Research article 4497 Cerebellum- and forebrain-derived stem cells possess intrinsic regional character Corinna Klein1, Simon J. B. Butt1, Robert P. Machold1, Jane E. Johnson2 and Gord Fishell1,* 1Developmental Genetics Program and the Department of Cell Biology, The Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA 2Center for Basic Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9111, USA *Author for correspondence (e-mail: fi
[email protected]) Accepted 10 August 2005 Development 132, 4497-4508 Published by The Company of Biologists 2005 doi:10.1242/dev.02037 Summary The existence of stem cells in the adult nervous system is regard specifically to embryonic and adult cerebellar stem well recognized; however, the potential of these cells is still cells, we observe that they are able to give rise to neurons widely debated. We demonstrate that neural stem cells exist that resemble different select classes of cerebellar within the embryonic and adult cerebellum. Comparing the subclasses when grafted into the perinatal host cerebellum. potential of neural stem cells derived from the forebrain Most notably, upon transplantation to the perinatal and cerebellum, we find that progeny derived from each of cerebellum, cerebellar stem cells from all ages are able to these brain regions retain regional character in vitro as well acquire the position and mature electrophysiological as after homotopic transplantation. However, when properties of cerebellar granule cells. ectopically transplanted, neurosphere-derived cells from either region are largely unable to generate neurons. With Key words: Cerebellum, Neural stem cell, Forebrain, Mouse Introduction (Clarke and Frisen, 2001; D’Amour and Gage, 2002).