5.3. Shibboleth ................................................................................................................................... 28 5.4. OpenID ........................................................................................................................................ 29 5.5. OAuth .......................................................................................................................................... 29 5.6. Summary ..................................................................................................................................... 30 Akshay Rasiwasia ii Luleå University of Technology | Master Thesis 6. OpenID Connect for Enterprise FIM.................................................................................................... 31 6.1. OpenID Connect .......................................................................................................................... 31 6.2. Key features of OpenId Connect ................................................................................................. 31 6.3. OIDC Technical Specifications ..................................................................................................... 32 6.4. OIDC vs. SAML ............................................................................................................................. 34 6.5. Limitations of OIDC ..................................................................................................................... 35 6.6. Summary ..................................................................................................................................... 35 7. Methodology ....................................................................................................................................... 37 7.1. Research Method ........................................................................................................................ 37 7.2. Design Science Approach ............................................................................................................ 37 7.3. Research Method Realization ..................................................................................................... 38 7.4. Summary ..................................................................................................................................... 38 8. Requirements ...................................................................................................................................... 39 8.1. Choice of Method ....................................................................................................................... 39 8.2. Initial Requirements .................................................................................................................... 39 8.3. Requirement Processing ............................................................................................................. 41 8.4. Final requirements ...................................................................................................................... 42 8.5. Summary ..................................................................................................................................... 44 9. Design Implementation Framework for OIDC .................................................................................... 45 9.1. Choice of Method ....................................................................................................................... 45 9.2. Development Process ................................................................................................................
Recommended publications
  • Dod Enterpriseidentity, Credential, and Access Management (ICAM)
    UNCLASSIFIED DoD Enterprise Identity, Credential, and Access Management (ICAM) Reference Design Version 1.0 June 2020 Prepared by Department of Defense, Office of the Chief Information Officer (DoD CIO) DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government agencies and their contractors (Administrative or Operational Use). Other requests for this document shall be referred to the DCIO-CS. UNCLASSIFIED UNCLASSIFIED Document Approvals Prepared By: N. Thomas Lam IE/Architecture and Engineering Department of Defense, Office of the Chief Information Officer (DoD CIO) Thomas J Clancy, COL US Army CS/Architecture and Capability Oversight, DoD ICAM Lead Department of Defense, Office of the Chief Information Officer (DoD CIO) Approved By: Peter T. Ranks Deputy Chief Information Officer for Information Enterprise (DCIO IE) Department of Defense, Office of the Chief Information Officer (DoD CIO) John (Jack) W. Wilmer III Deputy Chief Information Officer for Cyber Security (DCIO CS) Department of Defense, Office of the Chief Information Officer (DoD CIO) ii UNCLASSIFIED UNCLASSIFIED Version History Version Date Approved By Summary of Changes 1.0 TBD TBD Renames and replaces the IdAM Portfolio Description dated August 2015 and the IdAM Reference Architecture dated April 2014. (Existing IdAM SDs and TADs will remain valid until updated versions are established.) Updates name from Identity and Access Management (IdAM) to Identity, Credential, and Access Management (ICAM) to align with Federal government terminology Removes and cancels
    [Show full text]
  • Supporting Secure Services on Dynamic Aggregation of Heterogeneous Networks
    Supporting Secure Services on Dynamic Aggregation of Heterogeneous Networks SUBMITTED TO UNIVERSITY OF SOUTHERN QUEENSLAND IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY David Tai Wai Lai July 2010 Certification of Dissertation I certify that the ideas, experimental work, results, analysis, software, and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowl- edged. I also certify that the work is original and has not been previously submitted for any other award or degree. Signature of Candidate Date Endorsement Signature of Supervisor Date ii I certify that I have read this dissertation and that, in my opin- ion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dr. Zhongwei Zhang (University of Southern Queensland) I certify that I have read this dissertation and that, in my opin- ion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dr. Shan Suthaharan (University of Northern Carolina at Greensboro) iii iv Abstract Sharing of services over IP networks prove to be an effective approach to satisfy the demand of network users when their home network cannot offer the required services. Authenti- cation, authorization and revocation are some of the important challenges in the service sharing services over IP networks. This research address the problem associated with the authentication because it becomes more and more complicated due to the incompatible au- thentication schemes used by individual autonomous networks, privacy of authentication information, and the overhead in establishing the sharing.
    [Show full text]
  • Extensible Authentication Protocol (EAP) and IEEE 802.1X: Tutorial and Empirical Experience
    CHEN LAYOUT 11/17/05 11:57 AM Page 52 Extensible Authentication Protocol (EAP) and IEEE 802.1x: Tutorial and Empirical Experience JYH-CHENG CHEN AND YU-PING WANG, NATIONAL TSING HUA UNIVERSITY Abstract oped WIRE1x to support various versions of MS Windows. As This article presents the technical details of the Extensible the name suggests, WIRE1x is an open-source implementa- Authentication Protocol (EAP) and IEEE 802.1x by using tion of IEEE 802.1x client (supplicant)1 developed by the WIRE1x, an open-source implementation of IEEE 802.1x Wireless Internet Research & Engineering (WIRE) Laborato- client (supplicant) and various EAP-based authentication ry.2 Both source code and executable code of WIRE1x can be mechanisms. By using a real implementation, 802.1x and EAP downloaded freely from http://wire.cs.nthu.edu.tw/wire1x/. should be easily understood. Essentially, 802.1x provides a framework for port-based access control. It can work with various authentication mecha- nisms to authenticate and authorize users. The Extensible Introduction Authentication Protocol (EAP, IETF RFC 2284) is a protocol Wireless local area networks (WLANs) have become increas- commonly used in 802.1x to authenticate users. Currently, ingly more prevalent in recent years. The IEEE 802.11 stan- WIRE1x provides various authentication mechanisms, includ- dard is one of the most widely adopted standards for ing EAP Message Digest 5 (EAP-MD5, IETF RFC 1321), broadband wireless Internet access. However, security consid- EAP Transport Layer Security (EAP-TLS, IETF RFC 2716), erations with regard to wireless environments are more com- EAP Tunneled TLS (EAP-TTLS) [5], and Protected Extensi- plicated than those in wired environments.
    [Show full text]
  • What Is an Identity Provider? Why Does My Company Need to Become One?
    WHITE PAPER WHAT IS AN IDENTITY PROVIDER? WHY DOES MY COMPANY NEED TO BECOME ONE? Tame Mobile and Cloud Security Risks: Become an IdP Executive Overview Enterprises face security threats from all directions. According to the Identity Theft Resource Center, there were 189 known breaches from January 1 of this year through the beginning of June. Those breaches exposed approximately 13.7 million records. Meanwhile, trends intended to benefit the enterprise, such as cloud computing and mobility, often introduce unintended risks. The weak link in our online economy is trust. If you boil that down further, much of the lack of trust stems from the inability to verify online identities. It is increasingly difficult to know whether people (or companies) on the Internet are who they say they are. To address today’s security risks and to embrace new technology trends such as cloud, mobility and SaaS, enterprises must rethink how they handled their employees’ identities. Fortunately, the industry has been moving towards federated Single Sign On (SSO) solutions, and has been standardizing building blocks like SAML and OpenID. Enterprises should build on these standards in order to become Identity Providers (IdP). By becoming an IdP, companies can better control, enforce and extend security standards to all on-premise and cloud-based applications in their organizations, as well as to mobile devices. This paper will discuss the reasons enterprises should become IdPs, what becoming an IdP involves, and why you should automate as much of this process as possible. Introduction: New Security Risks Undermine Online Business In August 2012, a hacker crafted a wickedly specific social engineering attack to target Wired writer Mat Honan.
    [Show full text]
  • Kerberos: an Authentication Service for Computer Networks by Clifford Neuman and Theodore Ts’O
    Kerberos: An Authentication Service for Computer Networks by Clifford Neuman and Theodore Ts’o Presented by: Smitha Sundareswaran Chi Tsong Su Introduction z Kerberos: An authentication protocol based on cryptography z Designed at MIT under project Athena z Variation of Needham Schroeder protocol - Difference: Kerberos assumes all systems on the network to be synchronized z Similar function as its mythological namesake: “guards” the access to network protocols Contribution z Defines ideas of authentication, Integrity, confidentiality and Authorization z Working of Kerberos z Limitations z Utilities z How to obtain and use Kerberos z Other methods to improve security Why Kerberos? z Foils threats due to eavesdropping z More convenient than password based authentication { Allows user to avoid “authentication by assertion” z Authentication based on cryptography: attacker can’t impersonate a valid user How Kerberos Works z Distributed authentication service using a series of encrypted messages {Password doesn’t pass through the network z Timestamps to reduce the number of messages needed for authentication z “Ticket granting Service” for subsequent authentication Kerberos Authentication and Encryption zAuthentication proves that a client is running on behalf of a particular user zUses encryption key for authentication {Encryption key = Password zEncryption implemented using DES {Checksum included in message checksum and encryption provide integrity & confidentiality The Kerberos Ticket z Initially, client and Server don’t share an encryption
    [Show full text]
  • City Research Online
    Li, F. (2015). Context-Aware Attribute-Based Techniques for Data Security and Access Control in Mobile Cloud Environment. (Unpublished Doctoral thesis, City University London) City Research Online Original citation: Li, F. (2015). Context-Aware Attribute-Based Techniques for Data Security and Access Control in Mobile Cloud Environment. (Unpublished Doctoral thesis, City University London) Permanent City Research Online URL: http://openaccess.city.ac.uk/11891/ Copyright & reuse City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages. Versions of research The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper. Enquiries If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at [email protected]. Context-Aware Attribute-Based Techniques for Data Security and Access Control in Mobile Cloud Environment A Thesis Submitted to City University London, School of Engineering and Mathematical Sciences In
    [Show full text]
  • Etsi Tr 133 995 V13.0.1 (2017-04)
    ETSI TR 133 995 V13.0.1 (2017-04) TECHNICAL REPORT Universal Mobile Telecommunications System (UMTS); LTE; Study on security aspects of integration of Single Sign-On (SSO) frameworks with 3GPP operator-controlled resources and mechanisms (3GPP TR 33.995 version 13.0.1 Release 13) 3GPP TR 33.995 version 13.0.1 Release 13 1 ETSI TR 133 995 V13.0.1 (2017-04) Reference RTR/TSGS-0333995vd01 Keywords LTE,SECURITY,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Beyond X.509: Token-Based Authentication and Authorization for HEP
    Beyond X.509: Token-based Authentication and Authorization for HEP Andrea Ceccanti, Marco Caberletti, Enrico Vianello, Francesco Giacomini INFN CNAF CHEP 2018 Sofia, July 12th 2018 The current WLCG AAI In operation since ~2003, and still working nicely: • X.509 trust fabric provided by IGTF (tells services which CAs are trusted) • X.509 certificates provided to users for authentication • Proxy certificates for Single Sign-On (SSO) and delegation • VOMS attribute certificates for attribute-based authorization (issued and Slide by Ákos Frohner signed by VO-scoped VOMS servers) Beyond X.509: Token-based Authentication & Authorization for HEP - CHEP 2018, Sofia 2 Current WLCG AAI: the weak points Usability • X.509 certificates are difficult to handle for users • VOMS does not work in browsers Inflexible authentication • Only one authentication mechanism supported: X.509 certificates • Hard to integrate identity federations Authorization tightly bound to authentication mechanism • VOMS attributes are inherently linked to an X.509 certificate subject Ad-hoc solution • We had to invent our own standard and develop ad-hoc libraries and central services to implement our own AAI Can we do better today? Beyond X.509: Token-based Authentication & Authorization for HEP - CHEP 2018, Sofia 3 A novel AAI for WLCG: main challenges Authentication Delegation • Flexible, able to accomodate • Provide the ability for services to various authentication mechanisms act on behalf of users - X.509, username & password, • Support for long-running EduGAIN, social logins
    [Show full text]
  • State of North Carolina Request for Proposal No
    STATE OF NORTH CAROLINA REQUEST FOR PROPOSAL NO. 41-100358-001 Department of Information Technology Offers will be publicly opened: April 29, 2020 at 2:00pm EST Issue Date: March 2, 2020 Refer ALL inquiries regarding this RFP to: Commodity Number: 920 Leroy Kodak] Description: Identity Access Management System [email protected]] Using Agency: Department of Information [919-754-6665] Technology Requisition No.: None OFFER The State solicits offers for Services and/or goods described in this solicitation. All offers and responses received shall be treated as Offers to contract. EXECUTION In compliance with this Request for Proposal, and subject to all the conditions herein, the undersigned offers and agrees to furnish any or all Services or goods upon which prices are offered, at the price(s) offered herein, within the time specified herein. By executing this offer, I certify that this offer is submitted competitively and without collusion. Failure to execute/sign offer prior to submittal shall render offer invalid. Late offers are not acceptable. OFFEROR: STREET ADDRESS: P.O. BOX: ZIP: CITY, STATE & ZIP: TELEPHONE NUMBER: TOLL FREE TEL. NO PRINT NAME & TITLE OF PERSON SIGNING: FAX NUMBER: AUTHORIZED SIGNATURE: DATE: E-MAIL: Offer valid for one hundred twenty (120) days from date of offer opening unless otherwise stated here: ____ days ACCEPTANCE OF OFFER If any or all parts of this offer are accepted, an authorized representative of the Department of Information Technology shall affix their signature hereto and any subsequent Request for Best and Final Offer, if issued. Acceptance shall create a contract having an order of precedence as follows: Best and Final Offers, if any, Special terms and conditions specific to this RFP, Specifications of the RFP, the Department of Information Technology Terms and Conditions, and the agreed portion of the awarded Vendor’s Offer.
    [Show full text]
  • Identity Management, Privacy, and Price Discrimination
    Identity Management Identity Management, Privacy, and Price Discrimination In economics, privacy is usually discussed in the context of consumer preferences and price discrimination. But what forms of personal data privacy are compatible with merchants’ interests in knowing more about their consumers, and how can identity management systems protect information privacy while enabling personalization and price discrimination? ALESSANDRO n the economics literature, privacy is usually dis­ or her purchas­ ACQUISTI cussed in the context of consumer preferences ing history. Carnegie and reservation prices: merchants are interested Identity management systems can support such Mellon in finding out a consumer’s preferences because selective information revelation strategies by giving University Ifrom those they can infer the consumer’s maximum consumers greater control over which identities are willingness to pay for a good (his reservation price). established, which attributes are associated with them, The ability to identify consumers and track their pur­ and under what circumstances they’re revealed to oth­ chase histories, therefore, lets merchants charge prices ers. Therefore, such systems allow for transactions in that extract as much surplus as possible from the sale, which some level of information sharing is accompa­ which is what economists call price discrimination.1–3 nied by some level of information hiding. At the same In this context, consumer privacy concerns reduce to time, economic views of privacy that are more granu­ individuals’
    [Show full text]
  • PUF Based Authentication Protocol for Iot
    S S symmetry Article PUF Based Authentication Protocol for IoT An Braeken Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; [email protected]; Tel.: +32-468-104-767 Received: 11 July 2018; Accepted: 11 August 2018; Published: 20 August 2018 Abstract: Key agreement between two constrained Internet of Things (IoT) devices that have not met each other is an essential feature to provide in order to establish trust among its users. Physical Unclonable Functions (PUFs) on a device represent a low cost primitive exploiting the unique random patterns in the device and have been already applied in a multitude of applications for secure key generation and key agreement in order to avoid an attacker to take over the identity of a tampered device, whose key material has been extracted. This paper shows that the key agreement scheme of a recently proposed PUF based protocol, presented by Chatterjee et al., for Internet of Things (IoT) is vulnerable for man-in-the-middle, impersonation, and replay attacks in the Yao–Dolev security model. We propose an alternative scheme, which is able to solve these issues and can provide in addition a more efficient key agreement and subsequently a communication phase between two IoT devices connected to the same authentication server. The scheme also offers identity based authentication and repudiation, when only using elliptic curve multiplications and additions, instead of the compute intensive pairing operations. Keywords: physical unclonable function; authentication; elliptic curve cryptography; internet of things 1. Introduction Internet of Things (IoT) is experiencing worldwide growth. Not only classical computing and communication devices are connected, but also a whole range of other gadgets that are used in our daily life, such as thermostats, light switches, door locks, refrigerators, etc.
    [Show full text]
  • BIG-IP Access Policy Manager
    DATA SHEET BIG-IP Access Policy Manager WHAT'S INSIDE Simple, Secure, and Seamless Access to 2 Bridging Secure Any Application, Anywhere Application Access Applications are gateways to your critical and sensitive data. Simple, secure access to 17 BIG-IP APM Features your applications is paramount, but application access today is extremely complex. Apps 19 F5 BIG-IP Platforms can be hosted anywhere—in the public cloud, in a private cloud, on-premises, or in a data center. Ensuring users have secure, authenticated access anytime, anywhere, to only the 19 F5 Support Services applications they are authorized to access is now a significant challenge. There are different application access methods to deal with these complexities. There are also various sources for authorized user identity, as well as dealing with applications that require modern or more traditional authentication and authorization methods, single sign-on (SSO), federation, and more, in addition to ensuring a secure, simple user access experience to support and consider. With digital transformation touching every part of an enterprise today, native cloud and Software as a Service (SaaS) applications are now the enterprise application standard. Many organizations, though, find they’re unable or unwilling to migrate all their applications to the cloud. There may be mission-critical classic or custom applications that cannot or should not support migration to the public cloud or be easily replaced by a SaaS solution. Applications are being hosted in a variety of locations, with differing and many times disparate authentication and authorization methods that are unable to communicate with each other or work seamlessly across existing SSO or federated identity.
    [Show full text]