Baseline Report Series: 6

Total Page:16

File Type:pdf, Size:1020Kb

Baseline Report Series: 6 Baseline Report Series: 6. The Chalk of the Colne and Lee River Catchments Groundwater Systems and Water Quality Commissioned Report CR/03/69N Science Group: Air, Land & Water Technical Report NC/99/74/6 The Natural Quality of Groundwater in England and Wales A joint programme of research by the British Geological Survey and the Environment Agency BRITISH GEOLOGICAL SURVEY Commissioned Report CR/03/69N ENVIRONMENT AGENCY Science Group: Air, Land & Water Technical Report NC/99/74/6 This report is the result of a study jointly funded by the British Baseline Report Series: Geological Survey’s National Groundwater Survey and the 6. The Chalk of the Colne and Lee Environment Agency Science Group. No part of this work may be River Catchments reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright proprietors. P Shand, R Tyler-Whittle, T Besien, D W Peach, All rights are reserved by the copyright A R Lawrence & H O Lewis proprietors. Disclaimer Contributors The officers, servants or agents of both the British Geological Survey and the Environment Agency accept no R Hargreaves (GIS), M Barron (Cross section), C J Milne liability whatsoever for loss or damage arising from the interpretation or use of (database) the information, or reliance on the views contained herein. Environment Agency Dissemination status Internal: Release to Regions External: Public Domain Project No. NC/99/74 ©Environment Agency, 2003 Statement of use This document forms one of a series of reports describing the baseline chemistry of selected reference aquifers in England and Wales. Cover illustration River Colne at Bushy Mill Lane. Key words Baseline, Chalk, York, water quality, hydrogeochemistry, UK aquifer. Bibliographic Reference Environment Agency Project Manager: Shand, P, Tyler-Whittle, Besien, T, , Peach, D W, Lawrence, A R & H O Dr Rob Ward / Jonathan Smith Lewis 2003 Baseline Report Series 6: Science Group: Air, Land & Water The Chalk of the Colne and Lee River Catchments. British Geological Survey British Geological Survey Project Manager: Commissioned Report No. CR/03/69N Dr Paul Shand Groundwater Systems & Water Quality Programme ©Environment Agency 2003 ©NERC 2003 Environment Agency Science Group, Solihull 2004 British Geological Survey, Keyworth, Nottingham 2004 BRITISH GEOLOGICAL SURVEY ENVIRONMENT AGENCY The full range of Survey publications is available from BGS The Environment Agency is a non-departmental public body with Sales Desk at the Survey headquarters, Keyworth, Nottingham. particular responsibilities for aspects of environmental regulation The more popular maps and books may be purchased from and management in England and Wales. In discharging these BGS-approved stockists and agents and over the counter at the responsibilities the Agency carries out projects both alone and in Bookshop, Gallert 37, Natural History Museum, (Earth collaboration with others. Galleries), Cromwell Road, London. Sales. Sales Desks are also located at the BGS London Information Office, and at Agency reports and documents are published through a variety of Murchison House, Edinburgh. The London Information Office routes. Agency Science Group (Air, Land & Water) publications are maintains a reference collection of the BGS publications obtainable from the address below, Research and Development including maps for consultation. Some BGS books and reports project reports can be obtained from: Environment Agency R&D may also be obtained from the Stationery Office Publications Dissemination Centre, c/o WRc, Frankland Rd, Swindon, Wilts, SN5 Centre or from the Stationery Office bookshops and agents. 8YF Tel 01793 865138 Fax 01793 514562 WWW http://www.wrcplc.co.uk/rdbookshop and other documents are sold The Survey publishes an annual catalogue of maps, which lists through the Stationery Office, The Publications Centre, PO Box 276, published material and contains index maps for several of the London SW8 5DT Tel 0207 873 0011 BGS series. Environment Agency Science Group: Air, Land & Water The British Geological Survey carries out the geological Olton Court, 10 Warwick Rd survey of Great Britain and Northern Ireland (the latter as an Olton, Solihull, B92 7HX agency service for the government of Northern Ireland), and of Tel 0121 708 5885 Fax 0121 708 4637 the surrounding continental shelf, as well as its basic research Email [email protected] projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Environment Agency Department for International Development and other agencies. General Enquiry Line 0845 9333 111 The British Geological Survey is a component body of the Natural Environment Research Council. Environment Agency Regional Offices Keyworth, Nottingham NG12 5GG Anglian 0115 936 3100 Telex 378173 BGSKEY G Kingfisher House, Fax 0115 936 3200 Goldhay Way, Orton Goldhay, Peterborough PE2 5ZR e-mail: [email protected] www.bgs.ac.uk Tel 01733 371811 Fax 01733 231840 Murchison House, West Mains Road, Edinburgh, EH9 3LA Midlands 0131 667 1000 Telex 727343 SEISED G Sapphire East, 550 Streetsbrook Road, Solihull, West Midlands Fax 0131 668 2683 B91 1QT Tel 0121 711 2324 Fax 0121 711 5824 London Information Office at the Natural History Museum, Earth Galleries, Exhibition Road, South Kensington, London, North East SW7 2DE Rivers House, 21 Park Square South, Leeds LS1 2QG 0207 589 4090 Fax 0207 584 8270 Tel 0113 244 0191 Fax 0113 246 1889 0207 938 9056/57 North West St Just, 30 Pennsylvania Road, Exeter EX4 6BX Richard Fairclough House, Knutsford Road, Warrington WA4 1HG 01392 278312 Fax 01392 437505 Tel 01925 653999 Fax 01925 415961 Geological Survey of Northern Ireland, 20 College Gardens, South West Belfast BT9 6BS Manley House, Kestrel Way, Exeter EX2 7LQ 01232 666595 Fax 01232 662835 Tel 01392 444000 Fax 01392 444238 Maclean Building, Crowmarsh Gifford, Wallingford, Southern Oxfordshire OX10 8BB Guildbourne House, Chatsworth Rd, Worthing, Sussex BN11 1LD 01491 838800 Fax 01491 692345 Tel 01903 832000 Fax 01903 821832 email: [email protected] Thames Parent Body Kings Meadow House, Kings Meadow Road, Reading RG1 8DQ Natural Environment Research Council Tel 0118 953 5000 Fax 0118 950 0388 Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU Environment Agency Wales 01793 411500 Telex 444293 ENVRE G 29 Newport Road, Cardiff CF24 0TP Fax 01793 411501 Tel 01222 770088 Fax 01222 798555 Contents FOREWORD v BACKGROUND TO THE BASELINE PROJECT vi 1. EXECUTIVE SUMMARY 1 2. PERSPECTIVE 2 3. BACKGROUND TO UNDERSTANDING BASELINE QUALITY 5 3.1 Introduction 5 3.2 Geology 6 3.3 Hydrogeology 9 3.4 Aquifer mineralogy 12 3.5 Rainfall chemistry 14 3.6 Landuse in the area 15 4. DATA AND INTERPRETATION 17 4.1 Project sampling programme 17 4.2 Other data 17 4.3 Problems in obtaining representative samples 17 4.4 Data handling 18 5. HYDROCHEMICAL CHARACTERISTICS 19 5.1 Introduction 19 5.2 Water types and physicochemical characteristics 19 5.3 Major elements 22 5.4 Minor and trace elements 26 5.5 Pollution indicators 27 6. GEOCHEMICAL CONTROLS AND REGIONAL CHARACTERISTICS 29 6.1 Introduction 29 6.2 Chemical evolution along flowlines 29 6.3 Temporal variations 36 6.4 Depth variations 38 6.5 Age of the groundwater 43 6.6 Regional variations 44 7. BASELINE CHEMISTRY OF THE AQUIFER 49 8. SUMMARY AND CONCLUSIONS 52 9. REFERENCES 53 ACKNOWLEDGEMENTS 55 i List of Figures Figure 2.1 Map of the study area showing topography, main towns and cities (shaded). The outcrop area of the Chalk is shown in red.....................................................................2 Figure 2.2 The River Misbourne (Tributary of the Colne) north of Denham, Buckinghamshire. .3 Figure 3.1 Geological map of the study area. Black line represent line of cross section shown on Figure 3.3......................................................................................................................5 Figure 3.2 Geological map of the study area showing distribution of superficial deposits. Rivers are shown in blue and the outline of chalk outcrop in red. ...........................................7 Figure 3.3 Simplified geological cross section trending north to south through the study area. Line of section is shown on Figure 3.1.........................................................................8 Figure 3.4 Hydrogeological map showing groundwater level contours, sample sites considered in this report and a potential flowline where new samples were collected for this study. Rivers shown as blue lines..........................................................................................12 Figure 3.5 SEM photomicrograph of the Chalk showing round coccolithic fragments and calcite platelets (Field of view approximately 5 µm).............................................................13 Figure 3.6 Diagrammatic sketch of chalk showing important chemical interactions at the microscopic scale (stippled region indicates matrix and clear area represents a fracture). The solid phase comprises mainly coccolithic fragments (1), foraminifera and other microfossils, and pyrite (black, (1)). Congruent and incongruent reactions occur on fracture surfaces forming mineral coatings or dissolution which may locally enhance porosity (2). Exchange of solutes between the fracture and matrix waters may occur (3). Ion-exchange reactions occur on clay mineral surfaces (4). The precipitation of Fe and Mn oxyhydroxides on fracture surfaces may also modify diffusional
Recommended publications
  • Geology of London, UK
    Proceedings of the Geologists’ Association 123 (2012) 22–45 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Review paper Geology of London, UK a, b,c d e c Katherine R. Royse *, Mike de Freitas , William G. Burgess , John Cosgrove , Richard C. Ghail , f g h i j k Phil Gibbard , Chris King , Ursula Lawrence , Rory N. Mortimore , Hugh Owen , Jackie Skipper a British Geological Survey, Keyworth, Nottingham NG12 5GG, UK b First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK c Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK d Department of Earth Sciences, University College London, WC1E 6BT, UK e Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK f Cambridge Quaternary, Department of Geography, University of Cambridge, CB2 3EN, UK g 16A Park Road, Bridport, Dorset, UK h Crossrail Ltd. 25 Canada Square, Canary Wharf, London E14 5LQ, UK i University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes BN7 1BE, UK j Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK k Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK A R T I C L E I N F O A B S T R A C T Article history: The population of London is around 7 million. The infrastructure to support this makes London one of the Received 25 February 2011 most intensively investigated areas of upper crust. However construction work in London continues to Received in revised form 5 July 2011 reveal the presence of unexpected ground conditions.
    [Show full text]
  • An Introduction to the Geology and Fossils of Essex
    An Introduction to the Geology and Fossils of Essex The Foundations of Essex The rocks of Essex that were formed before the Ice Age are described as the 'solid' or 'bedrock' geology. Much of the solid geology is concealed beneath unconsolidated sediments laid down during the Ice Age. These Ice Age sediments (sand, gravel etc.) are called 'superficial' or 'drift' deposits. The Oldest Rocks The geological story of Essex starts with rocks that are between 440 and 360 million years old. Dating from the Silurian and Devonian periods these rocks consist of hard, slaty shales, mudstones and sandstones and are over 300 metres below the surface. These rocks have been encountered in boreholes at many places in Essex and they represent a time in the distant past when the first animals were leaving the sea to colonise the land. Similar rocks can be seen at the surface in the Welsh Borderland. Lying on top of these ancient rocks is the Gault, a marly clay from a muddy sea that dates from the middle of the Cretaceous period. This means that, beneath Essex, there is a gap in the geological record that represents about 250 million years and includes the Triassic, Jurassic and early Cretaceous periods. After deposition of the Gault, sand spread into this sea to form a deposit called the Upper Greensand. At this time sea levels were rising leading to widespread flooding of the continents, these are the conditions under which the next rock was formed - the Chalk. The Chalk Chalk is effectively the starting point of our geological story as it is the oldest rock exposed at the surface in our county.
    [Show full text]
  • Northern Thames Basin Area Profile: Supporting Documents
    National Character 111: Northern Thames Basin Area profile: Supporting documents www.naturalengland.org.uk 1 National Character 111: Northern Thames Basin Area profile: Supporting documents Introduction National Character Areas map As part of Natural England’s responsibilities as set out in the Natural Environment White Paper1, Biodiversity 20202 and the European Landscape Convention3, we are revising profiles for England’s 159 National Character Areas (NCAs). These are areas that share similar landscape characteristics, and which follow natural lines in the landscape rather than administrative boundaries, making them a good decision-making framework for the natural environment. NCA profiles are guidance documents which can help communities to inform their decision-making about the places that they live in and care for. The information they contain will support the planning of conservation initiatives at a landscape scale, inform the delivery of Nature Improvement Areas and encourage broader partnership working through Local Nature Partnerships. The profiles will also help to inform choices about how land is managed and can change. Each profile includes a description of the natural and cultural features that shape our landscapes, how the landscape has changed over time, the current key drivers for ongoing change, and a broad analysis of each area’s characteristics and ecosystem services. Statements of Environmental Opportunity (SEOs) are suggested, which draw on this integrated information. The SEOs offer guidance on the critical issues, which could help to achieve sustainable growth and a more secure environmental future. 1 The Natural Choice: Securing the Value of Nature, Defra NCA profiles are working documents which draw on current evidence and (2011; URL: www.official-documents.gov.uk/document/cm80/8082/8082.pdf) 2 knowledge.
    [Show full text]
  • London Basin Advice
    Insightful London Basin Advice The London Basin aquifer is one of the most densely investigated and data-rich groundwater bodies in the UK. Following consolidation and analysis of the available data and a comprehensive literature review, we developed a detailed conceptual understanding of the key hydrogeological processes, which focused on understanding and quantifying the following key aspects of the hydrogeology of the aquifer: 1 Using the most modern interpretation from the British Geological Survey of geological layering and structure to understand the geometry of the aquifer units and potential influence on groundwater flow – see bgs.ac.uk/research/ engineeringGeology/urbanGeoscience/londonAndThames/faultModelling.html 2 Understanding the hydraulic properties of the layered aquifer. Historical interpretations of the Chalk transmissivity distribution were combined with recent pumping tests and depth of burial information to prepare an initial transmissivity map for the model. 3 Understanding groundwater level distributions to identify low permeability barriers (mainly identified as faults or fold axis) and to map areas where the water table was below the base of aquifer units. 4 Quantifying recharge to the North Downs, which contributes almost a half the inflow to the basin; and modelling flows from the springs at the foot of the dip slope which form the upper reaches of the Rivers Hogsmill, Wandle and Ravensbourne. 5 Quantifying other flows into the confined basin, which contribute to most of the abstraction yield. The key source is the unconfined aquifer of the Chilterns, the data for which we obtained from other Environment Agency groundwater models. 6 Assessing interaction with the River Thames where the aquifer is unconfined in East London.
    [Show full text]
  • Geology of London, UK
    Geology of London, UK Katherine R. Royse1, Mike de Freitas2,3, William G. Burgess4, John Cosgrove5, Richard C. Ghail3, Phil Gibbard6, Chris King7, Ursula Lawrence8, Rory N. Mortimore9, Hugh Owen10, Jackie Skipper 11, 1. British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. [email protected] 2. Imperial College London SW72AZ, UK & First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK. 3. Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK. 4. Department of Geological Sciences, University College London, WC1E 6BT, UK. 5. Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK. 6. Cambridge Quaternary, Department of Geography, University of Cambridge CB2 3EN, UK. 7. 16A Park Road, Bridport, Dorset 8. Crossrail Ltd. 25 Canada Square, Canary Wharf, London, E14 5LQ, UK. 9. University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes, BN7 1BE, UK. 10. Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. 11. Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK. Abstract The population of London is around 7 million. The infrastructure to support this makes London one of the most intensively investigated areas of upper crust. however construction work in London continues to reveal the presence of unexpected ground conditions. These have been discovered in isolation and often recorded with no further work to explain them. There is a scientific, industrial and commercial need to refine the geological framework for London and its surrounding area. This paper reviews the geological setting of London as it is understood at present, and outlines the issues that current research is attempting to resolve.
    [Show full text]
  • The Stratigraphical Framework for the Palaeogene Successions of the London Basin, UK
    The stratigraphical framework for the Palaeogene successions of the London Basin, UK Open Report OR/12/004 BRITISH GEOLOGICAL SURVEY OPEN REPORT OR/12/004 The National Grid and other Ordnance Survey data are used The stratigraphical framework for with the permission of the Controller of Her Majesty’s Stationery Office. the Palaeogene successions of the Licence No: 100017897/2012. London Basin, UK Key words Stratigraphy; Palaeogene; southern England; London Basin; Montrose Group; Lambeth Group; Thames Group; D T Aldiss Bracklesham Group. Front cover Borehole core from Borehole 404T, Jubilee Line Extension, showing pedogenically altered clays of the Lower Mottled Clay of the Reading Formation and glauconitic sands of the Upnor Formation. The white bands are calcrete, which form hard bands in this part of the Lambeth Group (Section 3.2.2.2 of this report) BGS image P581688 Bibliographical reference ALDISS, D T. 2012. The stratigraphical framework for the Palaeogene successions of the London Basin, UK. British Geological Survey Open Report, OR/12/004. 94pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2012.
    [Show full text]
  • Management of the London Basin Chalk Aquifer
    Management of the London Basin Chalk Aquifer Status Report 2009 We are the Environment Agency. It's our job to look after your environment and make it a better place - for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are making your environment cleaner and healthier. The Environment Agency. Out there, making your environment a better place. Environment Agency Rio House Waterside Drive, Aztec West Almondsbury, Bristol BS32 4UD Tel: 0870 8506506 Email: [email protected] www.environment-agency.gov.uk © Environment Agency All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Environment Agency Management of the London Basin Chalk Aquifer Status Report 2009 Contents 1 Introduction .................................................................................................................................. 2 2 Geology beneath London............................................................................................................. 3 3 Groundwater beneath London ..................................................................................................... 5 4 Why we need to manage groundwater levels.............................................................................. 7 5 How we manage groundwater levels........................................................................................... 9 6 Recent Abstraction
    [Show full text]
  • Geology of London, UK
    Proceedings of the Geologists’ Association 123 (2012) 22–45 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Review paper Geology of London, UK a, b,c d e c Katherine R. Royse *, Mike de Freitas , William G. Burgess , John Cosgrove , Richard C. Ghail , f g h i j k Phil Gibbard , Chris King , Ursula Lawrence , Rory N. Mortimore , Hugh Owen , Jackie Skipper a British Geological Survey, Keyworth, Nottingham NG12 5GG, UK b First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK c Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK d Department of Earth Sciences, University College London, WC1E 6BT, UK e Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK f Cambridge Quaternary, Department of Geography, University of Cambridge, CB2 3EN, UK g 16A Park Road, Bridport, Dorset, UK h Crossrail Ltd. 25 Canada Square, Canary Wharf, London E14 5LQ, UK i University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes BN7 1BE, UK j Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK k Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK A R T I C L E I N F O A B S T R A C T Article history: The population of London is around 7 million. The infrastructure to support this makes London one of the Received 25 February 2011 most intensively investigated areas of upper crust. However construction work in London continues to Received in revised form 5 July 2011 reveal the presence of unexpected ground conditions.
    [Show full text]
  • Quaternary River Diversions in the London Basin and the Eastern English Channel"
    Article "Quaternary River Diversions in the London Basin and the Eastern English Channel" D. R. Bridgland et P. L. Gibbard Géographie physique et Quaternaire, vol. 51, n° 3, 1997, p. 337-346. Pour citer cet article, utiliser l'information suivante : URI: http://id.erudit.org/iderudit/033132ar DOI: 10.7202/033132ar Note : les règles d'écriture des références bibliographiques peuvent varier selon les différents domaines du savoir. Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique d'utilisation que vous pouvez consulter à l'URI https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Érudit est un consortium interuniversitaire sans but lucratif composé de l'Université de Montréal, l'Université Laval et l'Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. Érudit offre des services d'édition numérique de documents scientifiques depuis 1998. Pour communiquer avec les responsables d'Érudit : [email protected] Document téléchargé le 12 février 2017 08:33 Géographie physique et Quaternaire, 1997, vol. 51, n" 3, p. 337-346, 5 fig. QUATERNARY RIVER DIVERSIONS IN THE LONDON BASIN AND THE EASTERN ENGLISH CHANNEL D.R. BRIDGLAND* and P.L. GIBBARD, respectively, Department of Geography, University of Durham, South Road, Durham DH1 3LE, United Kingdom, and Quaternary Stratigraphie Group, Godwin Institute of Quaternary Research, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom. ABSTRACT The principal river of the Lon­ RÉSUMÉ Les captures quaternaires des ZUSAMMENFASSUNG Fluss-Ablenkungen don basin, the Thames, has experienced a fleuves du bassin de Londres et de la Man­ im Quartàr im Londoner Becken und im number of course changes during the Qua­ che orientale De nombreuses captures ont ôstlichen Àrmelkanal.
    [Show full text]
  • National Geological Screening: London and the Thames Valley
    National Geological Screening: London and the Thames Valley Minerals and Waste Programme Commissioned Report CR/17/101 BRITISH GEOLOGICAL SURVEY MINERALS AND WASTE PROGRAMME COMMISSIONED REPORT CR/17/101 National Geological Screening: London and the Thames Valley R Ellison1, D Schofield1, D T Aldiss2, R Haslam2, M Lewis3, B Ó’Dochartaigh3, J P Bloomfield3, J R Lee4, B Baptie4, R P Shaw5, T Bide5 and F M McEvoy 1Rock type, 2Rock structure, 3Groundwater, 4Natural processes, 5Resources Contributors/editors L P Field, R Terrington, P Williamson, I Mosca, N J P Smith, D E Evans, C Gent, M Barron, A Howard, G Baker, R M Lark, A Lacinska S Thorpe, H Holbrook, I Longhurst and L Hannaford The National Grid and other Ordnance Survey data © Crown Copyright and database rights 7. Ordnance Survey Licence No. 100021290 EUL. Keywords National geological screening, GDF, rock type, structure, groundwater, natural processes, resources, London, Thames. Bibliographical reference ELLISON, R, SCHOFIELD, D, ALDISS, D T, HASLAM, R, LEWIS, M, O’DOCHARTAIGH, B, BLOOMFIELD, J P, LEE, J, BAPTIE, B, SHAW, R P, BIDE, T, AND MCEVOY, F M. 2018. National Geological Screening: London and the Thames Valley Commissioned Report, CR/17/101. 71pp. BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh British Geological Survey offices publications only) see contact details below or shop online at www.geologyshop.com Environmental Science Centre, Keyworth, Nottingham The London Information Office also maintains a reference NG12 5GG collection of BGS publications, including maps, for Tel 0115 936 3100 consultation.
    [Show full text]
  • 2.0 the Natural Landscape of London
    2.0 The Natural Landscape of London London: A Green City? Contrary to perceptions, London is an unusually green city as of how they contribute to the city as a whole. This disconnection ‘natural’ environment. This may be the case for those architectures compared to other major world centres such as New York and Tokyo. between our daily experience of London and its relatively ‘green’ which reject the vernacular – notably modernism, which aimed at Nevertheless, for many, the impression of London is that of a highly character is exacerbated by the prevalence of travel by Underground, an international style − but vernacular architecture has by definition built up urban area, surrounded by less dense residential suburbs, whilst the topography of London, albeit gentle, has largely been an intimate relationship with its locale, whether as a form, such and whilst the Royal Parks are much-loved for their serenity and their disguised by London’s built environment. as the pitched roof, a direct response to frequent rainfall, or in the amenity value, how far we integrate them into our wider perception use of local building materials. Yet it is difficult to think of London’s of London is questionable. Likewise, whilst Londoners may regularly Underlying such perceptions is not only the disparity between architecture as vernacular, even though, to a large extent, London’s use local green spaces such as parks and commons, they are not daily living and travelling and a city-wide perspective but, perhaps built environment is derived from, rather than in opposition to, its necessarily perceived as integral parts of London’s character; private deeper, a fundamental assumption that architecture and urban underlying natural condition.
    [Show full text]
  • High-Resolution Geological Maps of Central London, UK: Comparisons with the London Underground
    Geoscience Frontiers 7 (2016) 273e286 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research paper High-resolution geological maps of central London, UK: Comparisons with the London Underground Jonathan D. Paul Department of Earth Sciences, Bullard Laboratories, University of Cambridge, Madingley Rise, Cambridge, CB3 0EZ, UK article info abstract Article history: This study presents new thickness maps of post-Cretaceous sedimentary strata beneath central London. Received 31 March 2015 >1100 borehole records were analysed. London Clay is thickest in the west; thicker deposits extend as a Received in revised form narrow finger along the axis of the London Basin. More minor variations are probably governed by 14 May 2015 periglacial erosion and faulting. A shallow anticline in the Chalk in north-central London has resulted in a Accepted 21 May 2015 pronounced thinning of succeeding strata. These results are compared to the position of London Available online 25 June 2015 Underground railway tunnels. Although tunnels have been bored through the upper levels of London Clay where thick, some tunnels and stations are positioned within the underlying, more lithologically Keywords: London variable, Lower London Tertiary deposits. Although less complex than other geological models of the London Underground London Basin, this technique is more objective and uses a higher density of borehole data. The high London Clay resolution of the resulting maps emphasises the power of modelling an expansive dataset in a rigorous Lambeth Group but simple fashion. Chalk Ó 2015, China University of Geosciences (Beijing) and Peking University.
    [Show full text]