Tissue-Specific Stem Cells

Total Page:16

File Type:pdf, Size:1020Kb

Tissue-Specific Stem Cells TISSUE-SPECIFIC STEM CELLS Subventricular Zone Localized Irradiation Affects the Generation of Proliferating Neural Precursor Cells and the Migration of Neuroblasts a a a c d PRAGATHI ACHANTA, VIVIAN CAPILLA-GONZALEZ, DAVID PURGER, JUVENAL REYES, KURT SAILOR, d b e c HONGJUN SONG, JOSE MANUEL GARCIA-VERDUGO, OSCAR GONZALEZ-PEREZ, ERIC FORD, a ALFREDO QUINONES-HINOJOSA aDepartment of Neurosurgery, cDepartment of Radiation Oncology and Molecular Radiation Sciences, and dInstitute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; bLaboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, Valencia, CIBERNED, Spain; eLaboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Colima, Mexico Key Words. Radiation therapy • Neural stem cells • Migrating neuroblasts • Subventricular zone ABSTRACT Radiation therapy is a part of the standard treatment for the ability to generate migrating neuroblasts. Neuroblasts brain tumor patients, often resulting in irreversible neuro- from the unirradiated posterior SVZ did not follow their psychological deficits. These deficits may be due to perma- normal migratory path through the irradiated anterior nent damage to the neural stem cell (NSC) niche, damage SVZ. Our results indicate that the migrating neuroblasts to local neural progenitors, or neurotoxicity. Using a com- were not replenished, despite the presence of type B cells puted tomography-guided localized radiation technique, in the SVZ post-irradiation. This study provides novel we studied the effects of radiation on NSC proliferation insights into the effects of localized SVZ radiation on neu- and neuroblast migration in the mouse brain. Localized rogenesis and cell migration that may potentially lead to irradiation of the subventricular zone (SVZ) eliminated the development of new radiotherapy strategies to mini- the proliferating neural precursor cells and migrating neu- mize damage to NSCs and neuroblast migration. STEM roblasts. After irradiation, type B cells in the SVZ lacked CELLS 2012;30:2548–2560 Disclosure of potential conflicts of interest is found at the end of this article. nervous system, such as neurons, oligodendrocytes, or astro- INTRODUCTION cytes [12–15]. Damaging NSCs during radiation therapy can have detrimental effects [4, 7]. Mitigating the neurotoxic Brain irradiation is an integral component of the treatment of effects of radiation is important particularly in the context of patients with brain tumors [1, 2]. Despite its effectiveness in brain tumor patients who survive longer due to new combina- controlling the progression of some cancers, radiation is often tion therapies [1, 2, 6]. Furthermore, NSCs have the potential associated with neuropsychological deficits [3–6]. These defi- to be used to treat brain cancer in two different ways. First, cits may be partly due to radiation-induced damage to neuro- endogenous NSCs in the brain can participate in the repair of genic niches, as shown in animal models [7–11]. In the adult normal tissue and/or inhibit tumor growth [16]. Second, engi- mammalian brain, these niches are localized in the subventric- neered stem cells may be used to deliver cytotoxic agents and ular zone (SVZ) and the subgranular zone of the hippocampal prodrug-activating enzymes to the tumor [17–21]. Both of dentate gyrus [12–14]. The neural stem cells (NSCs) in these these possibilities require that NSCs generate neuroblasts to two regions are of great interest for therapeutic applications migrate toward the tumor site, a process that is not well- in the brain because of their ability to proliferate and produce understood in the context of radiation therapy. new cells. These newly generated cells are able to migrate The SVZ is the largest source of NSCs in the adult brain, and differentiate into any of the main cell types of the central located underneath the layer of ependymal cells lining the Author contributions: P.A.: conception and design of experiments, data collection, assembly, analysis and interpretation, manuscript writing, final approval of manuscript, and contributed to the manuscript editing; D.P.: data collection, assembly, analysis, and contributed to the manuscript editing; J.R.: data collection and contributed to the manuscript editing; V.C.G. and J.M.G.V.: data collection, assembly, analysis and interpretation from electron microscopy, and contributed to the manuscript editing; K.S. and H.S.: provided the GFP expressing retrovirus, assisted with stereotactic injections, and contributed to the manuscript editing; O.G.P.: experimental design, data interpretation, and contributed to the manuscript editing; E.F.: conception and design of experiments, SARPP technology, data interpretation, and contributed to the manuscript editing; A.Q.H.: conception and design of experiments, final approval of manuscript, financial support, and contributed to the manuscript editing. Correspondence: Alfredo Quinones-Hinojosa, M.D., Department of Neurosurgery, Johns Hopkins University, 1550 Orleans St, CRB-II, Room 247, Baltimore, Maryland 21201, USA. Telephone: 410-502-2869; Fax: 410-502-7559; e-mail: [email protected] Received April 13, 2012; accepted for publication July 21, 2012; first published online in STEM CELLS EXPRESS September 4, 2012. VC AlphaMed Press 1066-5099/2012/$30.00/0 doi: 10.1002/stem.1214 STEM CELLS 2012;30:2548–2560 www.StemCells.com Achanta, Capilla-Gonzalez, Purger et al. 2549 ventricles [13, 22–24]. NSCs, or type B1 cells in the SVZ, are and were frozen in Tissue-Tek OCT Compound. Ten-microme- astrocyte-like glial fibrillary acidic protein (GFAPþ) cells that ter-thick coronal slices were sectioned using a cryostat. Sections divide and give rise to transit amplifying neural precursor cells were treated with 0.01 M sodium citrate at 95Cfor10minutes (NPCs), or type C cells, which in turn give rise to migrating neu- for antigen retrieval. Sections were incubated in PBS containing roblasts, or type A cells [25]. Neuroblasts migrate long distances 0.1% Triton X-100, and 10% normal goat serum (NGS) for 30 through the rostral migratory stream (RMS) before differentiating minutes, and then incubated with primary antibodies for 16 into olfactory bulb (OB) interneurons [26, 27]. The mouse SVZ- hours at 4C. Primary antibodies used in this study were mouse RMS-OB migration route represents a well-characterized system anti-rH2Ax (Ser139) (1:700), rabbit anti-Ki67 (1:200), mouse of endogenous neuroblast migration that serves as a model to anti-GFAP (1:500), rabbit anti-doublecortin (DCx) (1:500), study migration in humans receiving radiotherapy [27, 28]. mouse anti-nestin (1:100), mouse anti Mash-1 (1:100), cleaved Current radiotherapy treatments, such as intensity-modu- caspase-3 (1:100), and mouse anti-CD31 (1:200). More details lated radiation therapy, are intended to deliver a maximum on the primary antibodies are summarized in supporting infor- dose of radiation to the tumor while reducing radiation expo- mation Table S1. The sections were washed with PBS and incu- sure to the surrounding normal tissue [29, 30]. To more accu- bated with secondary antibodies conjugated with fluorophores rately reproduce human radiotherapy, we used a small animal for 1 hour at room temperature (RT). Anti-mouse, anti-rat, and radiation research platform (SARRP) developed in-house [31]. anti-rabbit Alexa 488 and/or 594 secondary antibodies (1:500; Using this technology, we recently reported that local irradia- Invitrogen, Green Island, NY, USA) were used. Nuclei were tion of hippocampus significantly decreased the number of stained with 4’,6-diamidino-2-phenylindole (DAPI) (1:500) All proliferating cells in the irradiated dentate gyrus compared to the sections were air-dried and coverslipped with .Aquamount the unirradiated side [32]. Furthermore, the number of new- mounting media (Vector Labs, Burlingame, CA, USA). Fluores- born cells differentiating into mature neurons 2 months after cent images were taken with an ORCA II camera (Hamamatsu) irradiation was significantly reduced [32]. In this study, we connected to an Olympus IX81 inverted microscope. examined the effect of SVZ-restricted irradiation on NSC and NPC proliferation and neuroblast migration in the adult mouse SVZ Whole Mount Dissection and Immunostaining SVZ-RMS-OB system. The two main findings from this study Mice (n ¼ 3 per group) were sacrificed by cervical dislocation and are that type B cells lacked the ability to regenerate NPCs their brains were immediately extracted into L-15 Leibovitz and neuroblasts even a month after irradiating SVZ, and that medium (Gibco, Green Island, NY, USA). A whole mount of SVZ neuroblasts failed to migrate through the irradiated regions. tissue (2–4 mm) with the lateral ventricle and striatum was dis- These results will help inform future radiotherapy protocols to sected under microscope, and the hippocampus and septum were minimize damage to neurogenic niches in the human brain. removed as described [24, 33]. The SVZ whole mounts were fixed in 4% PFA/0.1% Triton X-100 overnight at 4C. They were then washed with PBS and blocked with 10% NGS/0.5% Triton for 30 MATERIALS AND METHODS minutes at RT. The tissues were incubated in primary and second- ary antibodies diluted in blocking buffer for 48 hours at 4C. After Subjects staining, the SVZ whole mounts were further dissected from l The subjects were 6–8-week-old male C57BL6/J mice from the underlying striatum to 200–300- m thick tissue, transferred to a glass slide, and coverslipped with
Recommended publications
  • NIH Public Access Author Manuscript J Neurosci
    NIH Public Access Author Manuscript J Neurosci. Author manuscript; available in PMC 2013 May 10. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Neurosci. 2008 September 10; 28(37): 9194–9204. doi:10.1523/JNEUROSCI.3314-07.2008. Noggin Expands Neural Stem Cells in the Adult Hippocampus Michael A. Bonaguidi1,2,3,6, Chian-Yu Peng1,6, Tammy McGuire1, Gustave Falciglia1,4, Kevin T. Gobeske1, Catherine Czeisler1,5, and John A. Kessler1 1Davee Department of Neurology. Northwestern University’s Feinberg School of Medicine. 303 E. Chicago Ave, Chicago, IL 60611, USA 2Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway Ave, Baltimore, MD 21205, USA 3Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway Ave, Baltimore, MD 21205, USA 4Department of Pediatrics. University of Chicago. 5721 S. Maryland Ave, Chicago, IL 60637, USA 5Cardiovascular Research Institute, UCSF. 1554 4thSt, San Francisco, CA 94158, USA Abstract New neurons are added to the adult hippocampus throughout life and contribute to cognitive functions including learning and memory. It remains unclear whether ongoing neurogenesis arises from self-renewing neural stem cells (NSC) or from multipotential progenitor cells that cannot self-renew in the hippocampus. This is largely based on observations that neural precursors derived from the subventricular zone (SVZ) can be passaged long-term whereas hippocampal subgranular zone (SGZ) precursors are rapidly depleted by passaging. We demonstrate here that high levels of BMP signaling occur in hippocampal but not SVZ precursors in vitro, and blocking BMP signaling with Noggin is sufficient to foster hippocampal cell self-renewal, proliferation, and multipotentiality using single cell clonal analysis.
    [Show full text]
  • LRP2 in Ependymal Cells Regulates BMP Signaling in the Adult Neurogenic Niche
    1922 Research Article LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche Chandresh R. Gajera1, Helena Emich1, Oleg Lioubinski1, Annabel Christ1, Ruth Beckervordersandforth-Bonk2, Kazuaki Yoshikawa3, Sebastian Bachmann4, Erik Ilsø Christensen5, Magdalena Götz2, Gerd Kempermann6, Andrew S. Peterson7, Thomas E. Willnow1,* and Annette Hammes1 1Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin, Germany 2Institute for Stem Cell Research, Helmholtz Center Munich, and Physiological Genomics, University of Munich, D-80336 Munich, Germany 3Institute for Protein Research, Osaka University, Osaka 565-0871, Japan 4Institute for Vegetative Anatomy, Charité Universitätsmedizin, D-10115 Berlin, Germany 5Institute of Anatomy, University of Aarhus, DK-8000C Aarhus, Denmark 6Center for Regenerative Therapies Dresden, Genomics of Regeneration, D-01307 Dresden, Germany 7Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA *Author for correspondence ([email protected]) Accepted 23 March 2010 Journal of Cell Science 123, 1922-1930 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.065912 Summary The microenvironment of growth factors in the subependymal zone (SEZ) of the adult brain provides the instructive milieu for neurogenesis to proceed in this germinal niche. In particular, tight regulation of bone morphogenetic protein (BMP) signaling is essential to balance proliferative and non-proliferative cell fate specification. However, the regulatory pathways that control BMP signaling in the SEZ are still poorly defined. We demonstrate that LRP2, a clearance receptor for BMP4 is specifically expressed in ependymal cells of the lateral ventricles in the adult brain. Intriguingly, expression is restricted to the ependyma that faces the stem cell niche.
    [Show full text]
  • Neuregulin 1–Erbb2 Signaling Is Required for the Establishment of Radial Glia and Their Transformation Into Astrocytes in Cerebral Cortex
    Neuregulin 1–erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex Ralf S. Schmid*, Barbara McGrath*, Bridget E. Berechid†, Becky Boyles*, Mark Marchionni‡, Nenad Sˇ estan†, and Eva S. Anton*§ *University of North Carolina Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599; †Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510; and ‡CeNes Pharamceuticals, Inc., Norwood, MA 02062 Communicated by Pasko Rakic, Yale University School of Medicine, New Haven, CT, January 27, 2003 (received for review December 12, 2002) Radial glial cells and astrocytes function to support the construction mine whether NRG-1-mediated signaling is involved in radial and maintenance, respectively, of the cerebral cortex. However, the glial cell development and differentiation in the cerebral cortex. mechanisms that determine how radial glial cells are established, We show that NRG-1 signaling, involving erbB2, may act in maintained, and transformed into astrocytes in the cerebral cortex are concert with Notch signaling to exert a critical influence in the not well understood. Here, we show that neuregulin-1 (NRG-1) exerts establishment, maintenance, and appropriate transformation of a critical role in the establishment of radial glial cells. Radial glial cell radial glial cells in cerebral cortex. generation is significantly impaired in NRG mutants, and this defect can be rescued by exogenous NRG-1. Down-regulation of expression Materials and Methods and activity of erbB2, a member of the NRG-1 receptor complex, leads Clonal Analysis to Study NRG’s Role in the Initial Establishment of to the transformation of radial glial cells into astrocytes.
    [Show full text]
  • Regulation of Adult Neurogenesis in Mammalian Brain
    International Journal of Molecular Sciences Review Regulation of Adult Neurogenesis in Mammalian Brain 1,2, 3, 3,4 Maria Victoria Niklison-Chirou y, Massimiliano Agostini y, Ivano Amelio and Gerry Melino 3,* 1 Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK; [email protected] 2 Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK 3 Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.A.); [email protected] (I.A.) 4 School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways.
    [Show full text]
  • Orthopedic Surgery Modulates Neuropeptides and BDNF Expression at the Spinal and Hippocampal Levels
    Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels Ming-Dong Zhanga,1, Swapnali Bardea, Ting Yangb,c, Beilei Leid, Lars I. Erikssonb,e, Joseph P. Mathewd, Thomas Andreskaf, Katerina Akassogloug,h, Tibor Harkanya,i, Tomas G. M. Hökfelta,1,2, and Niccolò Terrandob,d,1,2 aDepartment of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden; bDepartment of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; cDivision of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC 27710; dDepartment of Anesthesiology, Duke University Medical Center, Durham, NC 27710; eFunction Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm 171 76, Sweden; fInstitute of Clinical Neurobiology, University of Würzburg, 97078 Wuerzburg, Germany; gGladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158; hDepartment of Neurology, University of California, San Francisco, CA 94158; and iDepartment of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria Contributed by Tomas G. M. Hökfelt, August 25, 2016 (sent for review January 18, 2016; reviewed by Jim C. Eisenach, Ronald Lindsay, Remi Quirion, and Tony L. Yaksh) Pain is a critical component hindering recovery and regaining of shown hippocampal abnormalities in animal models of neuro- function after surgery, particularly in the elderly. Understanding the pathic pain and reduced hippocampal volume in elderly patients role of pain signaling after surgery may lead to novel interventions with chronic pain (10–12). Moreover, changes in regional brain for common complications such as delirium and postoperative volume, including hippocampal and cortical atrophy, have also cognitive dysfunction.
    [Show full text]
  • Gfapd in Radial Glia and Subventricular Zone Progenitors in the Developing Human Cortex Jinte Middeldorp1, Karin Boer2, Jacqueline A
    RESEARCH ARTICLE 313 Development 137, 313-321 (2010) doi:10.1242/dev.041632 GFAPd in radial glia and subventricular zone progenitors in the developing human cortex Jinte Middeldorp1, Karin Boer2, Jacqueline A. Sluijs1, Lidia De Filippis3, Férechté Encha-Razavi4, Angelo L. Vescovi3, Dick F. Swaab5, Eleonora Aronica2,6 and Elly M. Hol1,* SUMMARY A subpopulation of glial fibrillary acidic protein (GFAP)-expressing cells located along the length of the lateral ventricles in the subventricular zone (SVZ) have been identified as the multipotent neural stem cells of the adult mammalian brain. We have previously found that, in the adult human brain, a splice variant of GFAP, termed GFAPd, was expressed specifically in these cells. To investigate whether GFAPd is also present in the precursors of SVZ astrocytes during development and whether GFAPd could play a role in the developmental process, we analyzed GFAPd expression in the normal developing human cortex and in the cortex of foetuses with the migration disorder lissencephaly type II. We demonstrated for the first time that GFAPd is specifically expressed in radial glia and SVZ neural progenitors during human brain development. Expression of GFAPd in radial glia starts at around 13 weeks of pregnancy and disappears before birth. GFAPd is continuously expressed in the SVZ progenitors at later gestational ages and in the postnatal brain. Co-localization with Ki67 proved that these GFAPd-expressing cells are able to proliferate. Furthermore, we showed that the expression pattern of GFAPd was disturbed in lissencephaly type II. Overall, these results suggest that the adult SVZ is indeed a remnant of the foetal SVZ, which develops from radial glia.
    [Show full text]
  • Differential Timing and Coordination of Neurogenesis and Astrogenesis
    brain sciences Article Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions Allison M. Bond 1, Daniel A. Berg 1, Stephanie Lee 1, Alan S. Garcia-Epelboim 1, Vijay S. Adusumilli 1, Guo-li Ming 1,2,3,4 and Hongjun Song 1,2,3,5,* 1 Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] (A.M.B.); [email protected] (D.A.B.); [email protected] (S.L.); [email protected] (A.S.G.-E.); [email protected] (V.S.A.); [email protected] (G.-l.M.) 2 Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 4 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 5 The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA * Correspondence: [email protected] Received: 19 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: Neocortical development has been extensively studied and therefore is the basis of our understanding of mammalian brain development. One fundamental principle of neocortical development is that neurogenesis and gliogenesis are temporally segregated processes. However, it is unclear how neurogenesis and gliogenesis are coordinated in non-neocortical regions of the cerebral cortex, such as the hippocampus, also known as the archicortex. Here, we show that the timing of neurogenesis and astrogenesis in the Cornu Ammonis (CA) 1 and CA3 regions of mouse hippocampus mirrors that of the neocortex; neurogenesis occurs embryonically, followed by astrogenesis during early postnatal development.
    [Show full text]
  • NEUROGENESIS in the ADULT BRAIN: New Strategies for Central Nervous System Diseases
    7 Jan 2004 14:25 AR AR204-PA44-17.tex AR204-PA44-17.sgm LaTeX2e(2002/01/18) P1: GCE 10.1146/annurev.pharmtox.44.101802.121631 Annu. Rev. Pharmacol. Toxicol. 2004. 44:399–421 doi: 10.1146/annurev.pharmtox.44.101802.121631 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on August 28, 2003 NEUROGENESIS IN THE ADULT BRAIN: New Strategies for Central Nervous System Diseases ,1 ,2 D. Chichung Lie, Hongjun Song, Sophia A. Colamarino,1 Guo-li Ming,2 and Fred H. Gage1 1Laboratory of Genetics, The Salk Institute, La Jolla, California 92037; email: [email protected], [email protected], [email protected] 2Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; email: [email protected], [email protected] Key Words adult neural stem cells, regeneration, recruitment, cell replacement, therapy ■ Abstract New cells are continuously generated from immature proliferating cells throughout adulthood in many organs, thereby contributing to the integrity of the tissue under physiological conditions and to repair following injury. In contrast, repair mechanisms in the adult central nervous system (CNS) have long been thought to be very limited. However, recent findings have clearly demonstrated that in restricted areas of the mammalian brain, new functional neurons are constantly generated from neural stem cells throughout life. Moreover, stem cells with the potential to give rise to new neurons reside in many different regions of the adult CNS. These findings raise the possibility that endogenous neural stem cells can be mobilized to replace dying neurons in neurodegenerative diseases.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Neural and Behavioral Sciences A REGENERATIVE RESPONSE OF ENDOGENOUS NEURAL STEM CELLS TO PERINATAL HYPOXIC/ISCHEMIC BRAIN DAMAGE A Thesis in Neuroscience by Ryan J. Felling © 2006 Ryan J. Felling Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2006 ii The thesis of Ryan J. Felling was reviewed and approved* by the following: Steven W. Levison Professor of Neurology and Neurosciences Thesis Advisor Co-Chair of Committee Teresa L. Wood Associate Professor of Neural and Behavioral Sciences Co-Chair of Committee Sarah K. Bronson Assistant Professor of Cell and Molecular Biology Charles Palmer Professor of Pediatrics James R. Connor Professor and Vice-Chair Department of Neurosurgery; Director, G.M. Leader Family Laboratory for Alzheimer's Disease Research Robert J. Milner Professor of Neural and Behavioral Sciences Head of Neuroscience Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Hypoxic/ischemic (H/I) insults are the leading cause of neurologic injury during the perinatal period, affecting 2-4 per 1000 term births as well as a high percentage of premature infants. The ensuing sequelae are devastating and include cerebral palsy, epilepsy and cognitive deficits. Despite astounding advances in perinatal care, the incidence of cerebral palsy has changed little over the last 50 years. This demands that we pursue alternative therapeutic strategies that will reduce the significant morbidity associated with perinatal H/I encephalopathy. The revelation that the brain retains populations of neural stem cells throughout life offers the promise of endogenous regeneration following brain injury.
    [Show full text]
  • The Neurofilament-Derived Peptide NFL-TBS.40-63 Targets Neural Stem Cells and Affects Their Properties
    Cell-Based Drug Development, Screening, and Toxicology CELL-BASED DRUG DEVELOPMENT,SCREENING, AND TOXICOLOGY The Neurofilament-Derived Peptide NFL-TBS.40-63 Targets Neural Stem Cells and Affects Their Properties * * CLAIRE LEPINOUX´ -CHAMBAUD, KRISTELL BARREAU, JOEL¨ EYER Key Words. Neural stem cells x NFL-TBS.40-63 peptide x Targeting x Subventricular zone x Differentiation x Proliferation Laboratoire Neurobiologie ABSTRACT et Transgenese, L’Universite´ Targeting neural stem cells (NSCs) in the adult brain represents a promising approach for developing Nantes, Angers, Le Mans, new regenerative strategies, because these cells can proliferate, self-renew, and differentiate into new Unite´ Propre de Recherche neurons, astrocytes, and oligodendrocytes. Previous work showed that the NFL-TBS.40-63 peptide, de l’Enseignement Superieur´ corresponding to thesequenceof a tubulin-binding site on neurofilaments,can target glioblastomacells, EA-3143, Institut de Biologie where it disrupts their microtubules and inhibits their proliferation. We show that this peptide targets en Sante,´ Universite´ NSCsinvitro and invivo when injected intothe cerebrospinalfluid. Although neurosphere formation was not altered by the peptide, the NSC self-renewal capacity and proliferation were reduced and were d’Angers, Centre Hospitalier associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 Universitaire, Angers, France peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative med-
    [Show full text]
  • Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone
    13078 • The Journal of Neuroscience, September 14, 2011 • 31(37):13078–13087 Development/Plasticity/Repair Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone Jessica B. Lennington,1,2 Sara Pope,1,2 Anna E. Goodheart,1 Linda Drozdowicz,1 Stephen B. Daniels,1 John D. Salamone,3 and Joanne C. Conover1,2 1Department of Physiology and Neurobiology, 2Center for Regenerative Biology, and 3Department of Psychology, University of Connecticut, Storrs, Connecticut 06269 Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson’s disease and in animal models of Parkinson’s disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.
    [Show full text]
  • Adult Neurogenesis in the Mammalian Brain: Significant Answers And
    Neuron Review Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions Guo-li Ming1,2,3,* and Hongjun Song1,2,3,* 1Institute for Cell Engineering 2Department of Neurology 3Department of Neuroscience Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA *Correspondence: [email protected] (G.-l.M.), [email protected] (H.S.) DOI 10.1016/j.neuron.2011.05.001 Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining ques- tions related to adult neural stem cells and their niches, underlying regulatory mechanisms, and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new tech- nologies, the adult neurogenesis field is poised to leap forward in the next decade. Introduction has been learned about identities and properties of neural Neurogenesis, defined here as a process of generating func- precursor subtypes in the adult CNS, the supporting local envi- tional neurons from precursors, was traditionally viewed to occur ronment, and sequential steps of adult neurogenesis, ranging only during embryonic and perinatal stages in mammals (Ming from neural precursor proliferation to synaptic integration of and Song, 2005).
    [Show full text]