University of PRISM: University of Calgary's Digital Repository

Graduate Studies Legacy Theses

2009 Groundwater contribution to Sylvan , ,

Baker, Jennette L.

Baker, J. L. (2009). Groundwater contribution to , Alberta, Canada (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/13722 http://hdl.handle.net/1880/47653 master thesis

University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca

UNIVERSITY OF CALGARY

Groundwater contribution to Sylvan Lake, Alberta, Canada

by

Jennette L. Baker

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF GEOSCIENCE

CALGARY, ALBERTA

September, 2009

© Jennette L. Baker 2009

The author of this thesis has granted the University of Calgary a non-exclusive license to reproduce and distribute copies of this thesis to users of the University of Calgary Archives.

Copyright remains with the author.

Theses and dissertations available in the University of Calgary Institutional Repository are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or re-publication is strictly prohibited.

The original Partial Copyright License attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by the University of Calgary Archives.

Please contact the University of Calgary Archives for further information: E-mail: [email protected] Telephone: (403) 220-7271 Website: http://archives.ucalgary.ca Abstract

The trophic status and concentration of total dissolved solids in Sylvan Lake,

Alberta, Canada, are relatively low and may be indicative of groundwater through-flow in the lake. Investigation of water well drilling records around Sylvan

Lake suggests that a fractured water-bearing channel sandstone runs along the northeast margin of Sylvan Lake and sits in a matrix of shale with small sandy interbeds. Three separate mass-balances (chloride, deuterium and oxygen-18) suggest that groundwater fluxes into and out of the lake are 27 to 35% of total annual lake water inputs, and significant with respect to the lake water chemistry, resulting in an average lake-water residence time of 20 to 35 years. Groundwater through-flow is likely partly responsible for the relatively low trophic status of

Sylvan Lake as compared to other in south- and is thought to occur in the hydraulically connected channel sandstone aquifer of the

Paskapoo Formation. Due to the hydraulic connection of the sandstone channel with Sylvan Lake, development along the north side of the lake (above the channel) may have more significant impacts on the lake water quality than development elsewhere around the lake.

ii Acknowledgements

I would like to thank Cathy Ryan for suggesting this Master’s Thesis to me and helping to facilitate the logistics. I wouldn’t have been able to do this without the support of the company with which I had my first real job as a hydrogeologist,

Hydrogeological Consultants Ltd., in particular Roger and Midge Clissold, Norm

Zastre, Mike Semple, and Ben Gillam. I am also indebted to Stephen Grasby from the Geologic Survey of Canada for his guidance and of my thesis and Jean

Birks for her insight and advice about the isotope mass balance. Financing for this study was made possible with the help of Hydrogeological Consultants Ltd, the Natural Sciences and Engineering Council, Prairie Farms Rehabilitation

Administration, and the Geologic Survey of Canada (GSC). Thank you to Art

Sweet of the GSC for his tour of the palynology of the Paskapoo by canoe on the

Red Deer River and to Alberta Eagle Drilling for facilitating the pumping test and general knowledge of the watershed. Other faculty, support staff, and students from the University of Calgary have been an invaluable resource to me and include Larry Bentley, Masaki Hyashi, Bernard Mayer, Cathy Hubbell, Faye

Nicholson, Lynne Maillet, Kate Bentley, Farzin Malekani, Len Hills, Jaclyn

Schmidt, Lisa Grieeff, Marie-Eve Caron, Melanie Myden, Danika Muir, Brendan

Mulligan, and Dru Heagle. I would also like to thank all the folks from Sylvan

Lake whose support and cooperation I greatly appreciated, Myra Reiter, Kent

Lyle, The Sylvan Lake Stewardship Society, the Summer Villages, and thank-you to each landowner who allowed me to sample their well. Finally to all my friends,

iii my parents and especially my husband Keith who supported, encouraged and waited patiently while I found my way to the light at the end of the tunnel – Thank you.

iv Table of Contents

Abstract...... ii

Acknowledgements ...... iii

Table of Contents ...... v

List of Figures ...... vi

List of Tables...... vii

List of Appendices...... vii

1 Background...... 1 1.1 Introduction...... 1 1.2 Literature Review ...... 3 1.2.1 Groundwater – Lake Water Interactions...... 3 1.2.2 Quantifying Groundwater Fluxes ...... 4 1.3 Site Description ‐ Sylvan Lake...... 7 1.3.1 General ...... 7 1.3.2 Geology...... 8 1.3.3 Hydrology and Hydrogeology ...... 8 1.3.4 Historical Sylvan Lake Studies...... 11 1.4 Other South‐Central Alberta Lakes...... 12

2 Methods ...... 13 2.1 Physical Hydrogeologic Investigation ...... 13 2.1.1 Drilling and Coring ...... 13 2.1.2 Pumping Test...... 14 2.1.3 Hydraulic Heads and Gradients ...... 14 2.1.4 Cross‐Sections ...... 15 2.2 Geochemistry ...... 15 2.2.1 General ...... 15 2.2.2 Groundwater Samples...... 17 2.2.3 Surface Water Samples ...... 17 2.2.4 Quality Assurance/Quality Control...... 18 2.3 Development of a Conceptual Model of Groundwater‐Surface Water Interaction...... 19 2.4 Groundwater Quantification ...... 19 2.4.1 Darcy’s Law...... 19 2.4.2 Chloride Mass Balance ...... 20 2.4.3 Oxygen and Deuterium Isotope Mass Balances ...... 24

v 3 Results ...... 27 3.1 Core Data...... 27 3.1.1 ...... 27 3.1.2 ...... 28 3.2 Aquifer Definition...... 29 3.2.1 Pumping Test Results ...... 31 3.2.2 Geochemical characterization...... 32 3.3 Lake water balance...... 34 3.3.1 Darcy’s Method ...... 34 3.3.2 Mass Balance Methods...... 35

4 Discussion ...... 35 4.1 Conceptual Model ...... 35 4.2 Groundwater Quantification ...... 37 4.2.1 Darcy’s Law Method...... 37 4.2.2 Mass Balance Methods...... 38 4.2.3 Sylvan Lake Groundwater Fluxes as compared with groundwater fluxes from literature....39 4.3 Implications ...... 41

5 Conclusions...... 44

References ...... 46

Figures ...... ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ϱϬ

Table ...... 6ϲ

Appendix A...... 7ϱ

Appendix B...... 8ϯ

Appendix C ...... 10ϭ

List of Figures

Figure 1a ...... Chlorophyll  in Alberta Lakes Figure 1b ...... Phosphorous in Alberta Lakes Figure 2 ...... Site Plan Figure 3...... Regional Potentiometric Surface Map Figure 4 ...... Drilling Record Interpretation Figure 5 ...... Chloride Concentrations in Sylvan Lake (1968‐2004) Figure 6 ...... Lake Depth Profiles Figure 7...... Isotope Plot

vi Figure 8 ...... Sylvan Lake Water Elevations (1965‐2005) Figure 9a...... Hydrogeological Cross‐Section along Sylvan Lake Figure 9b...... Hydrogeological Cross‐Section across Sylvan Lake Figure 10...... Piper Diagram of Water Chemistry in Sylvan Lake Watershed Figure 11...... Contour map of deuterium excess values in groundwater Figure 12...... Conceptual Model Figure 13...... Piper Diagram of Water Chemistry from Sylvan, Gull and Pine Lakes

List of Tables

Table 1...... Physical Characteristics of Sylvan, Gull and Pine Lakes Table 2...... Methods and detection Limits for Dissolved Metals Table 3...... Isotope Methods Summary Table 4...... Analytical Results of Duplicate Samples Table 5...... Water Well UID’s used in Cross‐Sections A‐A’ and B‐B’ Table 6...... Hydraulic Gradients Table 7...... Pumping Test Results Summary Table 8...... Representative Geochemistries Table 9...... Mass Balance Summary

List of Appendices

Appendix A ...... Additional Tables Appendix B ...... Pumping Testing Report Appendix C ...... Ethics Approval

vii 1 Groundwater Contribution to Sylvan Lake, Alberta, Canada

1 Background

1.1 Introduction

Groundwater and surface water are being recognized in literature as a single, complex, and interconnected system (Cook et al., 2008; Grasby et al., 1999;

Loveless et al., 2008; Winter, 1999). The sustainable development and responsible management of lakes requires that detailed knowledge of the fluxes into and out of lakes be understood (Barr et al., 2000; Cherkauer and Nader,

1989; Isiorho et al., 1996). Groundwater fluxes in particular are difficult to quantify given the complex and variable nature of the relationship between surface water and groundwater (Hagerthey and Kerfoot, 2005). As the demand for clean water increases, improved understanding of the influence that groundwater has on the occurrence, quantity and quality of surface water is critical.

To better understand the contribution of groundwater to lake water budgets, this work examines the groundwater – surface water interaction at Sylvan Lake, a preferred recreational destination in south-central Alberta that is under intense development pressure. Rapid development is often associated with higher rates of nutrient loading in a watershed. Given the apparent lack of turnover (minimal surface water outflow in Sylvan Lake), along with nutrient loading, and warm 2 surface water temperatures contribute to the level of biological activity or trophic status (JФrgensen, 2003), one would expect Sylvan Lake to have a high trophic status, as is common for south-central Alberta lakes. However, the trophic status of Sylvan Lake is anomalously low (Mitchell, 1999) compared to other south- central Albertan lakes, for example , and are eutrophic

(Mitchell, 1990) (Figures 1a and 1b). This has lead to the hypothesis that the amount of groundwater flux through Sylvan Lake helps maintain a lower trophic status than would be expected (Baker, 2003).

The intent of this thesis is to test this hypothesis by estimating the groundwater flux through Sylvan Lake and evaluating its impact on the lake water quality.

Groundwater flux estimates are assessed in terms of the hydrogeological setting of the Paskapoo Formation. The Paskapoo Formation is a complex and heterogeneous system of channelized sandstones in a shale-dominated matrix.

These two main lithologies have contrasting hydraulic conductivities, and the disparity of these has a significant impact on the nature and degree of groundwater-surface water interaction that will occur (Grasby et al., 2008). 3

1.2 Literature Review

1.2.1 Groundwater – Lake Water Interactions

Groundwater and lake water interactions can be classified into three types (Born et al., 1979); a) recharge, where the lake water is dominantly recharging to the groundwater, b) discharge, where groundwater is dominantly discharging to the lake and, c) flow-through, where both groundwater discharge to the lake and lake water recharge to the groundwater occur. The primary factors affecting the type of interaction that will occur between the lake and surrounding aquifer include the landscape position of a lake relative to local and regional groundwater flow patterns (Almendinger, 1990; Winter, 1999) and hydraulic conductivity contrasts between subsurface lithologies (Guyonnet, 1991; Winter, 1999). Although topographically high areas are in general considered to be groundwater recharge areas, and topographically low areas are considered to be groundwater discharge areas, local climatic, geologic and topographic features can cause complex, non-typical, groundwater-surface water interactions (Winter, 1999). For example, seasonal transpiration from wetlands in close proximity to surface water bodies may cause, or increase, discharge of water from the surface water body to the wetland via groundwater (Almendinger, 1990). In addition, anisotropy of the hydraulic conductivity of the sediments below and near a surface water body can have a significant effect on the resulting groundwater flow regime (Shaw and 4

Prepas, 1990). Where the sediments around a surface water body are more homogeneous, groundwater seepage tends to be diffuse, whereas sediments or lithologies with a strong anisotropy (e.g.: fractures) cause groundwater seepage to be focused at springs in zones of increased permeability (Oxtobee and

Novakowski, 2002).

1.2.2 Quantifying Groundwater Fluxes

Quantifying groundwater fluxes is complex because of their temporal and spatial variability. Methods used to quantify groundwater fluxes fall into four categories

(Kalbus et al., 2006); 1) direct measurement, 2) heat tracer methods, 3) Darcy’s

Law methods, and 4) mass-balance methods.

1.2.2.1 Direct Measurement

Direct measurement methods involve using seepage meters (Cey et al., 1998;

Lee and Cherry, 1978; Taniguchi et al., 2003a). Traditionally, fluxes in seepage meters are obtained manually by measuring a change in volume in a measuring sac, but automated seepage meters with continual readings are now available

(Taniguchi and Fukuo, 1993). While seepage meters are cost-effective, they are not well-suited to areas with complex heterogeneities because of issues of scale

(Cey et al., 1998). Seepage meters serve as point estimates of flux in space and time (Shaw et al., 1990). In site areas where flux occurs in focused zones, the placement of seepage meters may miss these focused zones of flux altogether. 5

The accuracy of seepage estimates from seepage meters is not much improved even when the number of seepage meters is increased, the frequency of sampling is increased, nor when the seepage meter layout is stratified rather than systematic (Shaw and Prepas, 1990).

1.2.2.2 Heat Tracer Methods

Heat tracer methods involve using the difference in temperature between groundwater and surface water to calculate a flux based on analytical and numerical solutions for the heat transport equation (Becker et al., 2004;

Constantz et al., 2002; Taniguchi et al., 2003b). While temperature is a robust and relatively inexpensive parameter to measure (Kalbus et al., 2006), it has been used more commonly in stream bed settings than in lakes likely because instrumentation for temperature profiling in streams is more manageable.

1.2.2.3 Darcy’s Law Methods

Darcy’s law methods involve using the hydraulic gradient in combination with the hydraulic conductivity to calculate a groundwater flux (Harvey et al., 2000;

Jacobson and Schuett, 1984). Hydraulic gradients can be determined using water levels from mini-piezometers (Cey et al., 1998; Lee and Cherry, 1978;

Oxtobee and Novakowski, 2002) or groundwater wells (non-pumping) and piezometers. Mini-piezometers have been found to underestimate groundwater flow due to heterogeneity and scale issues (Cey et al., 1998; Shaw et al., 1990). 6

In using point measurements from mini-piezometers, it is assumed that groundwater flow is one dimensional and sediments are homogenous (Cey et al.,

1998), when in reality groundwater flow is three-dimensional and sediments are heterogeneous. Hydraulic conductivity can be estimated from slug tests (scale is local) and pumping tests (scale is more regional).

1.2.2.4 Mass Balance Methods

Mass balance methods involve balancing inputs and outputs of a tracer in a budget. Environmental tracers that have been used in literature include major ions (Möller et al., 2007), chloride (LaBaugh et al., 1997; Sacks et al., 1992;

Subyani and Sen, 2006), rare earth elements (Ojiambo et al., 2003), radium isotopes (Kraemer, 2005; Loveless et al., 2008), strontium isotopes (Ojiambo et al., 2003), and oxygen and deuterium isotopes (Dincer, 1968; Gibson et al.,

2002; LaBaugh et al., 1997). Of the ion tracers, chloride is the most inert, presenting a less complicated mass balance. Of the isotope tracers, stable isotopes of oxygen and deuterium are most commonly used. Oxygen and deuterium isotopes are economic for watershed scale investigations (Gibson et al., 2002) but may have significant error introduced when determining the parameters that define the rate of isotopic enrichment, such as humidity and ambient isotopic composition of the air (Froehlich, 2000). Mass balance approaches have the benefit that small scale variations (e.g. seasonal variations) tend to be smoothed out (Kalbus et al., 2006). 7

1.2.2.5 Summary of Quantification of Groundwater Fluxes to Surface Water Bodies

Because of the limitations and uncertainties inherent in each of the methods, it is recommended that a multi-scale approach that integrates methods on different scales be used (Kalbus et al., 2006). Some multi-scale approaches that have been used in literature include the combination of direct measurement and solute mass balance methods (Isiorho et al., 1996), direct measurement and Darcy’s

Law methods (Lee and Cherry, 1978), Darcy’s Law and isotopic mass balance methods (Birks and Remenda, 1999), multiple mass-balances (Barr et al., 2000), and direct measurement, Darcy’s Law, ion and water mass balances and mathematical modelling (Shaw et al., 1990). Mathematical models integrate data from different measurement scales and are powerful modeling tools but provide non-unique solutions (Konikow and Bredehoeft, 1992) and often require detailed model inputs that are not always economically feasible (Barthel et al., 2008).

1.3 Site Description - Sylvan Lake

1.3.1 General

Sylvan Lake is located approximately 19 km northeast of Red Deer, Alberta,

Canada (Figure 2) in the surface expression of a preglacial bedrock valley

(Carlson, 1970). The area is classed as a low boreal mixed wood ecoregion

(Strong and Ltd, 1992) and has a boreal climate which consists of low mean annual temperatures, short cool summers and long cold winters (Moran and 8

Morgan, 1991). The maximum mean monthly precipitation occurs in July (97.2

mm), with a mean annual precipitation of 555 mm/yr (Environment Canada,

2007) and an estimated mean annual lake evaporation of 640 mm/yr (Alberta

Environment, 2005a).

1.3.2 Geology

The surficial sediments in the watershed consist of clay and till to sandy clay and

sandy till and range in thickness from less than one metre to just over 15 metres

(Mitchell, 1990). There is moderately to strongly developed hummocky terrain to

the northwest of Sylvan Lake in the Medicine Lodge Hills (Shetson, 1990). These

sediments are underlain by the upper part of the Paskapoo Formation, deposited

in the upper Paleocene (Demchuk and Hills, 1991), which consists of

interbedded shales and sandstones deposited in a continental fluvial

environment. The depositional environment of the Paskapoo grades from braided

to meandering to anastomosing stream environments (Hamblin, 2004). The

sandstones tend to be isolated, channel shaped, and of limited areal extent

(Hamblin, 2004). They tend to occur in stacked fining-upwards sequences in the

Paskapoo (Smith and Putnam, 1980).

1.3.3 Hydrology and Hydrogeology

The Sylvan Lake watershed area is 167 km2, one third of which (42.8 km2) is the lake. This ratio of lake surface area to land drainage is large (approximately one 9 third) but not uncommon (Gresswell and Huxley, 1965). Sylvan Lake is fed by a number of short (less than 7 km) perennial streams that are sourced from groundwater springs and augmented by spring melt-water and surface water runoff. Regional groundwater flow directions are from the west and north and flow towards the east and south (Figure 3). The only surface water outlet is located at the southeast end of the lake and flows only intermittently (Mitchell,

1990) when the lake reaches a threshold water level of approximately 936.73 m.a.s.l. (Figliuzzi, 1976). The last period of significant surface water outflow from

Sylvan Lake occurred during the open water seasons between 1992 and 1995 with flow rates in the range of 0.001 to 0.626 m3/s, where estimated total annual outflows were less than 2% of the lake volume (Alberta Environment). Flow from

Sylvan Lake has only been recorded in August 2007 (0.027 m3/s) since (Alberta

Environment).

Since surface water outflow from Sylvan Lake only occurs intermittently, and then only with a minimal flow, it is effectively a closed-basin lake (a lake without any surficial outflows) (Almendinger, 1990). Closed-basin lakes typically occur in climates where evaporation is greater than precipitation and are generally progressively more sensitive to changes in evaporation and precipitation with increasing surface area of the lake (Almendinger, 1990). Many closed-basin lakes are connected with a regional interfluvial water table, or in other words there may be an exchange of groundwater from outside of the topographic watershed (Almendinger, 1990). Large watersheds (>100 km2) in the Canadian 10

Prairies are thought to be less significantly affected by changes in precipitation and evaporation (Crowe and Schwartz, 1981a).

Groundwater wells, for domestic and municipal use, in the Sylvan Lake watershed are mainly completed in aquifers of the Paskapoo Formation. This

Formation extends over a large portion of southern and central Alberta and is the most significant groundwater supply in the Canadian Prairies (Grasby et al.,

2008). The hydrogeological conceptual model of the Paskapoo Formation is a system of paleochannels that are surrounded by a matrix of shaley overbank deposits (Grasby et al., 2008; Smith and Putnam, 1980) where groundwater flow is more restricted (Chen et al., 2007; Hamblin, 2004). The paleochannels in the upper part of the Paskapoo Formation sit in a matrix of silty shales and shales

(Chen et al., 2007; Hamblin, 2004). The resulting hydraulic conductivity configuration is heterogeneous with east-west anisotropy (Chen et al., 2007;

Rahmani and Lerbekmo, 1975). Water well yields can vary widely depending on whether they are completed in the sandstone channels (which can produce significant quantities of water) or shales (which can scarcely provide a household amount) (Meyboom, 1961). Groundwater chemistry tends to be Ca-Mg rich in the surficial sediments with a tendency towards Na-rich groundwater at depth

(hydrogeological consultants ltd, 2005). Regionally, groundwater tends to be Ca-

Mg rich in western parts of Alberta with a tendency towards Na-rich groundwater in the east (Grasby et al., 2008). 11

1.3.4 Historical Sylvan Lake Studies

A number of studies have considered the water balance of Sylvan Lake in various contexts, such as controlling the surface water outlet (EBA Engineering,

1976; Figliuzzi, 1976, 1993) and nutrient loading of the lake (AXYS

Environmental Consulting Ltd., 2005). Three studies were completed to evaluate a proposed control outlet structure for the lake, and were focused on reproducing historical water levels by accounting for precipitation, evaporation, and runoff.

Net groundwater contributions (the difference of groundwater flux into the lake and groundwater flux out of the lake) in these cases were assumed to be negligible or residual terms. Figliuzzi, in both studies, concludes that the net groundwater component is close to zero, while EBA Engineering estimated net groundwater fluxes from -8.2 x 106 m3/yr to +8.1 x 106 m3/yr (into or out of the lake depending on the year). AXYS Environmental used a numerical solution to estimate groundwater fluxes in the watershed and concluded the net groundwater flux to be approximately 106 m3/yr into the lake. The main weakness involved in this approach is that the hydrogeologic heterogeneity is complex and difficult to account for in a numerical model. For example, the AXYS groundwater flow model assumed the Paskapoo Formation was homogeneous and isotropic, which is not consistent with the conceptual model of the Paskapoo Formation

(Grasby et al., 2008). These studies may have undervalued the role of groundwater in the watershed, and in particular the impact it has on the chemical lake water budget. 12

1.4 Other South-Central Alberta Lakes

In general, water levels in closed basin lakes across south-central and east- central Alberta show a long-term decline with an associated increase in salinity

(van der Kamp et al., 2008) but water levels at Sylvan Lake have been more or less stable. Low concentrations of total dissolved solids in Sylvan Lake may be indicative of groundwater recharge to the lake from a small intermediate flow system (Winter, 1999).

Two major, south-central, Alberta Lakes, near Sylvan Lake, in the Red Deer

River Basin, and situated within Paskapoo Formation bedrock, are Pine Lake, and Gull Lake. The groundwater components of the lake water budgets of these lakes have not been quantified but it has been suggested that groundwater influx may be a significant component in Pine Lake (Mitchell, 1990). No evidence of groundwater inflow or outflow is suggested for Gull Lake based on a preliminary review (Mitchell, 1990). A comparison of the physical characteristics of these three lakes is tabulated (Table 1). Sylvan Lake and Gull Lake have similar ratios of drainage area to lake area (2.4 and 2.6 respectively) but Pine Lake has a much higher ratio (38.6). When a drainage basin is much larger than the lake it drains into (high ratio of drainage area to lake area, e.g.: Pine Lake), there is a greater possibility that surface water run-off in the watershed will pick up nutrients and contaminants as it flows overland to the lake. The mean water depth in Sylvan Lake is approximately twice (mean depth = 9.6 m) that of either 13

Gull Lake (mean depth 5.3 m) or Pine Lake (mean depth = 5.4 m). Significant surface water outflow has not occurred in the recent past in Sylvan Lake or Gull

Lake, but Pine Lake experiences regular surface water outflow to Ghostpine

Creek.

2 Methods

2.1 Physical Hydrogeologic Investigation

2.1.1 Drilling and Coring

The drilling and coring of two wells along the north side of Sylvan Lake (each one installed close to a set of Alberta Environment (AENV) nested monitoring wells), one at Sunbreaker Cove (Sunbreaker Cove Research Well) and one at Jarvis

Bay (Jarvis Bay Research Well) (Figure 2), was conducted in order to provide a more accurate description of the lithology and hydrogeological characteristics of the surficial sediments and the bedrock deposits in the study area. At each location core was recovered starting from the top of the weathered bedrock surface through to the shale below the bottom of the sandstone aquifer (~61m at

Jarvis Bay, ~46m at Sunbreaker Cove). The core hole was then reamed out to a

10 inch diameter hole with an air rotary rig. The wells were completed with a 10 inch steel casing and 6 inch PVC liner. The liner was screened for 20 feet in the middle of the sandstone aquifer. 14

2.1.2 Pumping Test

Estimates of the hydraulic properties of the sandstone channel aquifer within the

Paskapoo Formation were based on a three day pumping test at Sunbreaker

Cove. The recently drilled pumping well, Sunbreaker Cove Research Pumping

Well, was pumped at a rate of 1 m3/min for three full days. Water levels in the pumping well and the nearby AENV nested monitoring wells were recorded for the duration of pumping, and for three days after pumping was stopped. The discharged water was monitored for pH, temperature, dissolved oxygen (DO), and electrical conductivity (EC) and sampled for routine water analyses and isotopic composition (at 30, 65, 160, 427, 885, 1185, 1508, 1707, 2430, 4185,

4227, 4250, and 4301 minutes into pumping). Further details of the pumping test can be found in Appendix B.

2.1.3 Hydraulic Heads and Gradients

Due to limitations in time and funding only three (AENV Well Nests 3, 4, and 7) of the seven AENV nested wells were surveyed. Surveying was completed using the lake level as a datum, on September 26, 2006. Historical water levels were then compared to historical lake levels to estimate hydraulic gradients between the nested wells and the lake. 15

2.1.4 Cross-Sections

Two hydrogeological cross-sections were developed using groundwater monitoring and domestic water well drilling reports from the Alberta Environment

Water Well Database. While this database is extensive, the spatial accuracy of many of the wells is typically no greater than the center of the quarter section (+/-

800 m). In addition, drilling records are not necessarily consistent in description of lithology. Interpretation of the drilling records was done using previous experience with the geology of the area and by comparing many drilling records

(Thorleifson and Pyne, 2003) (Figure 4). Some of the wells from the database were visited to obtain more accurate spatial coordinates and a current water level was measured wherever possible.

2.2 Geochemistry

2.2.1 General

The field sampling program included 42 domestic water wells, 9 lake water samples, and two shallow groundwater springs to characterise the hydrochemistry in the watershed. A complete water sample included: cations and dissolved metals (samples field acidified to a pH < 2 with ultra pure nitric acid –

HNO3(aq)), anions, alkalinity, sulphate isotopes (field precipitation of barium sulphate - BaSO4(s) by adding barium chloride – BaCl2∙2H2O(s)), dissolved 16 inorganic carbon isotopes (mercuric chloride – HgCl(s) was added to inhibit the growth of micro-organisms), and oxygen and hydrogen isotopes (lids sealed with paraffin wax to prevent evaporation). All samples were filtered using 0.45 µm filter paper. The filter apparatus was rinsed with distilled water once in between each sample collection. Sampling was conducted once at each sampling point between Sep 2004 and May 2006. The samples were kept in coolers and fridges until laboratory analysis.

Alkalinity was measured using an Orion 960 Autotitrator by addition of H2SO4(aq) and measured with a ROSS pH electrode. Anions, cations and dissolved metals were analyzed at the Geological Survey of Canada Laboratories in Ottawa.

Anions were measured using Ion Chromatography. Cations and dissolved metals were measured using Inductively Coupled Plasma emission spectrometry/mass spectrometry (Table 2). Oxygen and hydrogen isotopes in water were analyzed relative to V-SMOW by the Geological Survey of Canada Laboratory in Quebec, and sulphur and oxygen isotopes in sulphate were analyzed at the University of

Calgary Isotope Laboratory using continuous flow and dual inlet isotope ratio mass spectrometry. Stable isotope compositions (18O/16O, D/H, 34S/32S) are expressed in  notation:

3  = [(Rsample – Rstandard)/(Rstandard)] x 10 , 17 where R is the ratio of heavy to light isotopes and is reported relative to V­

SMOW. Standards and uncertainty of isotope measurements are described in

Table 3.

2.2.2 Groundwater Samples

Informed consent was obtained from the landowners prior to sampling as per the ethics approval (Appendix C). A survey was also taken to obtain more background information concerning the use and history of the well. If the well head was accessible, a pre-sampling water level was measured. Water from the outside tap was sampled from a flow-through cell after the temperature (T), pH, dissolved oxygen (DO) and oxygen-reduction potential (ORP) probes displayed stable readings. The stable readings were recorded and water was collected in new bottles. Probe readings were recorded again after the sample was collected.

2.2.3 Surface Water Samples

Lake profile water samples were collected from surface to a maximum of 17 m depth in October 2004 and October 2006 from a location near the deepest part of the lake with a VanDorn water sample collector. 18

2.2.4 Quality Assurance/Quality Control

Two duplicate samples and one trip blank were collected for quality assurance/control. The relative percent difference (RPD) is used to evaluate the sample result variability and is calculated by the following equation:

 S1  S 2  RPD    100  S3 

Where:

RPD = relative percent difference

S1 = original sample concentration

S2 = duplicate sample concentration

S3 = average concentration of S1 and S2

Average RPD values of less than 30% are considered acceptable duplicate sample variability. An RPD of greater than 30% may reflect difference in sample turbidity or variance in sampling procedures. Individual RPD values of greater than 50% are not considered to reflect acceptable variability. RPD values are not used to evaluate those parameters that are present at concentrations of less than five times the detection limit (5DL). Duplicate samples are presented in

Table 4. 19

2.3 Development of a Conceptual Model of Groundwater- Surface Water Interaction

The results from the physical and geochemical investigations were collated and interpreted in order to develop an understanding of the nature of the hydraulic connection between the groundwater aquifer and the lake. A conceptual model of the groundwater-surface water interaction is the foundation upon which the groundwater quantification methods below are built. There is no one way to develop a conceptual model of groundwater-surface water interaction and any model that is used may need future alterations to accommodate new findings.

The Paskapoo hydrogeology is characterised using water well records, field mapping, drilling, and pumping tests. The groundwater geochemistry is characterised through a lake and domestic water well sampling program.

2.4 Groundwater Quantification

Four independent methods were used to estimate groundwater flux into Sylvan;

Lake, Darcy’s Law, a chloride mass balance, an oxygen isotope mass balance, and a deuterium isotope mass balance.

2.4.1 Darcy’s Law

Groundwater flow in the aquifer can be estimated from direct physical properties such as the hydraulic conductivity and the hydraulic gradient in the aquifer using

Darcy’s Law: 20

dh Q  K A (5) dl

 dh  Where Q is discharge, K is hydraulic conductivity,   is hydraulic gradient  dl  and A is the cross-sectional area of the channel.

Sources of error for this method include the hydraulic conductivity (typically reliable to the order of magnitude only) and the cross-sectional area of the sandstone channel that is hydraulically connected to Sylvan Lake (see Section

3.2). It is possible to estimate an upper limit of the cross-sectional area by assuming the entire thickness of the channel, along the entire northwest side of the lake, is in hydraulic connection with the lake.

2.4.2 Chloride Mass Balance

The chloride mass balance method involves developing and testing a conceptual model of the sources and sinks of chloride in the lake. Since chloride is a conservative solute (Appelo and Postma, 1996; Thorleifson and Pyne, 2003), it is a reasonable assumption that the chloride in the lake is neither gained nor lost through chemical or biological reactions, but rather is gained and lost solely through mass transport from source waters entering the lake and water leaving the lake. Although anthropogenic sources of chloride do exist in the watershed

(eg: road salt, and septic systems), they are not accounted for in the scope of this model. By not including these sources the chloride balance is assumed to be conservative with respect to the resulting groundwater outflow from the lake. If 21 the chloride entering the lake is increased, the only means to remove it (in order to maintain constant chloride concentrations) in the lake would be by increasing the groundwater outflow component.

Based on the conceptual model developed from the physical and geochemical investigations of Sylvan Lake, two sets of equations are written. One set of equations represents the flux of water volumes exchanged between the lake and the surrounding environment, and a second set of equations describes the mass transfer of chloride between the lake and the surrounding environment.

Assuming no change in storage of water or chloride in the lake over time (Figure

5, Appendix C), a water-balance equation can be written as follows:

 S  P  R  I  E  O  0 [1]

Where

 S = change in storage in the lake (m3);

P = mean annual precipitation on the lake (m3);

R = runoff (m3);

I = groundwater flux into the lake in a year (m3);

E = evaporation (m3) and;

O = groundwater flux out of the lake in a year (m3). 22

A chloride mass balance equation can be written where mass fluxes are estimated by multiplying the concentration of chloride for a given water balance component by the annual volume of the given water balance component.

L P R I O  M Cl  M Cl  M Cl  M Cl  M Cl [2]

Where

L  M Cl = annual change in mass of chloride in the lake;

P M Cl = annual mass of chloride added to the lake from precipitation;

R M Cl = annual mass of chloride added to the lake from the runoff;

I M Cl = annual mass of chloride added to the lake from groundwater and;

O M Cl = annual mass of chloride lost from the lake through groundwater

outflow.

L This last term can be restated as M CL because the groundwater outflow from the lake would have the same chloride concentration as the lake.

Since:

M  V [C ] [3]

Equation 2 can be rewritten as:

 (V L [Cl ]L )  VP [Cl ] p  VR Cl R  VI [Cl ]I VO [Cl ] L [4]

Where

3 Vi = annual flux (m /yr) and;

[Cl]i = concentration of chloride of i;

L - lake; 23

P - precipitation;

R - runoff;

I - groundwater inflow and;

O - groundwater outflow.

The unknown fluxes (VI and VO ) are solved for by combining equations [1] and

[4].

The precipitation water quantity data are the averages from the Sylvan Lake meteorological station over the period 1971 to 2000 (Environment Canada, 2007) and precipitation chloride concentration is the average value for precipitation in

Red Deer estimated from Environment Canada’s Canadian National Atmospheric

Database (Environment Canada, 2005). The lake water chemistry used is the average of lake quality monitoring from all Sylvan Lake sampling stations over the period 1974 to 2001 (Alberta Environment). Variability in this data set is described using the standard deviation for the sample set for each parameter used. The runoff quantity is interpolated from the map of surface water runoff from Alberta Environment, (Alberta Environment, 2005b) where the contour interval is 10 mm and Sylvan Lake falls within the contour interval representative of 40 to 50 mm of runoff. The runoff water chemistry is obtained from the two samples collected from surface water streams in the watershed during the field program. The calcium-magnesium (Ca-Mg) rich and sodium (Na) rich 24 groundwater chemistry end-members (See section 3.2.2) used are the average qualities of each group of waters sampled as part of the field program.

2.4.3 Oxygen and Deuterium Isotope Mass Balances

The amount of evaporative enrichment of water is predicable given certain temperature and humidity conditions. Using the Craig and Gordon model (Craig and Gordon, 1965), it is possible to predict the amount of evaporative enrichment that the lake water will experience.

There are a number of assumptions inherent in the isotope mass balance method and include:

 Constant density of water

 Well mixed-lake

 Non-seasonality (seasonal climatic changes minimal)

 Similar climatic conditions over time (years)

 Initial isotopic composition of lake is equal to the input isotopic

composition (i.e. when lake was initially formed)

 Single input isotopic composition (in this case for both precipitation and

groundwater)

 Steady state

o Hydrologic fluxes constant over time

o Changes in lake volume are minor 25

These assumptions are valid for the purposes of this study given that: Sylvan

Lake watershed is a freshwater basin; the high degree of mixing of Sylvan Lake is demonstrated in the relatively constant temperature, DO and EC profiles of the lake which vary by less than 10% (Figure 6) and is also supported by previous studies (Mitchell, 1999). Non-seasonality of evaporation was accounted for by using the 30 year normal for temperature and humidity from only the open water season (May through October when the lake is typically ice-free); The two main inputs of water to the lake, as per this model, are precipitation and groundwater, and have similar isotopic compositions (Figure 7); the climatic inputs to the mass balance are an integrated signal (30 year normals, (Environment Canada, 2007)) and account for minor fluctuations in the climate over time; and the lake has been shown to demonstrate steady state conditions (Figure 8).

An isotope mass balance method that considers the oxygen and deuterium signatures in water was used (Gibson et al., 2002). The isotope mass balance method is based on the knowledge that evaporative enrichment of oxygen and deuterium isotopes in water is predictable (Craig and Gordon, 1965) and can be used as an indicator of lake water parameters. The isotopic enrichment of oxygen and deuterium in water by natural evaporation is controlled by the combined effects of the equilibrium separation factor and the kinetic separation factor (Gibson et al., 2002). 26

The inputs to the isotope mass balance method include the air temperature, the humidity, and the input isotopic signature. The equilibrium fractionation

 18 2 fractionation factors, i , for oxygen (  O ) and deuterium ( H ) are calculated based on the temperature (T) and humidity (h) (Majoube, 1971).

 1.137 3 0.4156 3 ln 18  10   2.066710 [5]  O T 2 T

 24.844 3 76.248 3 ln 2  10   52.61210 [6]  H T 2 T

Gibson (2002) assumes that the fractionation factors (   ) for hydrogen and oxygen to be equal to one, in order to simplify some equations. While this is sufficient for the oxygen isotope mass balance (    1.01), the fractionation factor for deuterium (   1.11) is different enough from one to cause a significant difference in the resulting estimate of throughflow ( x ) as compared to oxygen-18.

In order to account for this, the actual fractionation factors are used for both oxygen-18 and deuterium in all relevant equations. The fractionation factors are

 then used to calculate the equilibrium separation factors,  i :

    1000 ln  i [7]

k The kinetic separation factor (  i ) is related to the humidity (h) by the following equation:

k  i  Ck 1 h [8]

Where the kinetic separation constant, Ck is equal to: 27

n  D    [9] Ck    1  Di 

And where D is the molecular diffusion coefficient of the light isotope and Di is

the molecular diffusion coefficient of the heavy isotope. A turbulence

parameter, n , of 0.5 is suitable for natural evaporation from lakes (Gonfiantini,

1986) and relates to kinetic separation constants of 14.3‰ for oxygen and 12.5‰

for hydrogen. The total separation factor is the sum of the kinetic and the equilibrium separation factors.

Once the separation factors are calculated, they can be used to estimate the ambient atmospheric isotopic composition using the formula:

  *   P A  *

Where  P is the input isotopic composition of flux-weighted precipitation during

the open water season (May through October) from Peng et. al’s 2004 paper .

3 Results

3.1 Core Data

3.1.1 Jarvis Bay

The overburden was augered down through 4.5 metres with a 4 inch auger and

consisted of sandy brown clay. The upper bedrock lithologies consist of

interbedded sandstones and shales to a depth of 17.8 metres below ground and

are underlain by a thick coarse-grained sandstone package that has a fining 28 upwards sequence and extends to a depth of 36.8 metres below ground. The water level was 27 metres below ground and approximately 10 metres below the top of the sandstone package. The sandstone package is underlain by interbedded shales and very fine-grained sandstones to a depth of 60 metres below ground. The bedrock core was soft and friable throughout with sub-vertical fractures showing discoloured weathering zones. The weathered zones were reddish orange and ranged in thickness from one to three centimetres. The driller noticed water in the hole at around 20 metres depth. Circulation was lost at approximately 30 metres depth and was not regained. A five foot flight of core was lost or washed away around 33 metres depth.

3.1.2 Sunbreaker Cove

The overburden was augured down to 15m and consisted of sandy clay with pebbles. The bedrock core was competent and tended to come out of the core barrel in long sections from one to two feet in length. The core had sub-vertical fractures similar to the Jarvis Bay core but little or no weathering was observed.

The upper bedrock lithologies are interbedded sandstones and mudstones down to a depth of 22.3 metres. These interbedded sandstones and mudstones support a perched aquifer system that has a water level of around 2.5 metres depth and also acts as leaky aquitard, due to the fractured nature of the bedrock, to the thick sandstone lithologies below. The water level of the groundwater table is approximately 16.8 metres below ground. Thick sandstones extend from 22.3 29 to 44.5 metres below ground and are mainly coarse-grained with a fining upwards sequence near the top. The coarse-grained sandstones show interbedded layers of light brown and salt and pepper coloring less than one metre in thickness and are underlain by grey shale. The grey shale most likely acts as an aquitard. With the two confining layers, one above and one below, the sandstone package can be considered as a leaky confined aquifer.

3.2 Aquifer Definition

Two hydrogeological cross-sections (Figure 9 a and b) were developed based on data from water well drilling records (Table 5), the core from the two research pumping wells that were installed as part of the field program (Jarvis Bay and

Sunbreaker Cove), an outline of the surface topography, bedrock topography, and main lithological units considered in this study. A channelized sandstone aquifer in the Sylvan Lake watershed was defined through the interpretation of

AENV water well drilling reports and extends along the northeastern margin of the lake (Figures 2, 9 a and b). The channelized sandstone was identified by correlating thick (>10 m) sandstone layers in the water well drilling reports. The water table surface is delineated based on the original non-pumping water level in drilling records as well as surface water levels (Figure 3). The slope of the water table is used to infer groundwater flow direction, whereby flow is directed into the lake on the northwest end of the lake and flow out of the lake on the southeast and south sides of the lake. 30

The locations where hydraulic head measurements were taken for hydraulic gradient calculation are indicated on the index maps (Figure 9a and 9b). Two locations are in the sandstone channel aquifer, as defined above, on the north edge of the lake (AENV Well Nest 4 and 2), and one location is on the south side of the lake (AENV Well Nest 7) in the shale dominated bedrock, based on the lithology description from the drilling reports of the wells in AENV Well Nest 7.

Positive gradients flow into the lake and negative gradients flow out of the lake.

Although some of the gradients were negative, they were not significantly different than zero. The highest gradients were observed between AENV Well

Nest 7 and the lake (~ 0.04), while the gradients between the deeper wells in the sandstone channel aquifer (well nests 4 and 2) are close to zero (Table 6). This is consistent with a low resistance to groundwater flow caused by a relatively high hydraulic conductivity of the sandstone aquifer as compared to the lower hydraulic conductivity of the shale dominated bedrock. The gradient between the shallowest well at AENV Well Nest 2 and Sylvan Lake has a hydraulic gradient in the range of 0.01 and suggests the shales above the sandstone aquifer have low hydraulic conductivities and are confining. When gradients are not measured parallel to the groundwater flow in question the resulting gradients are less than the maximum gradient and can be referred to as apparent gradients. For the shallow piezometers in each nest, the groundwater flow direction is likely down towards Sylvan Lake and these gradients are likely representative of the true gradient. Alternatively the deeper groundwater flow in the local areas of the 31

nested piezometers is difficult to define. The gradients obtained between the

deeper piezometers and the lake therefore may represent apparent gradients

(less than the true gradient) if the groundwater flow direction is not towards the

lake.

3.2.1 Pumping Test Results

A pumping test was conducted on the Sunbreaker Cove Research Pumping

Well. The well was pumped at a rate of 1000 lpm for three days, with three days

of recovery afterwards. The three nested wells at AENV well nest 4 were used as

observation wells in conjunction with two nearby private wells. The water level in

the pumping well dropped approximately one metre in the first minute and then

remained stable for the duration of the pumping. One might have expected to

observe a decrease in drawdown after some time as the drawdown cone

reached the recharge boundary of the lake. This was not observed, possibly

because the pumping duration was not long enough, or the discharge rate was

not great enough to adequately stress the aquifer. Results were used to calculate

hydraulic conductivity and storativity, estimated from the Cooper-Jacob and

Theis methods, providing average estimates 2.64 x 10-4 m/s and 3.4 x 10-4 respectively (Table 7a, b, and c). The estimated hydraulic conductivities are high relative to previous elsewhere in the Paskapoo Formation (10-7 to 10-4 m/s

(Gabert, 1975) and 10-14 to 10-1 m/s (Grasby et al., 2008)), but this is not 32 surprising given that the fractured sand channel environment tested here is likely more permeable than the overall Paskapoo Formation.

3.2.2 Geochemical characterization

A hierarchical cluster analysis involving eleven major water chemistry parameters

(pH, EC, Ca, Mg, Na, K, HCO3, SO4, Cl, SiO2, and F) confirmed the presence of two distinct groundwater populations. These two populations are evident on piper diagram (Figure 10) and are defined as Ca-Mg rich groundwater and Na-rich groundwater types. Generally the Ca-Mg rich groundwater represents shallow samples and the Na-rich groundwater represents deeper groundwater samples, consistent with the results from the Red Deer Regional Groundwater Assessment

(hydrogeological consultants ltd, 2005). Figure 10 also shows that precipitation and lake water are distinctly different from groundwater (Table 8a and b). The lake water plots in between the two groups of groundwater based on the sodium content, however, it has a higher fraction of magnesium than calcium.

Precipitation is Ca-Mg rich but is distinctly more calcium rich than lake water. The anion composition of the groundwater is dominantly bicarbonate with minor tendency towards sulphate enrichment occurring in the Na-rich groundwater group. No spatial trend was observed in the groundwater cation chemistry (Ca-

Mg-rich groundwater versus Na-rich groundwater) chemistry. 33

Oxygen and hydrogen isotopes in groundwater fall on the local meteoric water

line, while samples from the lake fall below the local meteoric water line, which is

indicative of evaporation (Gonfiantini, 1986) (Figure 7). Oxygen isotope ratios in

the lake water ranged from -9.21 to -9.04 ‰ while hydrogen isotope ratios

ranged from -95.3 to -92.0 ‰. Oxygen isotope ratios in the groundwater ranged

from -20.6 to -17.4 ‰ and hydrogen isotope ratios ranged from -159 to -137 ‰.

Calculated oxygen and deuterium isotope concentrations for ambient air, and

dessication were calculated. The calculated ambient air isotopic composition falls

close to the meteoric water line, while the isotopic composition for the dessication

of the lake falls along the local evaporative line, consistent with literature (Gibson

et al., 2002).

Deuterium excess (d-excess) is defined as

d   2 H  8 18 O (10)

Where deuterium excess ( ) is equal to eight times the isotopic composition of

oxygen-18 ( 18O ) subtracted from the isotopic composition of deuterium (  2 H )

(Dansgaard, 1964). Different air-sea conditions at distinct water vapour sources

result in a series of meteoric water lines with specific deuterium-excess values

(Gat, 1981), therefore D-excess can be used to compare waters that have undergone evaporation under certain meteorological conditions. Calculated groundwater deuterium excess values had a spatial distribution (Figure 11) parallel to the long axis of Sylvan Lake and similar to the regional groundwater flow (Figure 3). In comparing the groundwater deuterium excess values (-6 to 11 34

‰) to the Lake deuterium values (-22.62 to -19.37 ‰), negative deuterium excess values from groundwater sample points were found to occur along the margin of the Lake. Negative deuterium excess groundwater values could represent lake water flowing out of the Lake. The groundwater samples with negative deuterium excess values to the south-east (down-gradient) of the Lake

(SL13, 21, and 34) may represent a lake water signature in the groundwater.

Other negative values of groundwater deuterium excess occur around the northwestern margin of Sylvan Lake and would seem to indicate lake water outflow to the northwest (opposite to the regional groundwater gradients (Figure

3).

3.3 Lake water balance

3.3.1 Darcy’s Method

Estimates of groundwater discharge into the lake from the channel sandstone were calculated using the Darcy’s Law method. Results range from less than

1x106 m3/yr to more than 40x106 m3/yr. This variability is primarily related to the uncertainty in the estimate of the cross-sectional area of the channel that is hydraulically connected to the Lake. This may be as small as 2000 m2 (100m length, assuming a 20 m thickness) or as large as 260, 000 m2 (the entire length of the lake, assuming a 20 m thickness). An additional source of error may stem from the gradient calculations. It is possible that the gradients obtained from the deeper piezometers represent apparent gradients that are less than the true 35

gradient if the deep groundwater flow direction is not directed towards Sylvan

Lake. Although this may be the case, the resulting estimates of flow could be

considered conservative as the true groundwater gradient would be greater and

therefore the resulting flow would also be greater.

3.3.2 Mass Balance Methods

Estimates of groundwater flux using the chloride mass balance method were

16.4 x 106 m3/yr into the lake and 18.6 x 106 m3/yr out of the lake, while

estimates of groundwater flux into and out of the lake were 12.6 x 106 and 14.8 x

106 m3/yr respectively for oxygen-18 and 10.8 x 106 and 12.9 x 106 m3/yr respectively for deuterium.

4 Discussion

4.1 Conceptual Model

The conceptual model for groundwater and surface water interaction is

summarised in Figure 12. The main flux of groundwater is thought to occur in the

sandstone channel running along the north edge of the lake. Iron staining haloes

observed along fractures in the core suggest groundwater flow in the past and/or

present. The surrounding shales act as leaky confining layers where the

groundwater flux is much lower. This type of scenario fits with the description of

the Paskapoo Formation (Grasby et al., 2008; Smith and Putnam, 1980). Shallow

groundwater is calcium and magnesium rich, suggesting recharge from local 36 sources (infiltration of precipitation through calcium and magnesium rich surficial tills), while deeper groundwater is sodium-rich suggesting a longer flow-path which would allow for more water-rock interaction with bedrock materials.

Source waters to the lake include precipitation, groundwater, and surface water run-off. Water flux out of the lake includes groundwater outflow and occasionally surface water outflow (when the lake levels are higher than a threshold water level). From historic records the threshold water level at which surface water outflow occurs has varied depending on changes that were made to the outlet structure but is currently greater than 367.5 masl and has rarely been exceeded in the past few decades. For this reason, surface water outflow is assumed to be zero in the chloride mass balance. This was also assumed in previous lake balance efforts (AXYS Environmental Consulting Ltd., 2005; Figliuzzi, 1976). The remaining fluxes can be written as a water mass balance, which when combined with a chloride mass balance, can be solved for the unknown variables of groundwater flow into (VI) and out of (VO) the lake.

Although the conceptual model includes groundwater outflow from the lake, no physical evidence of such a flow was obtained. Possible direct indicators of groundwater outflow from Sylvan Lake would include relatively high magnesium concentrations with respect to the other major cations, and an evaporated isotopic signature as indicated from deuterium excess values. While some of the sample points were in a location and elevation where outflow from the lake to 37

groundwater might be anticipated, no conclusive evidence of lake water outflow

was found. This may be related to a high degree of subsurface heterogeneity

(e.g. a meandering sandstone channel pathway) and/or to a high degree of

mixing in the groundwater resulting in dilution of the lake water chemistry

signatures.

All three water balance methods use the same base conceptual model. Should it

need modification in the future then the resulting fluxes would also need

adjustments.

4.2 Groundwater Quantification

4.2.1 Darcy’s Law Method

The Darcy’s Law method results are within the same order of magnitude of the

previous AXYS (2005) results. The estimates of groundwater flux that were obtained from the Darcy’s Law method also show the widest range of results.

The least reliable parameter in this estimation is the cross-sectional area of the channel that intersects that lake. The inherent error in this estimation stems from uncertainty related to driller’s records, but also to the interpretive nature of developing a cross-section. The driller’s records are often only located to the centre of the quarter section and therefore the elevation, which is estimated from the digital elevation model (DEM), can be off by as much as a few metres.

Secondly a driller’s descriptions of lithology may vary from driller to driller and 38

this can lead to problems when interpreting lithology correlations. Even without

these issues there is some error introduced when making stratigraphic

correlations. The error in this method is too great with respect to the resulting

discharge estimates but provides a preliminary range of discharge.

Since the hydraulic gradients are also very low, small variations in their

estimation will have a significant impact on the resulting discharge. Overall the

estimates from the Darcy’s Law method likely have the greatest error. While the

results are not discriminating they are in agreement with the estimates obtained

from the mass balance methods.

4.2.2 Mass Balance Methods

The results from the three water mass balance estimates of groundwater flux all

indicate that precipitation (23.7 x 106 m3/yr) and evaporation (27.4 x 106 m3/yr) are the dominant fluxes into and out of the lake (Table 9). By including upper and lower limits to the input parameters, evaporation and runoff, the resulting range of mass balance estimates provide upper and lower limits of the estimated fluxes of groundwater. The estimates of groundwater inflow (10.8 to 16.4 x106 m3/yr)

and groundwater outflow (12.9 to 18.6 x106 m3/yr) are similar in the three

methods. These groundwater fluxes result in an estimated net groundwater

contribution of about -2.2 x 106 m3/yr (net groundwater flux is out of lake). In one

previous study the net groundwater contribution to the lake was estimated to be 39

close to zero (Figliuzzi, 1993) while another study estimated the net groundwater

flux (as a residual term) to be anywhere from -8.2 x 106 m3/yr to 8.1 x 106 m3/yr

(EBA Engineering, 1976). While the resulting net (e.g.: inflow minus outflow) groundwater flux is relatively small, the chloride mass balance implies that the individual groundwater fluxes (inflow and outflow) may have a significant impact on the resulting chemical lake water budget. A groundwater flux out of a lake can serve as a means of lowering and stabilising the overall lake water temperatures and as a means of mass transport for lake water that becomes enriched in total dissolved solids through evaporation.

4.2.3 Sylvan Lake Groundwater Fluxes as compared with groundwater fluxes from literature

Estimates of groundwater flux have not been made for the nearest two south- central Albertan Lakes, Pine Lake and Gull Lake. These two lakes have much in common with Sylvan Lake; they are both situated in areas where the bedrock formation is the Paskapoo, and surficial sediments consist of glacial tills; and the climatic conditions are similar. Although groundwater has not been quantified for

these lakes, it has been identified as a possible important input to Pine Lake.

Even though these two lakes have similar settings as Sylvan Lake, and may

have groundwater inputs, they are eutrophic as opposed to mesotrophic

(Sylvan). It has been suggested that smaller lakes may be more strongly affected

by short-term perturbations related to flood/drought cycles (Gibson et al., 2002). 40

The mean water depth at Sylvan Lake is twice that of either Pine Lake of Gull

Lake (Table 1) and could play a role in the differing trophic statii.

An integrated study of groundwater flux, similar to the study done here on Sylvan

Lake, was completed for the oligotrophic to mesotrophic Narrow Lake (Shaw et al., 1990) in north-central Alberta. The integrated approach included using direct measurement of seepage with mini-piezometers, and seepage meters, Darcy’s

Law calculations, ion and water mass balances, and a mathematical model. The study concluded that shallow groundwater flux into the lake was approximately

30% of total inputs to the lake and that groundwater outflow occurs in the deeper off-shore portions of the Lake. The groundwater flow regime described for

Narrow Lake is similar to the groundwater flow regime suggested by this study with groundwater inflow at Sylvan Lake representing between 27 and 36 percent of total water inputs to the Lake. Narrow Lake and Sylvan Lake are two and three times as deep, respectively, as Pine and Gull Lake (Table 1). It is possible that the groundwater outflow from Narrow Lake and Sylvan Lake has an influence on the trophic status that is not found in Pine Lake or Gull Lake since groundwater outflow at these lakes has not been suggested as a part of their water budgets.

Estimates of groundwater flux in literature are not as prolific as one might expect.

Although, in the following referenced literature, many of the variables affecting the water balance of a lake may be quite different from Sylvan Lake, such as lake 41 size, climatic conditions, geologic and hydrogeologic conditions, the groundwater interaction at Sylvan Lake is compared to these lakes for perspective.

When the groundwater influx to Sylvan Lake is referenced to the total lake volume, the flux percentage is low (2-5%) with respect to other lakes in literature

(Baptiste Lake, Alberta, 7-22% (Crowe and Schwartz, 1981b) and Hamilton

Harbour, Ontario, ~7.5% (Harvey et al., 2000)), but when the groundwater influx is referenced as a percent of the total water inputs (27-36%), the flux is higher than those in literature (Hamilton Harbour, Ontario, 8% (Harvey et al., 2000),

Lake Chad, African Sahel, 21% (Isiorho et al., 1996)).

Estimates of groundwater outflow from Sylvan Lake are lower than other lakes in literature (Lake Windermere, Australia, 84% of the total outflows (Jacobson and

Schuett, 1984) as compared to Sylvan Lake, 32-40% of the total outflows and

Laguna Azul and Laguna Potrok Aike, Patagonia, Argentina 50% and 40% of the total lake volume respectively, (Mayr et al., 2007), as compared to Sylvan, 3-5% of total lake volume.

4.3 Implications

The annual groundwater contribution to Sylvan Lake (31% of total surface water inputs) is comparable to the results of other groundwater-lake interaction studies

(Crowe and Schwartz, 1981b; Isiorho et al., 1996; Mayr et al., 2007; Shaw et al., 42

1990). The groundwater contribution can flush Sylvan Lake once every 25 to 40 years. This residence time is significantly less than has previously been estimated for Sylvan Lake (greater than 100 years (Harvey et al., 2000; Mitchell,

1990)), and likely plays a part in maintaining the anomalously low trophic status of Sylvan Lake as compared to other central Alberta Lakes (Figure 1). In addition to overestimating the lake water residence times, water mass balance methods where groundwater fluxes are determined as residual factors, can lead to significant errors in the resulting fluxes and the chemical budget of the lake.

Even when groundwater is taken into account in a water mass-balance it is not uncommon to use a lumped net groundwater term (Birks and Remenda, 1999;

Roy and Hayashi, 2008; van der Kamp et al., 2008). This lumped term does not take into account the effect that the exchanging of lake water with groundwater can have on the geochemistry. For example a water mass balance may indicate that the net groundwater term is close to zero suggesting that groundwater is not significant in the water mass balance but the individual fluxes of groundwater into and out of the lake maybe similar in magnitude and far from zero. These fluxes will inevitably play a significant role in the water chemistry budget of a lake if influx water is significantly different then outflow lake water. Using the chloride mass balance as an indicator for the bulk water chemistry budget, this appears to be the case for Sylvan Lake. 43

The relatively small but consistent flushing out of Sylvan Lake by groundwater helps to offset the salinization effects from evaporation as well as to maintain lower water temperatures in the lake.

While the two isotope mass balances could be considered as having the greatest value because less data is required to obtain estimates of water balance fluxes, it is important to include independent estimates in order to give confidence to the resulting fluxes. Each method has varying strengths and weaknesses related to issues of scale or assumptions made in the conceptual model. By employing independent methods that focus on different scales the results can be checked against one another.

A key finding of this work was that the presence of the channel sandstone aquifer along the north edge of the lake has significant implications for land-use practices. Because of the exchange of groundwater and lake water along the channel aquifer, groundwater contamination along the north edge of the lake may have a more direct impact on the lake water quality. 44

5 Conclusions

The groundwater contribution to the lake water balance at Sylvan Lake Alberta was investigated using a multi-scale approach that included a Darcy’s Law method, and three mass balance methods (chloride, oxygen isotopes, and deuterium isotopes).

The methods in this study are adaptable to a variety of lake settings for analysis of regional groundwater flow regime because they are economical, not requiring expensive instrumentation.

The major findings of this work are:

1) A fractured water-bearing channel sandstone runs along the north side

of Sylvan Lake and sits in a matrix of shale with small sandy interbeds.

Due to the hydraulic connection of the sandstone channel with Sylvan

Lake, development along the north side of the lake (above the

channel) may have more significant impacts on the lake water quality

than development elsewhere around the lake.

2) Groundwater through-flow is a small, but significant, part of the lake

water balance and is at least partly responsible for maintaining the low

trophic status of Sylvan Lake. 45

3) The majority of this groundwater flow is thought to occur in the

hydraulically connected channel sandstone aquifer of the Paskapoo

Formation, running along the northern edge of the lake.

4) Three mass balance methods suggest about 27 to 36 % of the annual

lake water inputs is groundwater, resulting in a lake residence time of

20 to 35 years. This residence time is significantly lower than the

previous estimate of 100 years (Mitchell, 1990). These mass balances

would not have been possible without a strong understanding of the

geology and hydrogeology in the watershed in order to develop a

representative conceptual model.

5) The use of a lumped sum net groundwater term in a lake water

balance must be evaluated with respect the water quality in a through-

flow lake setting. 46

References

Alberta Environment, Unpublished Data, Technical Services Division, Hydrology, . -, 2005a, Mean Annual Calculated Lake Evaporation: Alberta Environment. -, 2005b, Median Annual Unit Runoff: Alberta Environment, scale Climate. Almendinger, J. E., 1990, Groundwater Control of Closed-Basin Lake Levels Under Steady-State Conditions: Journal Of Hydrology, v. 112, no. 3-4, p. 293-318. Appelo, C. A. J., and Postma, D., 1996, Geochemistry, Groundwater and Pollution, AA Balkema,/Rotterdam/Brookfield. AXYS Environmental Consulting Ltd., 2005, Sylvan Lake Water Quality Asessment and Watershed Management Considerations. Baker, J., 2003, Sylvan Lake - Groundwater Interaction: Thesis (B.Sc.). University of Calgary, Department of Geology and Geophysics. Barr, A. D., Turner, J. V., and Townley, L. R., 2000, WSIBal: a coupled water, conservative solute and environmental isotope mass balance model for lakes and other surface water bodies: IAHS Publication (International Association of Hydrological Sciences), no. 262, p. 539­ 544. Barthel, R., Jagelke, J., Gotzinger, J., Gaiser, T., and Printz, A., 2008, Aspects of choosing appropriate concepts for modelling groundwater resources in regional integrated water resources management - Examples from the Neckar (Germany) and Oueme catchment (Benin): Physics And Chemistry Of The Earth, v. 33, no. 1-2, p. 92-114. Becker, M. W., Georgian, T., Ambrose, H., Siniscalchi, J., and Frederick, K., 2004, Estimating flow and flux of groundwater discharge using water temperature and velocity: Journal of Hydrology, v. 296, no. 1-4, p. 221-223. Birks, S. J., and Remenda, V. N., 1999, Hydrogeological investigation of Chappice Lake, southeastern Alberta: Groundwater inputs to a saline basin: Journal Of Paleolimnology, v. 21, no. 2, p. 235-255. Born, S. M., Smith, S. A., and Stephenson, D. A., 1979, Hydrogeology of glacial-terrain lakes, with management and planning applications: Journal of Hydrology, v. 43, p. 7-43. Carlson, V. A., 1970, Bedrock Topography of the Rocky Mountain House Map Area, Alberta: NTS 83B. Research Council of Alberta Map. Cey, E. E., Rudolph, D. L., Parkin, G. W., and Aravena, R., 1998, Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada: Journal Of Hydrology, v. 210, no. 1-4, p. 21-37. Chen, Z., Grasby, S. E., Hamblin, T., and Xiu, S., 2007, Paskapoo Groundwater Study, Part II: Sandstone thickness and porosity estimations using well log data for the aquifer system in the Tertiary Paskapoo Formation, Alberta: Geologic Survey of Canada, Open File 5445. Cherkauer, D. S., and Nader, D. C., 1989, Distribution Of Groundwater Seepage To Large Surface-Water Bodies - The Effect Of Hydraulic Heterogeneities: Journal Of Hydrology, v. 109, no. 1-2, p. 151-165. Constantz, J., Stewart, A. E., Niswonger, R., and Sarma, L., 2002, Analysis of temperature profiles for investigating stream losses beneath ephemeral channels: Water Resources Research, v. 38, no. 12, p. 1316. Cook, P. G., Wood, C., White, T., Simmons, C. T., Fass, T., and Brunner, P., 2008, Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon: Journal Of Hydrology, v. 354, no. 1-4, p. 213-226. Craig, H., and Gordon, L. I., 1965, Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, Stable Isotopes in Oceanographic studies and Paleotemperatures, Consiglio nazionale delle richerche, Laboratorio de geologia nucleare. 47

Crowe, A. S., and Schwartz, F. W., 1981a, Simulation Of Lake-Watershed Systems.1. Description And Sensitivity Analysis Of The Model: Journal Of Hydrology, v. 52, no. 1-2, p. 71-105. -, 1981b, Simulation Of Lake-Watershed Systems.2. Application To Baptiste Lake, Alberta, Canada: Journal Of Hydrology, v. 52, no. 1-2, p. 107-125. Dansgaard, W., 1964, Stable Isotopes in Precipitation: Tellus, v. 16, p. 436-468. Demchuk, T. D., and Hills, L. V., 1991, A re-examination of the Paskapoo Formation in the central Alberta Plains; the designation of three new members: Bulletin of Canadian Petroleum Geology, v. 39, no. 3, p. 270-282. Dincer, T., 1968, The Use of Oxygen 18 and Deuterium Concentrations in the Water Balance of Lakes: Water Resources Research, v. 4, no. 6, p. 1289-1307. EBA Engineering, 1976, The Ground-water effects of Lowering and Stabilization of Sylvan Lake, Alberta: Alberta Environment. Environment Canada, 2005, Canadian National Atmospheric Database; Precipitation Water Quality Monitoring Program in Alberta: Alberta, Canada, Environment Canada. -, 2007, Canadian Climate Normals 1971-2000: Ottawa, ON, Environment Canada. Figliuzzi, S. J., 1976, Sylvan Lake Hydrological Study: Alberta Department of the Environment. -, 1993, Sylvan Lake Study of Regulation by Outlet Control Structure: Alberta Environmental Protection. Froehlich, K., 2000, Evaluating the water balance of inland seas using isotopic tracers: the Caspian Sea experience: Hydrological Processes, v. 14, no. 8, p. 1371-1383. Gabert, G. M., 1975, Hydrogeology of Red Deer and the vicinity, Alberta, Alberta Research Council. Gat, J. R., 1981, Paleoclimate conditions in the Levant as revealed by the isotopic composition of paleowaters: Israel Meteorological Research Papers, v. 3, p. 13-28. Gibson, J. J., Prepas, E. E., and McEachern, P., 2002, Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of Boreal lakes: Journal Of Hydrology, v. 262, no. 1-4, p. 128-144. Gonfiantini, R., 1986, Environmental Isotopes in Lake Studies, Handbook of Environmental Isotope Geochemistry: New York, Elsevier, 113-168 p. Grasby, S. E., Chen, Z., Hamblin, A. P., Wozniak, P. R. J., and Sweet, A. R., 2008, Regional characterization of the Paskapoo bedrock aquifer system, southern Alberta: Canadian Journal of Earth Sciences, v. 45, no. 11, p. 1501. Grasby, S. E., Hutcheon, I., and McFarland, L., 1999, Surface-water-groundwater interaction and the influence of ion exchange reactions on river chemistry: Geology, v. 27, no. 3, p. 223­ 226. Gresswell, R. K., and Huxley, A. J., 1965, Standard encyclopedia of the world's rivers and lakes, Putnam New York. Guyonnet, D. A., 1991, Numerical Modeling Of Effects Of Small-Scale Sedimentary Variations On Groundwater Discharge Into Lakes: Limnology And Oceanography, v. 36, no. 4, p. 787­ 796. Hagerthey, S. E., and Kerfoot, W. C., 2005, Spatial variation in groundwater-related resource supply influences freshwater benthic algal assemblage composition: Journal of the North American Benthological Society, v. 24, no. 4, p. 807-819. Hamblin, A. P., 2004, Paskapoo-Porcupine Hills Formations in western Alberta: Synthesis of regional geology and resource potential, Geological Survey of Canada, Open File 4679. Harvey, F. E., Rudolph, D. L., and Frape, S. K., 2000, Estimating Ground Water Flux into Large Lakes; Application in the Hamilton Harbor, Western Lake Ontario.: Ground Water, v. 38, no. 4, p. 550-565. hydrogeological consultants ltd, 2005, Red Deer Regional Groundwater Assessment. Isiorho, S. A., Matisoff, G., and Wehn, K. S., 1996, Seepage Relationships between Lake Chad and the Chad Aquifers: Ground Water, v. 34, no. 5, p. 819-826. 48

Jacobson, G., and Schuett, A. W., 1984, Groundwater Seepage And The Water-Balance Of A Closed, Fresh-Water, Coastal Dune Lake - Lake Windermere, Jervis Bay: Australian Journal Of Marine And Freshwater Research, v. 35, no. 6, p. 645-654. JФrgensen, S. E., 2003, The application of models to find the relevance of residence time in lake and reservoir management: J. Limnol, v. 62, no. 1, p. 16-20. Kalbus, E., Reinstorf, F., and Schirmer, M., 2006, Measuring methods for groundwater - surface water interactions: a review: Hydrology And Earth System Sciences, v. 10, no. 6, p. 873­ 887. Konikow, L. F., and Bredehoeft, J. D., 1992, Groundwater Models Cannot Be Validated: Advances In Water Resources, v. 15, no. 1, p. 75-83. Kraemer, T. F., 2005, Radium isotopes in Cayuga Lake, New York: Indicators of inflow and mixing processes: Limnology And Oceanography, v. 50, no. 1, p. 158-168. LaBaugh, J. W., Winter, T. C., Rosenberry, D. O., Schuster, P. F., Reddy, M. M., and Aiken, G. R., 1997, Hydrological and chemical estimates of the water balance of a closed-basin lake in north central Minnesota: Water Resources Research, v. 33, no. 12, p. 2799-2812. Lee, D., and Cherry, J., 1978, A Field Exercise on Ground Water Flow Using Seepage Meters and Mini-Piezometers: Journal of Geological Education, v. Vol 27, no. No 1, p. p 6-10. Loveless, A. M., Oldham, C. E., and Hancock, G. J., 2008, Radium isotopes reveal seasonal groundwater inputs to Cockburn Sound, a marine embayment in Western Australia: Journal Of Hydrology, v. 351, no. 1-2, p. 203-217. Majoube, M., 1971, Fractionnement en oxygene-18 et en deuterium entre l’eau et sa vapeur: J. Chim. Phys, v. 58, p. 1423–1436. Mayr, C., Lücke, A., Stichler, W., Trimborn, P., Ercolano, B., Oliva, G., Ohlendorfe, C., Soto, J., Fey, M., Haberzettl, T., Janssen, S., Schäbitz, F., Schleser, G. H., Wille, M., and Zolitschka, B., 2007, Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H): Journal of Hydrology, v. 334, no. 1-2, p. 53-63. Meyboom, P., 1961, Groundwater Resources of the City of Calgary and Vicinity: Alberta Research Council Bulletin, no. 8. Mitchell, P., 1990, The Atlas of Alberta Lakes, University of Alberta Press. -, 1999, Assessment of Water Quality in Sylvan Lake: Alberta Environment. Möller, P., Rosenthal, E., Geyer, S., Guttman, J., Dulski, P., Rybakov, M., Zilberbrand, M., Jahnke, C., and Flexer, A., 2007, Hydrochemical processes in the lower Jordan valley and in the Dead Sea area: Chemical Geology, v. 239, no. 1-2, p. 27-49. Moran, J. M., and Morgan, M. D., 1991, Meteorology: The atmosphere and the science of weather: New York: Macmillan, 1991, 3rd ed. Ojiambo, S. B., Lyons, W. B., Welch, K. A., Poreda, R. J., and Johannesson, K. A., 2003, Strontium isotopes and rare earth elements as tracers of groundwater-lake water interactions, Lake Naivasha, Kenya: Applied Geochemistry, v. 18, p. 1789-1805. Oxtobee, J. P. A., and Novakowski, K., 2002, A field investigation of groundwater/surface water interaction in a fractured bedrock environment: Journal Of Hydrology, v. 269, no. 3-4, p. 169-193. Rahmani, R. A., and Lerbekmo, J. F., 1975, Heavy mineral analysis of Upper Cretaceous and Paleocene sandstones in Alberta and adjacent areas of Sakatchewan: The Cretaceous System in the Western Interior of North America. Geological Association of Canada, Special Paper, v. 13, p. 607-632. Roy, J. W., and Hayashi, M., 2008, Groundwater exchange with two small alpine lakes in the Canadian Rockies: Hydrological Processes, v. 22, p. 2838-2846. Sacks, L. A., Herman, J. S., Konikow, L. F., and Vela, A. L., 1992, Seasonal Dynamics Of Groundwater-Lake Interactions At Donana National-Park, Spain: Journal Of Hydrology, v. 136, no. 1-4, p. 123-154. 49

Shaw, R. D., and Prepas, E. E., 1990, Groundwater-lake interactions: I. Accuracy of seepage meter estimates of lake seepage: Journal of Hydrology, v. 119, no. 1-4, p. 105. Shaw, R. D., Shaw, J. F. H., Fricker, H., and Prepas, E. E., 1990, An Integrated Approach To Quantify Groundwater Transport Of Phosphorus To Narrow Lake, Alberta: Limnology And Oceanography, v. 35, no. 4, p. 870-886. Shetson, I., 1990, Quaternary Geology, Central Alberta: Alberta Geological Survey, scale Maps. Smith, D. G., and Putnam, P. E., 1980, Anastomosed river deposits: modern and ancient examples in Alberta, Canada: Can. J. Earth Sci, v. 17, p. 1396-1406. Strong, W., and Ltd, E. L. S., 1992, Ecoregions and Ecodistricts of Alberta, Alberta Forestry, Lands and Wildlife, Land Information Services Division, Resource Information Branch. Subyani, A., and Sen, Z., 2006, Refined chloride mass-balance method and its application in Saudi Arabia: Hydrological Processes, v. 20, no. 20, p. 4373-4380. Taniguchi, M., Burnett, W. C., Smith, C. F., Paulsen, R. J., O'Rourke, D., Krupa, S. L., and Christoff, J. L., 2003a, Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico: Biogeochemistry, v. 66, no. 1-2, p. 35-53. Taniguchi, M., and Fukuo, Y., 1993, Continuous Measurements Of Groundwater Seepage Using An Automatic Seepage Meter: Ground Water, v. 31, no. 4, p. 675-679. Taniguchi, M., Turner, J. V., and Smith, A. J., 2003b, Evaluations of groundwater discharge rates from subsurface temperature in Cockburn Sound, Western Australia: Biogeochemistry, v. 66, no. 1-2, p. 111-124. Thorleifson, L. H., and Pyne, D. M., 2003, Conversion of Lithological Data in the Manitoba Water Well Database (GWDrill) to a mappable format: Geological Survey of Canada Open File 03-471. van der Kamp, G., Keir, D., and Evans, M. S., 2008, Long-Term Water Level Changes in Closed- Basin Lakes of the Canadian Prairies: Canadian Water Resources Journal, v. 33, no. 1, p. 23-38. Winter, T. C., 1999, Relation of streams, lakes, and wetlands to groundwater flow systems: Hydrogeology Journal, v. 7, no. 1, p. 28-45. 50 Figures i L L F n a a i g A k k u e e l 3 b r

e CHLORO PHYLL a (mg/m ) b c e h e r 1 t l t 1 1 1 a a o w 0 2 4 2 4 6 8 , : r e o 0 0 0 0 0 0 0 0 a Ch e p s n h a a y 1 r n ( O l t l L 9 Jarvis l a i s o 8 i n g h S w 4 Gu d l Gregg o e y o i a t c l v w P r v l a n

e T ravers o l r a i n t d l o p L s n o g d a Miquelon h r 2 ( ( ( M a L u k i 2 2 M m 0 c o a r e c e . T ouchwood . e 0 f k 5 5 o e t s i 1 t e d - v a h o r 8 Dillberry 8 e o i n i i t t g s r y r p m m o a h c Sylvan ) h 2 p t l o g g i i 4 e c g h n / Spruce Coulee / m m h i m P c c s A t e 3 t r e

g Police Outpost p a ) ) o n d / t p d t m u . r

Newell r u a s W o 3 c t x ( i t ( Crim son o h f i i A v r m n i o l i l e t b s Elk water m a y e ) t o P r Garner e M f t i n a c r i e a

t Chain Lak es … h E c n l L h o n

Beauvais k a e r v o o k l i l r p , e

Gull f o h P P n w y i m Gregoire n a l a l n e e s a McLeod d n L n ( ( ( ( E t a M A o 8 8 H , North Buck u k t - t l i a e b t 2 2 e g i r n y Buffalo Main … c e 5 5 h o c h r p t m m t P o l n Reesor a u h r i g g d i S c o c E / / e Buffalo … a e d m m n d l p u v d W abam un 3 t c o i ) ) e r a t n o i m t Pigeon v a n t i b t , h m y e 2

i Moose ) s e r 0 , n c

0 La Biche 1 t h 6 ) 9 a . ) Vincent 8 r F i t 3 n , o Long d t r - h i c c 2

e Moonshine a o 0 t m m 0 i

n T hunder 2 e p g ) a a Lesser Slave E. i a n r n i s e

c Sturgeon Main P o u h r n t l o Sask atoon o r o p v r ( H i o p u V

n Steele y p h r e c p p h i i r c Ste. Anne E. a o e y y l s r s l l e H P e

t Isle a a u s i a g t t c u r W inagam i r S h k o o s y p n P L

l La Nonne f h v c o r a a o i e r c k Lower Chain n d n e P u t s L r i Lesser Slave W . c n a a a t e t i k i n v

o Upper Chain e L i d t n , a Ste. Anne W . y o G ) k m t e h u

e Middle Chain . e l a l r L s Cardinal s u a e r k

e Sandy S. l e e d c

a Sandy N. t i n n l a d 0 2 4 6 8 1 1 1 P k 0 0 0 0 0 2 4 P i e n 0 0 0

i

s n e 51 e L a l F a a n i k g k d 3 e u

e TOTAL PHO SPHORUS (mg/m ) s r P , e i i 1 2 3 4 5 6 7 8 9 A n n 1 0 0 0 0 0 0 0 0 0 e l b b A 0 0 0 0 0 0 0 0 0 0 e L : l b r a Ch t e k a r e t a ( ( O b Gregg a < L r a e , l t S o 1 i Gu r t g a Jarvis s y e w w 0 o s h l v e h l m t o Travers P l a r a e i o w g L r n n g n o a p h i

Dillberry / n L i m d k h 1 l n i a g e g u i 9 d c Touchwood 3 k h c 8 ) m i e c t t 4 i e a v e Newell d ( ( M a t i a t o 1 M . n y n

Crimson e r 0 ) W d o s - o c d 3 o 2

f Sylvan o h e 5 t 0 t n i r r l r o e 0 a m c

o Spruce Coulee p 1 e t p P e g h n h

i McLeod i / s i n t P m A i c r c e a 8 r Beauvais p 3 o s t 0 p ) L i d t o r a a

m Gregoire u n o t k c u s x g e t

s Police Outpost i / i o m v m w ( f i f t Reesor a a 3 t r y o t o s ) ( e t m A Lesser Slave E. a n r l l o b a M p Chain Lakes … t e n h i i r k t n t o c North Buck a c o s h l f p E u e Pigeon h P d l n l , o i e v Wabamun n P r d i r e o o o u a

Garner L n n s n a m d k ( t Elkwater h M e e A i n s a

l Moose t b y , c e t h

t Gull e r ( ( E o a t 3 H c a u r S 5 h Lesser Slave W. i t t g E , - r n e 1 h o t n i p

h Long c 0 p v t P e a 0 e h i r r l Vincent m i m o o c m d n d b a e

Ste. Anne E. g m u e t a / a c m r n e , , Buffalo Main … t i n 3 v 2 1 t ) o t i 0 9 ) Thunder t t . y 0 8 a ) F 6 3 l Buffalo … o ) p - r h i n 2 Upper Chain c o d 0 o s i 0 c m Lower Chain p 2 a h p ) t o Middle Chain i a n i r n r o g

i Sturgeon Main ( ( H s u P > V a o s y r 1 e n o Steele p e c 0 r v e u y p o 0 i

La Biche r t n u n r e H m c o r c u p i i e p Sandy S. g a g t o r n h h l / o s m t i P Winagami c r p e P a a 3 h s s r ) t

r Isle o i , i t c k o a d S n t L Moonshine u y u a c m l s v k La Nonne t a i e f v e o n a i s t r Ste. Anne W. s y L a P ) u a n r i Sandy N. k n e d e e d o , Miquelon L i t G n h a Cardinal u e k P l r e l i

n Saskatoon . s L e e a 0 1 2 3 4 5 6 7 8 9 l k e 0 0 0 0 0 0 0 0 0

e c

0 0 0 0 0 0 0 0 0 t 52 53

CPR 12

Index Map

20

1 4 Sunbreaker Cove Research Well

5

2 CNR

3

6 Jarvis Bay Research Well

7 CNR

11 53 11 11 ake van L CNR Syl 20 Research Pumping Wells Sandstone Channel

Topography Sample Locations

Railway Ca-Mg rich groundwater

Road Na-rich groundwater

Watershed Lake water

Hydrology AENV Well Nests

Town

0 1.5 3 4.5 6

Kilometres - 1:125 000

Figure 2: Site Map of Sylvan Lake Watershed showing the Town of Sylvan Lake, main highways, topography, hydrology, watershed, AENV nested well locations, approximate location of the sandstone channel, location of Sunbreaker Cove and Jarvis Bay Research Pumping wells, groundwater and lake water sample locations. 54 55

Shale, Silty Shale

Figure 4: Legend for the interpretation of lithology from drilling records from AENV’s Groundwater Information Centre as used to construct cross-sectional figures of Sylvan Lake. t F h i e g

u Chlor ide (m g/L) l i r n e e 5 o 1 : f 4 0 2 6 8 0 C 1 b 9 h e 6 l 8 o s t r i f d i t e s c h o 1 o 9 n w 7 c 2 s e n a t r l o a w t i o 1 R 9 n 7 s 2 6 ( v m a l g u / e L ) 1 ( 9 0 m 8 . 0 0 e 0 a 0 s 3 u ) r e i n 1 d 9 d i 8 i n c 4 a S t y i n l v g a t n 1 h y 9 a L 8 = t a 8 6 t k . h 6 R e e 1 ² E f = s - r 0 o 3 l 6 o . m 1 0 x p 9 3 + e 9 E 1 1 2 - 0 9 . i 9 s 4 6 2 n E 8 + o 0 t t o 0 s 1 2 i 9 g 0 9 n 6 0 i 6 f i c ( a A n E t l N 2 y 0 V 0 d 0 i t f e f e c r h e n n i t c 2 t a 0 h 0 l a 4 d n a t z a e ) r . o T 2 . 0 h 0 e 8 e q u a t i 2 o 0 n 1 2 f

o

r 56 57 pH Electrical Conductivity (uS/cm) 8.00 8.50 9.00 9.50 400 500 600 700 0 0

5 5 ) ) m 10 m 10 (

( h h t t p p e e D D

15 15

Jul­06 Oct­02 Oct­04 Jul­06 Oct­02

20 20

Dissolved Oxgen (mg/L) Temperature (C) 0 5 10 15 20 25 0 5 10 15 20 25 0 0

5 5 ) )

m 10 m 10 ( ( h h t t p p e e D D

15 15

Oct­04 Oct­02 Jul­06 Oct­02 Oct­04 Jul­06

20 20

Figure 6: Depth profiles of pH, electrical conductivity, dissolved oxygen, and temperature in Sylvan Lake near Half Moon Bay measured in October 2002, October 2004, and July 2006. The pH profile for the October 2004 sampling event is not included due to instrument error. 0

Dessication

Steady State (x=1) Lake Water ­100 ) ‰

( Calgary 10yr H 2 δ Groundwater

­200

Ambient Isotopic Composition

­300 ­40 ­20 0 20

δ 18O (‰)

Figure 7: Graph of δ1 8 O versus δ 2 H showing flux weighted global meteoric water line (red) and the local meteoric water line (green) and Calgary 10-yr weighted average precipitation (Peng et. al. 2004), groundwater, lake water, calculated ambient isotopic 58 composition of air, calculated steady state isotopic composition of lake, and calculated isotopic composition of dessicated lake water. Lake Water E levation (masl) 936. 937. 935. 936. the slopeof linemaynotbesignificantly differentthanzero. Figure 8:Lakewater elevationsmeasuredin Sylvan Lakefrom1965to2005. Theequationforthelineof bestfitshowsalowR2value (0.087)indicatingthat 7 2 2 7 1965 1969 1973 1977 1981 1985 1989 1993 y

=

2E R ² -

05x =

1997 0.

087 +

936. 1 2001

2005 59 60 61 62 63

��

��

��

��

��

��������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������������������� ������������������������������������������������������� 64 65 66 Table 67 �������������������������������������������������������������������������������������������������������������������������� ������������

����� ����� ��������������� �������� ����� ��������� ���� ��������� ������������� ������������� ����������� ���������� ����� ��������� ������ � � � ����� �� �� ��� �� ��� � � ���� ���� ������ ���� ��� ��� ��� ��� ���� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ���� ���� ��� ���� ��� ��� ������ ���� ���� ��� ���� ���� ���� ��� ���

����������������������������������������������������������

���������������������������������������������� ����������� �����������

��������� ��������� ������� ������� ����������� ����������� �� ��� �� ��� �� ���� �� ��� � ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ���� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� � ���� �� ��� �� ��� �� ��� �� ��� �� ��� �� ���� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� �� ���� �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� � ��� � ��� � ��� �� ���� �� ��� 68 ��������������������������������

������� ��������� �������� �� δ �������������� ������ ����� �� δ �������������� ������ ������ �� δ ���������� ������ ������ � δ ���������� ���� ������ 69 �������������������������������������������������������������������������������������������� � S1 − S2 � �������������������� � � x10 0 � S 3 � ��������������������� ��������������������������������� ������

��������� ��������� ������ ������ ������ ������ ������ ������ ���� ����� ��� ��� ��� ��� ��� ��� ��������� ��������� ��������� �������� ��������� �� � � ����� �� �� � ������ ������ ���� � ������ ��� ��� � ������ ������ ���� � � � � ������ �� �� � ������� ������� ���� � ������� �� �� � ������� ������� ���� � �� � � ���� �� �� � ����� ����� ���� � ����� �� �� � � �� � ��������� ����� �� �� � ���� ���� ���� � ����� �� �� � � �� �� �� � � ��� ��� ���� � ��� ��� ���� � ��� ��� ���� � �� �� �� ���� � ���� ���� ���� � ���� ���� ���� � ���� ���� ���� � �� �� �� ���� � ��� ��� ���� � ��� ��� ���� � ��� ��� ���� � � ��� ��� ���� � ���� ���� ���� � ���� ���� ���� � ���� ���� ���� � �� ������� ������� ���� � ������ ������ ���� � ������� ������ ���� � ������� ������� ���� � �� ������ ������ ���� � ������ ������ ���� � ������ ������ ���� � ������ ������ ���� � �� ����� ����� ���� � ����� ���� ���� � ����� ���� ���� � ����� ����� ���� � �� �������� �������� ���� � �������� �������� ���� � �������� �������� ���� � �������� �������� ���� � �� ������ ������ ���� � ����� ����� ���� � ������ ������ ����� � ������ ������ ���� � �� ����� ����� ����� � ����� ����� ���� � ����� ����� ����� � ����� ����� ���� � �� ������ ������ ���� � ������� ������� ���� � ������ ������ ���� � ������ ������ �� ����� �� ������ ������ ���� � ������ ������� ���� � ������� ������� ���� � ������ ������ ���� � �� ���� ���� ���� � ����� ����� ���� � ����� ����� ���� � ����� ����� ���� � �� ����� ����� ���� � ����� ����� ��� ����� ����� ����� �� ����� ����� ����� ���� � �� ���� ����� ���� � ����� ����� ���� � ����� ����� ���� � ����� ����� ���� � �� � ����� ����� ���� � ����� ����� ���� � ����� ����� ���� � ���� ���� ���� � �� � ����� ����� ���� � ����� ����� ���� � ����� ����� ���� � ����� ����� ���� � �� � ����� ����� ���� � ���� ���� ��� ����� ����� ����� ���� � ����� ����� ���� � ��� � ����� ����� ���� � ����� ����� ���� � ����� ����� ���� � ����� ��� ���� � � ����� ���� ����� � ����� ����� ���� � ����� ����� ����� � ����� ����� ���� � �� ����� ����� ���� � ����� ����� ���� � ����� ����� ���� � ����� ����� ���� � � � ���� ���� ���� � ���� ���� ���� � ���� ���� ���� � ���� ���� ���� � �� ������ ������ ����� � ������ ������ ����� � ������ ������ ���� � ����� ����� ���� � ��� � ������� ������� ������� � ������� ������� ������� � ������� ������� ������� � ������� ������� ������� � �� �������� �������� ���� � �������� �������� ���� � ������� ������� ��� ����� �������� �������� ���� � �� ������ ������ ���� � ������� ������� ���� � ����� ����� ���� � ������ ������ ���� � � ����� ����� ����� � ���� ���� ���� � ��� ���� ���� � ���� ���� ���� � �� ������ ������ ���� � ������ ������ ���� � ������ ������ ���� � ������ ������ ���� � �� ������ ������ ���� � ������� ������� ���� � ������ ������ ���� � ������� ������� ���� � �� ������� ������� ���� � �������� �������� ���� � �������� �������� ���� � �������� �������� ���� � �� ������ ������ ����� � ������ ������ ����� � ������ ������ ���� � ������ ������ ����� � �� ������ ������ ���� � ������ ������ ���� � ������ ������ ���� � ������ ������ ���� � �� ������� ������� ���� � ������� ������� ���� � ������� ������� ����� � ������ ������� ���� � �� ������� ������ ����� � �������� �������� ���� � ������� ������� ���� � ������� ������� ���� � �� ������ ������ ���� � ������ ������ ���� � ������ ������ ���� � ������ ������ ���� �

��������������������������������� ������������������������������������ �������������������������������������������������������������������������� Table 5: Well identification numbers of wells used in the development of 70 the hydrogeological cross­sections A­A' and B­B' after the Groundwater Information Centre (www.tgwc.com)

Cross­Section A­A' Cross­Section B­B' UID Key Points UID Key Points M35379.054621 AENV Well Nest 1 M35379.057404 M35379.064227 SL16 M35379.106160 M38804.416898 AENV Well Nest 4 M35379.057530 M36234.930291 SL29 M35379.058891 M35379.057818 M36234.928053 M36234.930290 M35379.059083 M35379.064054 M35379.063836 M36234.930288 M35379.067783 AENV Well Nest 6 M35379.054623 AENV Well Nest 5 M35379.070459 M35379.060898 SL­04 M35379.063939 M35379.054288 AENV Well Nest 2 M35379.060898 SL­01 M35379.105949 M35379.060916 SL­30 M35379.060872 M35379.109412 SL­15 M35379.060865 M35379.056045 M35379.078271 M35379.031113 M35379.060848 M35379.031075 M35379.054620 AENV Well Nest 3 M35379.031341 M38145.625000 M35379.059163 M35379.059120 M35379.083779 Table 6: Gradients calculated between select Alberta Environment nested wells and Sylvan Lake. 71 Positive gradients are down towards the lake and negative gradients are down towards the monitoring well.

Gradient Midpoint of Screen Formation Location Relative to Lake (masl) Lithology Well Nest 4 (Sunbreaker Cove) Pumping Well 0.02323 929.9 sandstone Well 4­1 ­0.00002 949.9 sandy clay Well 4­2 0.00001 929.5 sandstone Well 4­3 ­0.00005 911.1 sandstone

Well Nest 2 () Well 2­1 0.01282 938.8 sandy clay Well 2­2 0.00219 930.9 sandstone Well 2­3 0.00069 916.5 sandstone

Well Nest 7 () Well 7­1 0.03943 959.6 silty sandstone Well 7­2 0.03891 952.2 sandstone Well 7­3 0.00433 933.9 sandstone 72 Table 7: Estimated aquifer parameters from a) Theis interpretation, b) Jacob straight line, and c) the geometric means. Interpretations are from drawdown data from both the pumping and recovery periods from the pumping well (Sunbreaker Cove Research Pumping Well), AENV well nest 4, and 2 nearby domestic water wells.

Table 7a: Theis Interpretation Well r (m) T (m2/day) K (m/s) S AENV 4-3 50 10187 5.89E-03 2.9E-03 AENV 4-2 50 7472 4.32E-03 1.3E-02 Domestic Water Well 1 180 16025 9.27E-03 1.1E-05 Domestic Water Well 2 410 16323 9.45E-03 3.2E-05

Table 7b: Jacob Straight Line Method Well Interval T (m2/day) K (m/s) Pumping Well Pumping 11044 6.39E-03 Recovery 10379 6.01E-03 AENV 4-2 Pumping 9203 1.03E-05 Recovery 9419 1.05E-05 AENV 4-3 Pumping 9152 1.02E-05 Recovery 9389 1.05E-05 Domestic Water Well 1 Pumping 9975 1.11E-05 Domestic Water Well 2 Pumping 9349 1.04E-05

Table 7c:

Test Results Summary T (m2/day) K (m/s) S Geometric Mean 10391 2.64E-04 3.37E-04 Table 8: Representative Geochemistries from Na-rich groundwater, Ca-Mg rich groundwater, lake water and precipitation. The representative lake water chemistry is the mean concentration from lake water samples collected between 1969 and 2006 by Alberta Environment (AENV technical data). The representative water chemistry for the Na-rich and Ca-Mg rich groundwaters were selected visually from the centre of each group cluster on piper diagram and are SL03 and SL37 respectively

Isotopes Routine and Miscellaneous Parameters Major Ions y e e t r e t i ) m ) c u a v m t d i u ) n ‰ t i n e a e u ‰ e s e ) t a i ) r t c s o ) n l v m i d W m a d T l s e e i W u e 3 e i a b m n u ) e t r ) ) u h s ) r o i r O p a D n 2 d c t i g u 2 3 O ) B 4 O ) / i a a o ) ) p s c a ) o c ) g l n O S y C r r d t l l M ) i ) O m g V 2 a C l O O a S s ) c O M t t i H 8 4 ) l n u H a x i a i h o i i o o u h i e H l 1 2 3 S M O C K H S C % S ‰ °C p � m N N F S N o ( ( S ( O ( C ( M P ( B ( S ( C ( I ( δ ( δ δ ( T ( p ( C ( E ( N ( N ( F ( S ( D Surface Water LAKE* na na na na 8.79 589 na na na 0.14 na na 19 36 66 7.00 371 15.05 2.00 0.1 Standard Deviation of Lake dataset na na na na 0.31 43 na na na na na 6 5 7 1.34 23 5.03 2.01 na PPTN** na na na na 5.72 na na na 1.09 na na na 0.6 0.09 0.15 0.11 3 1.27 0.47 46.6 Groundwater Na­rich ­19.11 ­150.02 ­0.92 6.0 8.67 798 ­53 <0.05 <0.05 0.35 6.63 0.16 5.8 2 190 0.94 404 64.78 0.72 ­4.4 Ca­Mg rich ­18.98 ­146.17 ­3.65 6.0 7.01 492 175 <0.05 2.82 <0.05 7.06 1.77 46 30 43 2.50 328 24.57 2.05 ­5.4

Dissolved Metals m u m n y m m m m m m e e u n u i u r u c u u u i d d t i i o i i n m m i l t i l e m l i n m r b d l n u e u n n o p i m u m i i e d o o y m ) y i i e m ) ) ) ) ) ) ) ) ) ) ) k ) c ) ) e l o ) r b r t p b ) ) r d r s n ) l h v ) a o o s ) d o r s u i b s l g ) e b b e a c r r r u e n l t n i o o e a o h n a e o i u r l r e t i o e i i A A A B B C C C M P S S F B C C L N R S Z B r ( B ( B ( C ( C ( C ( M ( L ( A ( S ( I ( B ( C ( C ( L ( N ( R ( S ( Z ( B ( A ( S ( A Surface Water LAKE na na na na na na na na na na na na na na na na na na na na na na PPTN* na na na na na na na na na na na na na na na na na na na na na na Groundwater Na­rich 0.02 0.02 <0.00005 0.001 0.031 0.0002 0.00058 0.150 0.005 <0.05 0.0017 <0.00005 0.0007 0.210 <0.001 <0.0001 <0.00005 0.0014 0.0024 0.00012 <0.00005 <0.002 Ca­Mg rich <0.003 0.09 <0.00005 0.003 0.028 0.0008 0.00095 1.100 0.007 <0.05 0.0007 <0.00005 <0.0002 0.041 <0.001 <0.0001 0.00005 <0.0002 0.0030 0.00019 0.00007 <0.002

Notes: All units in mg/L unless otherwise noted * - LAKE - Average Sylvan Lake Water Quality from AENV (1999 - 2001) ** - PPTN - Average Precipitation Water Quality from Red Deer Station A (1992 - 2003) na - data not available 73 Table 9: Estimated average annual precipitation, evaporation, surface water runoff, and groundwater fluxes. Precipitation obtained by multiplying 30 year normals from Red Deer weather station by the area of the lake, while evaporation and surface water runoff estimated by multiplying interpolated lake evaporation and surface water runoff by the area of the drainage basin. Groundwater fluxes estimated from chloride and isotope mass balances.

Isotope Mass Balance Chloride Mass Balance δ18O δ2H Interpolation Minimum Maximum Interpolation Minimum Maximum Interpolation Minimum Maximum Precipitation [P]* 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 Evaporation [E]** 27.4 26.75 27.82 27.4 26.75 27.82 27.4 26.75 27.82 Runoff [R]** 5.84 5.79 7.24 5.84 5.79 7.24 5.84 5.79 7.24 Throughflow Index [x] na na na 0.57 0.57 0.57 0.58 0.58 0.58 Total Inputs [TI] 45.9 43.5 48.6 48.1 46.9 48.8 47.2 46.1 48.0 Groundwater In [I] 16.4 14.0 17.7 18.5 17.4 17.9 17.7 16.6 17.0 Groundwater In (% Total Inputs) 36% 32% 36% 39% 37% 37% 37% 36% 35% Groundwater Out [O] 18.6 15.9 19.8 20.7 20.2 21.0 19.8 19.4 20.1 Groundwater Out (% Total Outputs) 40% 37% 42% 43% 43% 43% 42% 42% 42% Percent of lake volume that is sourced from groundwater each year 4.0% 3.4% 4.3% 4.5% 4.2% 4.3% 4.3% 4.0% 4.1% Year to flush Lake 25.1 29.4 23.3 22.2 23.6 23.1 23.3 24.8 24.2 units in 106 m3/yr na ­ not applicable Minimum and maximum ranges calculated from lower and upper ranges of the contour interval for runoff and lake evaporation estimates * 30 year weather normal for Sylvan Lake from Environment Canada **interpolated from AENV provincial maps of mean annual lake evaporation and surface water runoff 74 75 Appendix A ������ ����������������������� ���������������� ������������������������������������������������������������������������������������� �������������������������������������������������������������������� � Gr Su ������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������� ������������� oundw rf ace W �������� �������� �������� ������� ������� ������� ������ ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� a � a t ������������������������� e t e r r ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ������� ������� �������� �������� �������� �������� �������� �������� �������� 6DPSOH�'DWH ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� �� �� �� �� �� �� �� �� � � � � � � � � � � � :HOO�8,' ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����  ���� ���� ���� ���� ���� ���� �� �� � 2 ������� ,VRWRSHV ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����  ��� ��� ��� ��� ��� ��� �� �� � + �������� � ������ ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����  �� �� �� �� �� �� �� �� � 6 ������ ���� ���� ���� ���� ���� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� �� 7HPSHUDWXUH ���� ����� ����� ����� ����� ����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� S+ ���������� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� &RQGXFWLYLW\ ������� 5RXWLQH�DQG�0LVFHOODQHRXV�3DUDPHWHUV ���� ���� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� (K � � ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ���� ���� ���� ���� ���� ���� �� �� 1LWULWH ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� 1LWUDWH ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� )OXRULGH ��� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� �� �� 6LOLFD ������

'LVVROYHG ������������������������������������������������������������������������ ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� �� �� �� �� �� �� �� �� 2[\JH� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� &DOFLXP ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 0DJQHVLXP � � ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 6RGLXP ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� 3RWDVVLXP ��� 0DMRU�,RQV ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� %LFDUERQDWH � ������ ������ ������ ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ���� ���� ���� ���� 6XOSKDWH ����� ����� ����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� &KORULGH ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ,RQ�%DODQFH

��� 76 Table A­1, Page 2 Geochemical Analyses of Surface Water and Groundwater at Sylvan Lake. Well UID's after the Groundwater Information Centre (www.tgwc.com). Where UIDs are listed as 'na', a match to a well record in the database was unable to be made.

Isotopes Routine and Miscellaneous Parameters Major Ions ) ) a v tu m d u ) i n ti u ‰ ‰ e s e ) e te D ) i e ra s c o ) n I e it v m d T a m d l s l c e W W e 3 u e m n u ) U te ri ) ) s u h ) p o i rb n ri D p a 2 n te c d g i u O O 2 3 ) 4 l O ) / ) ) o s c a p a ) l o c ) g y C O S l n te l d ta l l m ) i g m V 2 a a C O l) O S O ) iO M M s c tra tri 8 4 H e l ) H u n a C x i a a i i h a o i a o o u i h 1 2 3 l e H o ty D O (O S D W δ m te C (C M (M S (N P (K B (H S (S N (N F (F S (S C (C I B (% re (S δ (S δ (‰ T (° p (p C i (� E (m N (N Groundwater AENV 2­2 17­Nov­05 M35379.054287 na na na 5.2 7.17 791 na na na 0.18 na 7.17 90 39.8 26 3.03 531 24.20 32.70 ­72.4 AENV 2­3 17­Nov­05 M35379.054288 na na na 5.6 7.94 807 na na na 0.24 na 0.06 12 5.9 193 1.41 524 43.56 0.50 0.1 AENV 3­4 17­May­06 M35379.054620 na na na 6.5 7.54 753 na na na 0.20 na 12.00 44 29.2 94 2.48 na 39.83 7.53 ­78.6 AENV 7­3 17­May­06 M35379.067552 na na na 7.7 9.25 735 na na na 1.67 na 0.50 2.0 0 222 0.56 535 47.61 0.50 0.4 Sunbreaker Cove Research Well, 30 mins 19­Jun­06 M38804.416898 ­18.9 ­147 na na na na na na na na na na 68 50.0 26 2.20 389 34.00 2.29 na* Sunbreaker Cove Research Well, 65 mins 19­Jun­06 M38804.416898 na na na na na na na na na na na na 67 48.9 26 2.13 381 33.47 2.23 na* Sunbreaker Cove Research Well, 160 mins 19­Jun­06 M38804.416898 na na na na na na na na na na na na 67 48.6 26 2.13 379 33.44 2.04 na* Sunbreaker Cove Research Well, 427 mins 19­Jun­06 M38804.416898 ­18.9 ­146 na na na na na na na na na na 66 48.4 26 2.12 377 33.44 2.01 na* Sunbreaker Cove Research Well, 885 mins 20­Jun­06 M38804.416898 na na na na na na na na na na na na 67 48.7 27 2.13 381 33.65 2.07 na* Sunbreaker Cove Research Well, 1185 mins 20­Jun­06 M38804.416898 na na na na na na na na na na na na 66 47.9 26 2.12 376 33.18 2.07 na* Sunbreaker Cove Research Well, 1508 mins 20­Jun­06 M38804.416898 ­19.1 ­146 na na na na na na na na na na 65 46.9 26 2.15 370 32.83 2.17 na* Sunbreaker Cove Research Well, 1707 mins 20­Jun­06 M38804.416898 na na na na na na na na na na na na 66 47.6 27 2.33 376 33.68 2.22 na* Sunbreaker Cove Research Well, 2430 mins 21­Jun­06 M38804.416898 ­19.0 ­146 na na na na na na na na na na 65 46.6 27 2.13 369 32.81 2.14 na* Sunbreaker Cove Research Well, 4185 mins 22­Jun­06 M38804.416898 ­19.0 ­147 na na na na na na na na na na 66 47.2 28 2.23 375 33.64 2.34 na* Sunbreaker Cove Research Well, 4227 mins 22­Jun­06 M38804.416898 na na na na na na na na na na na na 65 47.1 28 2.25 375 33.81 2.39 na* Sunbreaker Cove Research Well, 4250 mins 22­Jun­06 M38804.416898 na na na na na na na na na na na na 66 46.8 28 2.35 374 33.35 2.32 na* Sunbreaker Cove Research Well, 4301 mins 22­Jun­06 M38804.416898 na na na na na na na na na na na na 65 52.3 27 2.18 394 32.35 2.27 na* Notes: All units in mg/L unless otherwise noted * ­ LAKE ­ Average Sylvan Lake Water Quality from AENV (1999 ­ 2001) ** ­ PPTN ­ Average Precipitation Water Quality from Red Deer Station A (1992 ­ 2003) ­ not applicable na ­ data not available na* ­ data not available, HCO3 calculated as a residual 77 ����������������������� ���������������� ������� ����������������� � ������ G Su ��������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������� ������������� r oundw r f ace W �������� �������� �������� �� � � � � ������� ������� ������� ������� ������� ������� ������� ����� ���� ������� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� a � a t ������������������������� e t e r � r � ��� ������� � ���������������������� � ����� ����� ��������� ��������� ��������� ��������� ����� ��������� ��������� ����� ��������� ��������� ����� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������������������� � � �������� �������� �������� �������� �������� �������� �������� ���� ���� ����������� � � � � � � � ��� ��� ��� ��� ��� � � ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� � ����������� � ������������������������� �� �� �� �� �� �� �� �� � � � � � � � � � � � �������� � ����������� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� �� �� �� �� �� �� ����

� ���� � ����������� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� �� �� �� �� �� �� ������ ���� � �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �� �� �� �� �� �� ������ ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �� �� �� �� �� �� ������ ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �� �� �� �� �� �� ������� ���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ �� �� �� �� �� �� ������ ���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� �� �� �� �� �� �� �������� ���� ������ ������ ������ ������ ������ ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �� �� �� �� �� �� ��������� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �� �� �� �� �� �� ���� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ���� ���� �� �� �� �� �� �� ������� ���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ���������������� �� �� �� �� �� �� �������� ���� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �� �� �� �� �� �� ������

���� ���������������������������������������������������������������������������������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ �� �� �� �� �� �� ������� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �� �� �� �� �� �� ����� ��� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ �� �� �� �� �� �� ��������� ���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ �� �� �� �� �� �� ������� ���� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� �� �� �� �� �� �� ������ ���� ������� ������� ������� ������� ������� ������� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ �� �� �� �� �� �� �������� ���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ �� �� �� �� �� �� ���������� ���� �������� �������� �������� �������� �������� �������� �������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� �� �� �� �� �� �� ���� ���� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� �� �� �� �� �� �� �������� ���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ����� ����� �� �� �� �� ��

�� ��������

���� 78 79 ��������������������������������������

������� ���������� ������� ����������� ���������������� ������������� ������������� ������� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����� ����� ������������� ����������������������������������������������������������������������������������� ����������������������������������������������������������� ����������������������������������������������������������������������������������������������������������� �������������������������� 80

����������������������������������������������� ������� ���������� ��������� ��������� ������������� ������������� ������������ ������������ �������� ���� ���� ���� ���� ���� ���� ������������������������ ���� ���� ���� ���� ���� ������� ���� ���� ���� ���� ����

������ ��������������� ���� ����� ����� ���� ���� ������������������ ���� ���� ���� ���� ���� �������������������� ���� ���� ���� ���� ����

��������������������� ����������������������� ���� ���� ���� ���� �� �������������������������� ����� ���� ���� ���� �� �������� ����� ���� ����� ����� ��

����� �������������� ���� ���� ���� ���� ���� ������������� ���� ���� ���� ���� ���� ������������� ���� ���� ���� ���� ���� ������� ���� ���� ���� ���� ���� ������� ����� ����� ����� ���� ���� ��� ������ ������ ����� ���� ���� ����� ������ ����� ����� ����� ���� ������������������������������������������ Table A­4: Chloride Mass Balance ­ Range of Resulting Groundwater Fluxes

Na­rich 75:25 50­50 25­75 Ca­Mg rich Groundwater*** (Na:Ca­Mg) (Na:Ca­Mg) (Na:Ca­Mg) Groundwater Precipitation [P]* 23.7 23.7 23.7 23.7 23.7 Evaporation [E]** 27.4 27.4 27.4 27.4 27.4 Runoff [R]** 5.84 5.84 5.84 5.84 5.84 Groundwater In [I] 16.4 23.7 42.7 219 ­ve Groundwater Out [O] 18.6 25.9 44.9 221 ­ve Volume of lake 412 412 412 412 412 % of lake water that is groundwater each year 3.98 5.75 10.36 53.16 na Years to flush lake 25.1 17.4 9.6 1.9 na Notes: units in 106 m3/yr na ­ not applicable *30 year normal for Sylvan Lake Weather Station from Environment Canada **interpolated from AENV provincial maps ***most conservative estimate of groundwater flux 81 Table A­5 Water Isotope Mass Balance Equations and Calulations 82 Parameter Value Source Formulas

Climatic Input Parameters 30 yr Normals ­ Red Deer A Station humidity (h) 0.4898 15:00hrs (May ­ Oct) temperature (t) 11.33 Daily Average (May ­ Oct)

Fractionation Factors (calculated) 1.137 3 0.4156 − 3 ln α 18 = ⋅10 − − 2.0667 ⋅10 α∗ δ O 2 O 1.01057731 T T

α∗H 1.09589541 24.844 3 76.248 − 3 ln α 2 = ⋅10 − − 52.612 ⋅10 δ H 2 Equilibrium Separation Factors (calculated) T T *O ε 10.52 * * * ε = α ε H 91.57 1000ln

Kinetic Separartion Factor Constants (referenced) n Ck 14.3 Gibson, 2002 ⎛ ⎞ O = ⎜ D ⎟ − k C k 1 C H 12.5 Gibson, 2002 ⎜ ⎟ ⎝ Di ⎠ Kinetic Separation Factor (calculated) k ε O 6.3775 εk ε = ( − ) H 7.29586 k Ck 1 h

Total Isotopic Separation Factor (calculated) ε Ο 16.90 ε = ε * + ε εH 98.87 k

Input Isotopic Composition for calculated Ambient Isotopic Composition p δ O ­15.983 Peng et al, 2004 ­ flux­weighted open water (May ­ Oct) p δ H ­123.585 Peng et al, 2004 ­ flux­weighted open water (May ­ Oct)

Input Isotopic Composition (estimated) p δ O ­17.9 Peng et al, 2004 p δ H ­136.1 Peng et al, 2004

Ambient Atmospheric Isotopic Composition (calculated) δA * O ­26.227348 (δ − ε ) δA P H ­196.32964 δ = A α * Dessicated Lake Water Composition (calculated) δ * *O 8.42839592 ⎛ ε ⎞ δ* 5.27857928 h δ + ε + ⎜ ⎟ H A K ⎜ α * ⎟ * ⎝ ⎠ Mean Lake Water Isotopic Composition δ = * δ O ­8.83 ⎛ ε ⎞ L − ε − ⎜ ⎟ δ H ­92.85 h K ⎜ ⎟ L ⎝ α * ⎠ Enrichment Slopes (calculated) (h − 10 − 3 ε ) m oxygen 0.91544974 m = ( − + − 3 ε ) m deuterium 0.75543094 1 h 10 K

Steady State Isotopic Compositions for x=1 (calculated) * δs(x=1) ­5.3168856 (δ + δ ) δ + δ O I m ⎛ I mx * ⎞ δs(x=1) ­75.25924 δ = δ = ⎜ ⎟ H S ( x=1 ) (1 + m) S ⎝ 1 + mx ⎠

Throughflow from Oxygen (calculated) x = 0.57 (δ − δ ) = L I x * Throughflow from Hydrogen (calculated) (δ −δ ) m L x = 0.58 83 Appendix B Pumping Test Report – Sunbreaker Cove 84

Pumping Test Summary

Pumping Rate: 1m3/min Start Time: June 19, 2006 14:45 Stop Time: June 22, 2006 14:45 Pumping Duration: 3 days or 4320 minutes Aquifer Thickness: ~20 m

Note – water levels not adjusted for barometric pressure due to lost barometric pressure data.

Site Diagram

Sunbreaker Cove

Pumping Well ~5m between these wells # East to West: 4-1, 4-2, 4-3 ~50m # # # # Morris Well

#

#### ~800m Sonneleitner Well

Sylvan Lake Pumping Well Details – Sunbreaker Cove Research Pumping Well 85 Well Diagram Observation Well Details – AENV Well 4-1 86 Well Diagram Observation Well Details – AENV Well Nest 4-2 87 Well Diagram Observation Well Details – AENV Well 4-3 88 Well Diagram 89

Jacob Straight Line Interpretation

Pumping Test Drawdown Data – Pumping Well (not adjusted for barometric pressure)

���� ���� ���� �������������� �������� ���� ���� ���� �������������� �������� ��������������� � ������ ����� ��������������� ���� ������ ����� ��������������� � ������ ����� ��������������� ���� ������ ����� ��������������� � ������ ����� �������������� ���� ������ ����� ��������������� � ������ ����� ��������������� ���� ������ ����� ��������������� � ������ ����� ��������������� ���� ������ ����� ��������������� � ������ ����� ��������������� ���� ������ ����� ��������������� � ������ ����� ��������������� ���� ������ ����� ��������������� � ������ ����� ��������������� ���� ������ ����� ��������������� � ������ ����� ��������������� ���� ������ ����� ��������������� � ������ ����� ��������������� ���� ����� ������ ����� ��������������� �� ������ ����� ��������������� ���� ���� ������ ����� ��������������� �� ������ ����� ��������������� ���� ���� ������ ����� ��������������� �� ������ ����� ��������������� ���� ���� ������ ����� ��������������� �� ������ ����� ��������������� ���� ���� ������ ����� ��������������� �� ������ ����� ��������������� ���� ���� ������ ����� ��������������� �� ������ ����� ��������������� ���� ���� ������ ����� ��������������� �� ������ ����� ��������������� ���� ���� ������ ����� ��������������� �� ������ ����� ��������������� ���� ���� ������ ����� ��������������� �� ������ ����� ��������������� ���� ��� ������ ����� ��������������� �� ������ ����� ��������������� ���� ��� ������ ����� ��������������� �� ������ ����� ��������������� ���� ��� ������ ����� ��������������� �� ������ ����� ��������������� ���� ��� ������ ����� ��������������� �� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ��� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ��� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ��� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ��� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ���� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ���� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ���� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ���� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ���� ������ ����� ��������������� ���� ��� ������ ����� ��������������� ���� ������ ����� ��������������� ���� �� ������ ����� �������������� ���� ������ ����� ��������������� ���� �� ������ ����� ��������������� ���� ������ ����� 90

Pumping Test Plot – Pumping Well 91

Pumping Test Data – Observation Well - AENV Well 4-1(not adjusted for barometric pressure)

���� ���� ���� ������������� �������� ������������� � ����� ������������� �� ����� ����� ������������� ���� ����� ������ ������������� ���� ����� ������ ������������� ���� ����� ������ ������������� ���� ����� ������ ������������� ���� ����� ������ ������������ ���� ����� ������ ������������� ���� ����� ������ ������������� ���� ����� ������ ������������� ���� ����� ������ ������������ ���� ����� ������ ������������� ���� ����� ������ ������������� ���� ����� ������ ������������� ���� ����� ������ ������������� ���� �� ����� ������ ������������� ����� � ����� ����� *no effect seen from pumping well here

���������������������������������

����������� � ��� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� � �� � � �� � �

� ���� � � � � � �� �� ������������� ������� ���� ��������� ������� ��������� ������� ���������

���� 92

Pumping Test Data – Observation Well – AENV Well 4-2 (not adjusted for barometric pressure)

���� ���� ���� ������������� �������� ������������� � ������ ����� ������������� �� ������ ����� ������������� ��� ������ ����� ������������� ��� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������ ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������ ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� �� ������ ����� ������������� ����� � ������ ����� 93

Pumping Test Data – Observation Well – AENV Well 4-3 (not adjusted for barometric pressure)

���� ���� ���� ������������� �������� ������������� � ������ ����� ������������� �� ������ ����� ������������� ��� ������ ����� ������������� ��� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������ ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������ ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������� ���� �� ������ ����� ������������� ����� � ������ ����� 94

Pumping Test Data – Observation Well – Morris Water Well (not adjusted for barometric pressure)

���� ���� ���� ������������� �������� ������������� � ������ ����� ������������� ��� ������ ����� ������������� ��� ������ ����� ������������ ��� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������ ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������ ���� ������ ����� ������������� ���� ������ ����� ������������� ���� �� ������ ����� 95

Pumping Test Data – Observation Well – Sonnleitner Well (not adjusted for barometric pressure)

���� ���� ���� ������������� �������� ������������� � ������ ������������� � ������ ����� ������������� ��� ������ ����� ������������� ��� ������ ����� ������������ ��� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������ ���� ������ ����� ������������� ���� ������ ����� ������������� ���� ������ ����� ������������ ���� ������ ����� ������������� ���� ������ ����� ������������� ���� �� ������ ����� Water Levels 96 Although no water levels have been adjusted for barometric pressure due to an instrumentation error, clear drawdown curves correlating to the pumping can be observed in the water level data from all of the observation wells with the exception of the shallow AENV nested well 4-1. The drawdown fluctuations in this well are small (less than 50 cm) and are consistent with typical amplitude of barometric pressure changes. In addition, a diurnal pattern can be discerned and correlates well with anticipated daily barometric pressure changes.

Jacob Straight Line Final Interpretations

Well Interval T (m2/day) K (m/s) Pumping Well Pumping 11044 6.39E­03 Recovery 10379 6.01E­03 4­2 Pumping 9203 5.33E­03 Recovery 9419 5.45E­03 4­3 Pumping 9152 5.30E­03 Recovery 9389 5.43E­03 Morris Pumping 9975 5.77E­03 Sonnleitner Pumping 9349 5.41E­03

Drawdown data from all observation wells indicate a transmissivity of ~ 10 000 m2/day. Assuming an aquifer thickness of approximately 20 m (interpreted from the well log) the hydraulic conductivity of the channel sandstone at Sunbreaker Cove is from 5 to 6 x 10-3 m/s.

Weaknesses:

There are only two data points for the recovery portions because the datalogger data for the recovery was lost (battery died and no internal battery)

The drawdown slopes are low and therefore the estimated transmissivities can vary large with only a small change in slope. Theis Type Curve Interpretation 97 Theis Type Curve

Theis Type Curve

100.000000

10.000000

1.000000

0.100000 ) u ( W 0.010000

0.001000

0.000100

0.000010 1.E­01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15 1/u

ho-h vs t Plot for Pumping Well

Calculated Curve of ho­h vs t

100.000000

10.000000

1.000000

) 0.100000 m ( h ­ o

h 0.010000

0.001000

0.000100

0.000010 1.E­01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15 t (s) ho-h vs t Plot for Observation Well 4-2 98

Calculated Curve of ho­h vs t (4­2)

100.000000

10.000000

1.000000

0.100000 ) m ( h ­ o h 0.010000

0.001000

0.000100

0.000010 1.E­01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15 t (s)

ho-h vs t Plot for Observation Well 4-3

Calculated Curve for ho­h vs t (4­3)

100.000000

10.000000

1.000000

0.100000 ) m ( h ­ o h 0.010000

0.001000

0.000100

0.000010 1.E­01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15 t (s) ho-h vs t Plot for Observation Well Morris 99

Calculated Curve of ho­h vs t (Morris)

100.000000

10.000000

1.000000

0.100000 ) m ( h ­ o h 0.010000

0.001000

0.000100

0.000010 1.E­01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15 t (s)

ho-h vs t Plot for Observation Well Morris

Calculated Curve of ho­h vs t (Sonnen)

100.000000

10.000000

1.000000

0.100000 ) m ( h ­ o h 0.010000

0.001000

0.000100

0.000010 1.E­01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15 t (s) Theis Interpretation: 100 Match Point Well r (m) W(u) 1/u u ho­h (m) t (s) T (m2/s) K (m/s) S 4­3 50 6.84 2.00E+03 6.00E­04 0.077 25800 0.117899 5.89E­03 2.92E­03 4­2 50 4.04 1.00E+02 1.00E­02 0.062 9420 0.086484 4.32E­03 1.30E­02 MW 180 11.04 1.00E+05 9.00E­06 0.079 51300 0.185476 9.27E­03 1.06E­05 SW 410 6.69 1.00E+03 7.00E­04 0.047 10200 0.188918 9.45E­03 3.21E­05

The Theis match points indicate a range of hydraulic conductivities in the range of 10-5 m/s to 10-2 m/s. This is a much wider range than was estimated from the Jacob interpretation, but still supports the estimates obtained from the Jacob interpretation.

Weaknesses:

The early time drawdown data is sparse and therefore it is hard to justify the match points based on the tiny bit of slope that can be seen. This likely explains the wider range of hydraulic conductivities observed in the Theis interpretation than in the Jacob interpretation. 101 Appendix C 102 103 104