T Cell–Mediated Humoral Immune Responses to Type 3 Capsular Polysaccharide of Streptococcus Pneumoniae

Total Page:16

File Type:pdf, Size:1020Kb

T Cell–Mediated Humoral Immune Responses to Type 3 Capsular Polysaccharide of Streptococcus Pneumoniae The Journal of Immunology T Cell–Mediated Humoral Immune Responses to Type 3 Capsular Polysaccharide of Streptococcus pneumoniae Dustin R. Middleton,1 Lina Sun,1 Amy V. Paschall, and Fikri Y. Avci Most pathogenic bacteria express surface carbohydrates called capsular polysaccharides (CPSs). CPSs are important vaccine tar- gets because they are easily accessible and recognizable by the immune system. However, CPS-specific adaptive humoral immune responses can only be achieved by the covalent conjugation of CPSs with carrier proteins to produce glycoconjugate vaccines. We previously described a mechanism by which a model glycoconjugate vaccine can activate the adaptive immune system and dem- onstrated that the mammalian CD4+ T cell repertoire contains a population of carbohydrate-specific T cells. In this study, we use glycoconjugates of type 3 Streptococcus pneumoniae CPS (Pn3P) to assess whether the carbohydrate-specific adaptive immune response exemplified in our previous study can be applied to the conjugates of this lethal pathogen. In this article, we provide evidence for the functional roles of Pn3P-specific CD4+ T cells utilizing mouse immunization schemes that induce Pn3P-specific IgG responses in a carbohydrate-specific T cell–dependent manner. The Journal of Immunology, 2017, 199: 598–603. xploiting their high antigenicity, capsular polysaccharides Gram-positive pathogen S. pneumoniae can be sorted into .90 (CPSs) have been used as main components of glycoconjugate capsular serotypes (9). Multiple studies have shown the ability of E vaccines in clinical practice worldwide in the past three de- CPS-specific Abs to provide protection from pneumococcal cades (1). Immunizations with glycoconjugates containing CPSs from challenges (10, 11). However, most CPSs are poorly immunoge- Haemophilus influenzae, Streptococcus pneumoniae,andNeisseria nic, because they cannot, in their pure form, induce T cell–dependent meningitidis have been used in preventing or controlling infectious immune responses (4, 12). Immunization with glycoconjugates, diseases caused by these bacterial pathogens (2, 3). Although as opposed to pure glycans, elicits T cell help for B cells that glycoconjugate vaccines have provided great health benefits in produce high-affinity IgG Abs to the CPS component of the controlling bacterial diseases, glycoconjugate construction has vaccine and induces memory B and T cell development (4, 12). often been a random process of empirically linking two molecules Since the introduction of the first pneumococcal conjugate vac- (carbohydrate and protein) with minimum consideration of their cine, PCV7, the incidence rate of pneumococcal disease has been mechanism of action (4), resulting in poorly characterized, hetero- reduced significantly (11). The current pneumococcal conjugate geneous, and variably immunogenic glycoconjugate vaccines (1, 5). vaccine is the 13-valent Prevnar13, encompassing CPSs from 13 Demystifying T cell activation mechanisms of glycoconjugate of the most prevalent serotypes of S. pneumoniae (11). The model vaccines is a key step toward designing new-generation vaccines. conjugate vaccine used in this study is in fact a component of the We recently demonstrated a mechanism through which uptake of a existing 13-valent pneumococcal conjugate vaccine. S. pneumoniae glycoconjugate vaccine by APCs results in the presentation of a car- remains among the most lethal infectious agents despite the bohydrate epitope by the MHC class II, thus stimulating carbohydrate- availability of global vaccination programs (11, 13). The type 3 specific CD4+ T cells (Tcarbs) (6–8). strain in particular is among the most virulent strains. Despite In this study, we use model glycoconjugates of type 3 S. pneumoniae current vaccination programs, morbidity of the type 3 strain CPS (Pn3P) to examine whether the carbohydrate-specific adap- remains high, raising questions regarding the efficacy of this tive immune responses exemplified in our previous findings apply vaccine (14). The knowledge gained in this study may have to other carbohydrate Ags used in glycoconjugate vaccines. The implications in producing a highly protective knowledge-based pneumococcal vaccine. Department of Biochemistry and Molecular Biology, Center for Molecular Medi- cine and Complex Carbohydrate Research Center, University of Georgia, Athens, Materials and Methods GA 30602 Mice 1D.R.M. and L.S. are cofirst authors. Eight-week-old female BALB/c mice were obtained from Taconic Bio- ORCIDs: 0000-0001-8973-9116 (D.R.M.); 0000-0001-9144-7534 (A.V.P.); 0000- sciences (Hudson, NY) and housed in the Coverdell Rodent Vivarium at the 0002-1902-7532 (F.Y.A.). University of Georgia. Mice were kept in microisolator cages and handled Received for publication January 6, 2017. Accepted for publication May 6, 2017. under a laminar flow hood. All mouse experiments were in compliance with This work was supported by National Institutes of Health Grants AI-115451-01 and the University of Georgia Institutional Animal Care and Use Committee 1R01AI123383-01A1. under the approved animal use protocol A2013 12-011-Y1-A0. Address correspondence and reprint requests to Prof. Fikri Y. Avci, Department of Ags Biochemistry and Molecular Biology, Center for Molecular Medicine and Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Purified Pn3P powder was obtained from American Type Cell Collection GA 30602. E-mail address: [email protected] (catalog number 172-X). Pn3P was reduced to an average m.w. of 100 kDa The online version of this article contains supplemental material. by hydrolysis with 0.3 M trifluoroacetic acid. Pn3P was conjugated to either Abbreviations used in this article: CPS, capsular polysaccharide; KLH, keyhole OVA (A7641; Sigma) or keyhole limpet hemocyanin (KLH; 374805; limpet hemocyanin; Pn3P, type 3 S. pneumoniae CPS; Tcarb, carbohydrate-specific Calbiochem) through reductive amination as previously described (6, 7). CD4+ T cell. Pn3P conjugates were isolated from unconjugated components by size ex- clusion chromatography (Supplemental Fig. 1). A combination of phenol Copyright Ó 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$30.00 sulfuric acid and BCA assays using Pn3P and carrier proteins for standard www.jimmunol.org/cgi/doi/10.4049/jimmunol.1700026 The Journal of Immunology 599 curve generation confirmed that the conjugates consisted of 45–55% protein Percent viability was calculated as each duplicate reaction subtracted from and 45–55% Pn3P (7). the mean values obtained for control samples (naive serum, 100% survival). Immunizations Abs and flow cytometry Groups of BALB/c mice were immunized i.p. on days 0 and 14 with 5 mgof The following fluorophore-conjugated Abs used in flow cytometry detection Ag in PBS mixed with 2% alhydrogel (vac-alu-50; Invivogen) in a 3:1 were purchased from BioLegend: anti-mouse CD3ε (clone145-2C11), anti- ratio. For T cell assays, groups of BALB/c mice were immunized with Ags mouse CD4 (clone GK1.5), and anti-mouse CD69 (clone H1.2F3). CFSE emulsified in Freund’s adjuvant (Thermo Scientific) by s.c. injection. was purchased from Sigma. After surface staining of cell suspensions at 4˚C, Where indicated, mixtures consisted of quantities consistent with conju- samples were analyzed on CyAn (Beckman Coulter). Data were analyzed gate ratios. using FlowJo software (Tree Star). Adoptive transfers ELISPOT assay Groups of donor BALB/c mice were primed and boosted with 5 mgofPn3P Groups of BALB/c mice were immunized with 10 mg of Pn3P-OVA emul- or 10 mg of Pn3P-KLH s.c. at 3-wk intervals. Mice were sacrificed 5 d after sified in Freund’s adjuvant (Thermo Scientific) by s.c. injection. CD4+ T cells boost. CD4+ T cells were isolated from spleen and lymph nodes of Pn3P or were isolated from lymph nodes of Pn3P-OVA–immunized mice and stim- Pn3P-KLH primed mice, and negatively selected using mouse CD4+ ulated in vitro in the presence of irradiated APCs pulsed with indicated Ags. T lymphocyte enrichment magnetic beads (558131; BD Biosciences). After 24-h stimulation, IL-2 production was detected by ELISPOT assay Splenic B cells from Pn3P-KLH primed mice were isolated using mouse using mouse ELISPOT reagent set (Cellular Technology) according to the B lymphocyte enrichment magnetic beads (557792; BD Biosciences). Iso- manufacturer’s protocol. The ELISPOT samples were analyzed by Immuno- lation of a given cell type was confirmed by flow cytometry. CD4+ Tcells Spot S6 analyzer using the ImmunoCapture 6.3 and ImmunoSpot 5.0 Pro DC (1 3 107) from either Pn3P- or Pn3P-KLH–immunized donors and B cells software (Cellular Technology). (1 3 107) from Pn3P-KLH–immunized mice were adoptively transferred to recipient mice through tail-vein injections in PBS. The recipient mice were Generation of Pn3P-specific T cell hybridomas then immunized with Pn3P-KLH or Pn3P-OVA 1 d after adoptive transfer. T cell hybridomas were generated as previously described (16). In brief, Detection of Pn3P-specific serum Abs BALB/c mice were immunized with Pn3P-KLH emulsified in Freund’s adjuvant (Thermo Scientific). Primary CD4+ T cells obtained from lymph Mice were bled from the tail vein on days 14 and 21 during the prime-boost node of immunized mice were restimulated in vitro with APCs that pulsed immunization experiments. Mice used in the adoptive transfer experiment with Pn3P-KLH. Activated CD4+ T cells were fused with BW5147 T cell were bled 3 d after booster immunization (4 d after transfer). Pn3P-specific lymphoma cells at a ratio of 1:1. The T cell hybrids were selected in Abs in serum were detected by ELISA in 96-well plates coated with 2.5 mg/ml DMEM containing hypoxanthine-aminopterin-thymidine and screened Pn3P-HSA conjugate. Four immune sera per group were used in all ELISA for CD3 and CD4 expression. Ag specificity was screened by activating the experiments. T hybridoma cells with appropriate Ags in the presence of APCs. Culture supernatant was collected after 24-h stimulation to test IL-2 production by Opsonophagocytic killing assay ELISA assay using paired rat mAbs for mouse IL-2 (BioLegend).
Recommended publications
  • Antimicrobial Glycoconjugate Vaccines: an Overview of Classic and Modern Approaches Cite This: Chem
    Chem Soc Rev View Article Online TUTORIAL REVIEW View Journal | View Issue Antimicrobial glycoconjugate vaccines: an overview of classic and modern approaches Cite this: Chem. Soc. Rev., 2018, 47, 9015 for protein modification Francesco Berti * and Roberto Adamo * Glycoconjugate vaccines obtained by chemical linkage of a carbohydrate antigen to a protein are part of routine vaccinations in many countries. Licensed antimicrobial glycan–protein conjugate vaccines are obtained by random conjugation of native or sized polysaccharides to lysine, aspartic or glutamic amino acid residues that are generally abundantly exposed on the protein surface. In the last few years, the structural approaches for the definition of the polysaccharide portion (epitope) responsible for the immunological activity has shown potential to aid a deeper understanding of the mode of action of glycoconjugates and to lead to the rational design of more efficacious and safer vaccines. The combination of technologies to obtain more defined carbohydrate antigens of higher purity and novel approaches for Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Received 12th June 2018 protein modification has a fundamental role. In particular, methods for site selective glycoconjugation like DOI: 10.1039/c8cs00495a chemical or enzymatic modification of specific amino acid residues, incorporation of unnatural amino acids and glycoengineering, are rapidly evolving. Here we discuss the state of the art of protein engineering with rsc.li/chem-soc-rev carbohydrates to obtain glycococonjugates vaccines and future perspectives. Key learning points (a) The covalent linkage with proteins is fundamental to transform carbohydrates, which are per se T-cell independent antigens, in immunogens capable of This article is licensed under a evoking a long-lasting T-cell memory response.
    [Show full text]
  • A Genome-Wide Shrna Screen Identifies GAS1 As a Novel Melanoma Metastasis Suppressor Gene
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene Stephane Gobeil,1 Xiaochun Zhu,1 Charles J. Doillon,2 and Michael R. Green1,3 1Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; 2Oncology and Molecular Endocrinology Research Center, CHUL’s Research Center, CHUQ, Laval University, Quebec City, Québec G1V 4G2, Canada Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples.
    [Show full text]
  • Glypican (Heparan Sulfate Proteoglycan) Is Palmitoylated, Deglycanated and Reglycanated During Recycling in Skin Fibroblasts
    Glycobiology vol. 7 no. 1 pp. 103-112, 1997 Glypican (heparan sulfate proteoglycan) is palmitoylated, deglycanated and reglycanated during recycling in skin fibroblasts Gudrun Edgren1, Birgitta Havsmark, Mats Jonsson and granules (for reviews, see Kjell6n and Lindahl, 1991; Bernfield Lars-Ake Fransson et al., 1992; David, 1993; Heinegard and Oldberg, 1993). Pro- teoglycans are classified according to the characteristic fea- Department of Cell and Molecular Biology, Faculty of Medicine, Lund University, Lund, Sweden tures or properties of the core protein and can appear in many 'To whom correspondence should be addressed at: Department of Cell and glycoforms giving rise to considerable structural variation and Downloaded from https://academic.oup.com/glycob/article/7/1/103/725516 by guest on 30 September 2021 Molecular Biology 1, POB 94, S-221 00, Lund, Sweden functional diversity. In general, the protein part determines the destination of the proteoglycan and interacts with other mol- Skin fibroblasts treated with brefeldin A produce a recy- ecules at the final location. The glycan part provides the overall cling variant of glypican (a glycosylphosphatidylinositol- bulk properties as well as binding sites for other gly- anchored heparan-sulfate proteoglycan) that is resistant to cosaminoglycans and many types of proteins, including matrix inositol-specific phospholipase C and incorporates sulfate proteins, plasma proteins, enzymes, anti-proteinases, growth and glucosamine into heparan sulfate chains (Fransson, factors, and cytokines. L.-A. et aL, Glycobiology, 5, 407-415, 1995). We have now Cultured human fibroblasts synthesize, deposit, and secrete investigated structural modifications of recycling glypican, 3 a variety of proteoglycans and have been used extensively to such as fatty acylation from [ H]palmitate, and degrada- investigate both their biosynthesis and functional properties tion and assembly of heparan sulfate side chains.
    [Show full text]
  • Glycoconjugates
    Background Information on Glycoconjugates Richard D. Cummings, Ph.D. Director, National Center for Functional Glycomics Professor Department of Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02114 Tel: (617) 735-4643 e-mail: [email protected] For General Reference On-Line See: Essentials of Glycobiology (2nd Edition) Varki, Cummings, Esko, Freeze, Stanley, Bertozzi, Hart and Etzler) http://www.ncbi.nlm.nih.gov/books/NBK1908/ Mammalian Cells are Covered with Glycoconjugates GLYCOSAMINOGLYCANS/ GLYCOPROTEINS PROTEOGLYCANS GLYCOLIPIDS NUCLEAR/CYTOPLASMIC GLYCOPROTEINS 2 Mammalian Glycoconjugates are Recognized by a Wide Variety of Specific Proteins GLYCAN-BINDING PROTEIN (GBP) GBP ANTIBODY TOXIN GBP GBP VIRUS 7 ANTIBODY GBP MICROBE TOXIN 3 Glycosylation Pathways 4 Glycosylation Pathways 5 Glycoconjugates, Which are Molecules Containing Sugars (Monosaccharides) Linked Within Them, are the Major Constituents of Animal Cell Membranes (Glycocalyx) and Secreted Material: See Different Classes of Glycoconjugates Below in Red Boxes PROTEOGLYCANS GLYCOSAMINOGLYCANS GLYCOSAMINOGLYCANS GLYCOPROTEINS GPI-ANCHORED GLYCOPROTEINS GLYCOLIPIDS outside Cell Membrane cytoplasm Essentials of Glycobiology, 3rd Edition CYTOPLASMIC GLYCOPROTEINS Chapter 1, Figure 6 Glycans are as Ubiquitous as DNA/RNA and Appear to Represent Greater Molecular Diversity 7 Big Picture: Nucleotide Sugars Connection of • UDP-Glc, • UDP-Gal, • UDP-GlcNAc, Glycoconjugate • UDPGalNAc, • UDP-GlcA, Biosynthesis • UDP-Xyl, • GDP-Man, • GDP-Fuc, to Intermediary • CMP-Neu5Ac used for synthesizing Metabolism glycoconjugates, e.g, glycoproteins & glycolipids 8 Important Topics to Consider 1. The different types of monosaccharides found in animal cell glycoconjugates 2. The different types of glycoconjugates and their differences, e.g. glycoproteins, glycolipids 3. The nucleotide sugars, glycosyltransferases, glycosidases, transporters, endoplasmic reticulum, and Golgi in terms of their roles in glycoconjugate biosynthesis and turnover 4.
    [Show full text]
  • Vasoactive Intestinal Peptide in Human Nasal Mucosa
    Vasoactive intestinal peptide in human nasal mucosa. J N Baraniuk, … , J H Shelhamer, M A Kaliner J Clin Invest. 1990;86(3):825-831. https://doi.org/10.1172/JCI114780. Research Article Vasoactive intestinal peptide (VIP), which is present with acetylcholine in parasympathetic nerve fibers, may have important regulatory functions in mucous membranes. The potential roles for VIP in human nasal mucosa were studied using an integrated approach. The VIP content of human nasal mucosa was determined to be 2.84 +/- 0.47 pmol/g wet weight (n = 8) by RIA. VIP-immunoreactive nerve fibers were found to be most concentrated in submucosal glands adjacent to serous and mucous cells. 125I-VIP binding sites were located on submucosal glands, epithelial cells, and arterioles. In short-term explant culture, VIP stimulated lactoferrin release from serous cells but did not stimulate [3H]glucosamine-labeled respiratory glycoconjugate secretion. Methacholine was more potent than VIP, and methacholine stimulated both lactoferrin and respiratory glycoconjugate release. The addition of VIP plus methacholine to explants resulted in additive increases in lactoferrin release. Based upon the autoradiographic distribution of 125I-VIP binding sites and the effects on explants, VIP derived from parasympathetic nerve fibers may function in the regulation of serous cell secretion in human nasal mucosa. VIP may also participate in the regulation of vasomotor tone. Find the latest version: https://jci.me/114780/pdf Vasoactive Intestinal Peptide in Human Nasal Mucosa James
    [Show full text]
  • Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
    Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”.
    [Show full text]
  • Detection and Quantification of Antiborlies to the Extracellular Domain of PO During Experimental Allergic Neuritis
    Journal of the Neurological Sciences, 117 (1993) 197-205 197 © 1993 Elsevier Science Publishers B.V. All rights resetved 0022-SlOX/93/$06.00 JNS 04021 Detection and quantification of antiborlies to the extracellular domain of PO during experimental allergic neuritis J.J. Archelos a, K. Roggenbuck a, J. Schneider-Schaulies b, K.V. Toyka a and H.-P. Hartung a a Department of Neuro/ogy and Multiple Sc/erosis Research Group, Julius-Maximilians-Universität Würzburg, Josef-Schneider-Str. 11, D-8700 Würzburg, Germany, and b Institute of Virology and lmmunobio/ogy, Julius-Maximilians-Universität Würzburg, Versbacher Str. 7, D-8700 Würzburg, Germany (Received 13 August, 1992) (Revised, received 18 December, 1992) (Accepted 2 January, 1993) Key words: PO; Extracellular domain; Neuritis; GBS; Auto-antibodies Summary Quantification of the peripheral nerve myelin glycoprotein PO and antibodies to PO is difficult due to insolubility of PO in physiological solutions. We have overcome this problern by using the water-soluble recombinant form of the extracellular domain of PO (PO-ED) and describe newly developed assays which allow detection and quantitation of PO and antibodies to PO, in serum and cerebraspinal fluid (CSF). These sensitive and specific assays based on the ELISA technique were used to study humoral immune responses to PO during experimental autoimmune ("allergic") neuritis (EAN). In order to establish these tests, monoclonal antiborlies to different epitopes of rodent and human PO-ED were produced. A two-antibody sandwich-ELISA allowing quantitation of PO Oower detection Iimit of 0.5 ngjml or 30 fmoljml) and an antibody-capture ELISA (lower detection Iimit 1 ng specific antibody jml) to detect antiborlies to PO in serum and CSF were developed.
    [Show full text]
  • Protein C Product Monograph 1995 COAMATIC® Protein C Protein C
    Protein C Product Monograph 1995 COAMATIC® Protein C Protein C Protein C, Product Monograph 1995 Frank Axelsson, Product Information Manager Copyright © 1995 Chromogenix AB. Version 1.1 Taljegårdsgatan 3, S-431 53 Mölndal, Sweden. Tel: +46 31 706 20 00, Fax: +46 31 86 46 26, E-mail: [email protected], Internet: www.chromogenix.se COAMATIC® Protein C Protein C Contents Page Preface 2 Introduction 4 Determination of protein C activity with 4 snake venom and S-2366 Biochemistry 6 Protein C biochemistry 6 Clinical Aspects 10 Protein C deficiency 10 Assay Methods 13 Protein C assays 13 Laboratory aspects 16 Products 17 Diagnostic kits from Chromogenix 17 General assay procedure 18 COAMATIC® Protein C 19 References 20 Glossary 23 3 Protein C, version 1.1 Preface The blood coagulation system is carefully controlled in vivo by several anticoagulant mechanisms, which ensure that clot propagation does not lead to occlusion of the vasculature. The protein C pathway is one of these anticoagulant systems. During the last few years it has been found that inherited defects of the protein C system are underlying risk factors in a majority of cases with familial thrombophilia. The factor V gene mutation recently identified in conjunction with APC resistance is such a defect which, in combination with protein C deficiency, increases the thrombosis risk considerably. The Chromogenix Monographs [Protein C and APC-resistance] give a didactic and illustrated picture of the protein C environment by presenting a general view of medical as well as technical matters. They serve as an excellent introduction and survey to everyone who wishes to learn quickly about this field of medicine.
    [Show full text]
  • Vaccine Immunology Claire-Anne Siegrist
    2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy.
    [Show full text]
  • Recent Progress in the Field of Neoglycoconjugate Chemistry
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/247838044 Recent progress in the field of neoglycoconjugate chemistry Article in Biomolecular concepts · May 2010 DOI: 10.1515/BMC.2010.007 CITATIONS READS 0 29 4 authors, including: Carmen Jiménez-Castells David Andreu University Pompeu Fabra University Pompeu Fabra 7 PUBLICATIONS 61 CITATIONS 318 PUBLICATIONS 8,765 CITATIONS SEE PROFILE SEE PROFILE Ricardo Gutiérrez Gallego University Pompeu Fabra 99 PUBLICATIONS 1,541 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: David Andreu letting you access and read them immediately. Retrieved on: 29 August 2016 Article in press - uncorrected proof BioMol Concepts, Vol. 1 (2010), pp. 85–96 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BMC.2010.007 Review Recent progress in the field of neoglycoconjugate chemistry Carmen Jime´nez-Castells1, Sira Defaus1, David type N-glycans) in recombinant human erythropoietin (EPO) Andreu1 and Ricardo Gutie´rrez-Gallego1,2,* (2) (Figure 1). Carbohydrate attachment to the backbone, usually occur- 1 Department of Experimental and Health Sciences, ring at the protein surface, entails not only modest-to-sub- Pompeu Fabra University, Barcelona Biomedical Research stantial structure alteration but also often the generation of Park, Dr. Aiguader 88, 08003 Barcelona, Spain differently glycosylated variants of a single gene product. 2 Pharmacology Research Unit, Bio-analysis group, Glycosylation has been extensively studied in eukaryotes Neuropsychopharmacology program, Municipal Institute of (3–6) and evidence is growing that in prokaryotes it is also Medical Research IMIM-Hospital del Mar, Barcelona more common than hitherto supposed (7, 8).
    [Show full text]
  • A Semisynthetic Glycoconjugate Provides Expanded Cross-Serotype Protection
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454378; this version posted July 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A semisynthetic glycoconjugate provides expanded cross-serotype protection against Streptococcus pneumoniae Paulina Kaplonek1,2,#, Ling Yao1,3, Katrin Reppe3, Franziska Voß4, Thomas Kohler4, Friederike Ebner5, Alexander Schäfer 6, Ulrike Blohm6, Patricia Priegue1, Maria Bräutigam1, Claney L. Pereira1, Sharavathi G. Parameswarappa1, Madhu Emmadi1, Petra Ménová1,† Martin Witzenrath3,7, Sven Hammerschmidt4, Susanne Hartmann5, Leif E. Sander3,7,*, Peter H. Seeberger1,2,* Affiliations 1 Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany. 2 Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany. 3 Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. 4 Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany. 5 Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany. bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454378; this version posted July 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Polysaccharide Structure Dictates Mechanism of Adaptive Immune Response to Glycoconjugate Vaccines
    Polysaccharide structure dictates mechanism of adaptive immune response to glycoconjugate vaccines Ximei Suna,b, Giuseppe Stefanettia,c, Francesco Bertid, and Dennis L. Kaspera,1 aDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; bGraduate Program in Immunology, Harvard Medical School, Boston, MA 02115; cDepartment of Chemistry, University of Milan, 20133 Milan, Italy; and dTechnical R&D, GSK Vaccines, 53100 Siena, Italy Contributed by Dennis L. Kasper, November 1, 2018 (sent for review September 25, 2018; reviewed by Peter R. Andreana and Moriya Tsuji) Glycoconjugate vaccines are among the most effective interven- peptide from the carrier (5). These surface-presented CPSs are + tions for preventing several serious infectious diseases. Covalent able to activate a subset of CD4 T cells, designated carbohydrate- linkage of the bacterial capsular polysaccharide to a carrier protein + specific T cells (Tcarbs), which regulate the adaptive immune provides CD4 T cells with epitopes that facilitate a memory re- response to the GBSIII glycoconjugate (5–8). Similar mechanisms sponse to the polysaccharide. Classically, the mechanism responsi- have now been shown to be responsible for T helper responses to ble for antigen processing was thought to be similar to what was glycoconjugates made with the type 3 S. pneumoniae poly- known for hapten-carrier conjugates: protease digestion of the carrier protein in the endosome and presentation of a resulting saccharide (Pn3P) (6). + peptide to the T cell receptor on classical peptide-recognizing CD4 In the present study, we analyze the T cell response to gly- T cells. Recently, an alternative mechanism has been shown to be coconjugates of several other important pathogens, including responsible for the memory response to some glycoconjugates.
    [Show full text]