Download File

Total Page:16

File Type:pdf, Size:1020Kb

Download File Finding, Measuring, and Reducing Inefficiencies in Contemporary Computer Systems Melanie Kambadur Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 c 2016 Melanie Kambadur All Rights Reserved ABSTRACT Finding, Measuring, and Reducing Inefficiencies in Contemporary Computer Systems Melanie Kambadur Computer systems have become increasingly diverse and specialized in recent years. This complexity supports a wide range of new computing uses and users, but is not without cost: it has become difficult to maintain the efficiency of contemporary general purpose comput- ing systems. Computing inefficiencies, which include nonoptimal runtimes, excessive energy use, and limits to scalability, are a serious problem that can result in an inability to ap- ply computing to solve the world's most important problems. Beyond the complexity and vast diversity of modern computing platforms and applications, a number of factors make improving general purpose efficiency challenging, including the requirement that multiple levels of the computer system stack be examined, that legacy hardware devices and soft- ware may stand in the way of achieving efficiency, and the need to balance efficiency with reusability, programmability, security, and other goals. This dissertation presents five case studies, each demonstrating different ways in which the measurement of emerging systems can provide actionable advice to help keep general purpose computing efficient. The first of the five case studies is Parallel Block Vectors, a new profiling method for understanding parallel programs with a fine-grained, code-centric perspective aids in both future hardware design and in optimizing software to map better to existing hardware. Second is a project that defines a new way of measuring application interference on a datacenter's worth of chip-multiprocessors, leading to improved schedul- ing where applications can more effectively utilize available hardware resources. Next is a project that uses the GT-Pin tool to define a method for accelerating the simulation of GPGPUs, ultimately allowing for the development of future hardware with fewer inefficien- cies. The fourth project is an experimental energy survey that compares and combines the latest energy efficiency solutions at different levels of the stack to properly evaluate the state of the art and to find paths forward for future energy efficiency research. The final project presented is NRG-Loops, a language extension that allows programs to measure and intelligently adapt their own power and energy use. Table of Contents List of Figures iv List of Tables xi 1 Introduction 1 1.1 Computing Diversity . .1 1.2 Hardware-Software Mismatches Cause Efficiency Problems . .3 1.3 Why Efficiency is (Still) Important . .4 1.4 Considerations Besides Efficiency . .5 1.5 Measurement's Role in Improving Efficiency . .7 1.6 Summary of Contributions . .8 1.7 Dissertation Outline . .9 2 Background: Measuring the Intersection of Hardware and Software 11 2.1 Computer Systems . 11 2.2 An Overview of Computing Analyses . 16 2.3 Dynamic Performance Analyses . 18 3 Parallel Block Vectors 23 3.1 Introduction . 24 3.2 Parallel Block Vector Profiles . 26 3.3 Harmony: Efficient Collection of PBVs . 30 3.4 Architectural Design Applications of PBVs . 35 3.5 Pinpointing Software Performance Issues with PBVs . 43 i 3.6 Related Work . 51 3.7 Limitations and Future Work . 52 3.8 Discussion . 54 4 Datacenter-Wide Application Interference 56 4.1 Introduction . 57 4.2 Complexities of Interference in a Datacenter . 58 4.3 A Methodology for Measuring Interference in Live Datacenters . 64 4.4 Applying the Measurement Methodology . 69 4.5 Performance Opportunities . 75 4.6 Related Work . 78 4.7 Limitations and Future Work . 80 4.8 Discussion . 81 5 Fast Computational GPGPU Design 83 5.1 Introduction . 84 5.2 Background . 86 5.3 Tracing GPU Programs with GT-Pin . 89 5.4 A Study of Large OpenCL Applications . 92 5.5 Selecting GPU Simulation Subsets . 96 5.6 Related Work . 106 5.7 Limitations and Future Work . 108 5.8 Discussion . 109 6 Energy Efficiency Across the Stack 110 6.1 Introduction . 111 6.2 Background on Energy Management . 114 6.3 Experimental Design and Methodology . 116 6.4 System-Level Results . 121 6.5 Application-Level Energy Management . 132 6.6 Related Work . 139 ii 6.7 Limitations and Future Work . 140 6.8 Discussion . 140 7 NRG-Loops 142 7.1 Introduction . 142 7.2 NRG-Loops . 147 7.3 NRG-RAPL . 150 7.4 Case Studies . 154 7.5 Related Work . 163 7.6 Limitations and Future Work . 164 7.7 Discussion . 165 8 Conclusions 166 8.1 Summary of Findings . 166 8.2 Looking Forward . 168 Bibliography 171 Appendix Acronyms 204 iii List of Figures 3.1 Parallel block vector for matrix multiplication. For each basic block in an application, top, the profile, bottom, indicates the block execution frequency at each possible thread count (i.e., degree of parallelism). ................. 28 3.2 Harmony instrumentation points. Profiler action is taken upon various runtime events. Careful engineering offloads expensive work to the least frequent events, in particular program start and finish which do not overlap with the execution of the program itself. This results in minimal profiling work at the most frequent events (i.e., basic block executions), reducing the profiling overhead and minimizing perturbation. .................................... 29 3.3 Direct instrumentation example. Each basic block is augmented to record its execution at the current degree of parallelism. The additional three instruction use only one register and do not induce any register spills. ............... 32 3.4 Thread library wrapper example. Here the instrumentation decrements and increments the effective thread count upon upon entry to and exit from of a blocking call respectively. .................................. 32 3.5 Low overhead of instrumentation. Program slowdown due to profile collection ranges from 2% to 44% with an average overhead of 18%. ............. 34 3.6 Parallel block vectors for Parsec. These heatmaps are a visualization of the profiles produced by Harmony. For the given application, they show the number of times (shading) each static block (row) was executed at each degree of parallelism (column). ...................................... 36 iv 3.7 Classifying basic blocks by parallelism. These graphs show the percentage of blocks which execute only serially (serial), blocks which execute both serially and in parallel (mixed), and blocks which only execute in parallel (parallel) for each application, for both nominal and effective thread counting, and for both static and dynamic block executions. ............................. 36 3.8 Opcode mix by class. Instruction mixes for the entire program compared with the mixes for each basic block class (serial, parallel, and mixed). In all applications, the instruction mixes for both purely serial and purely parallel blocks differ significantly from whole program mixes. ............................. 37 3.9 Memory interaction by class. The proportion of memory operations for serial and parallel basic blocks differ from the proportion in the program as a whole. .. 39 3.10 Hottest blocks are not always the most parallel blocks. Each static basic block's weighted average nominal thread count was calculated and then plotted against its total number of dynamic executions. The graphs show that the hottest blocks are primarily split between those that execute only serial and those that execute near the max degree of parallelism. .................... 41 3.11 Few basic blocks represent large portions of serial and parallel runtime. For basic blocks that were determined by parallel block vectors to always execute serially (left) or in parallel (right), percentages of runtime execution are attributed to static basic blocks. For most applications, a small number of blocks represents a large fraction of the total runtime. ......................... 42 3.12 ParaShares rank basic blocks to identify those with the greatest impact on parallel execution, weighting each block by the runtime parallelism exhibited by the application each time the block was executed. ............... 43 3.13 ParaShare rankings identify important blocks to target for multithreaded performance optimizations. These graphs show the ParaShare percentages (or- dered from greatest to least share) of all the basic blocks in eight benchmark appli- cations. ....................................... 45 v 3.14 Robustness of the metrics. Runtimes and basic block execution counts can change across program trials, but the differences are small relative to differences in ParaShares collected across varying thread counts or input sizes. ......... 48 3.15 ParaShares versus unweighted rankings in top 20 blocks. ParaShares do not always highlight new `hot' blocks, but can often significantly impact the relative importance of a block versus dynamic instruction count rankings not weighted by parallelism. ..................................... 49 3.16 ParaShares pinpoint inefficiencies that lead to significant opportunities for optimization. With the extremely targeted profiling provided by ParaShares, we were able to improve benchmark performance by up to 92% through source code changes less than 10 lines long. ........................... 50 4.1 Datacenter machines are filled with applications. Profiling 1000 12-core, 24 hyperthread Google servers running production workloads, we found the average machine had more than 14 of the 24 hyperthreads
Recommended publications
  • Raising the Bar for Using Gpus in Software Packet Processing Anuj Kalia and Dong Zhou, Carnegie Mellon University; Michael Kaminsky, Intel Labs; David G
    Raising the Bar for Using GPUs in Software Packet Processing Anuj Kalia and Dong Zhou, Carnegie Mellon University; Michael Kaminsky, Intel Labs; David G. Andersen, Carnegie Mellon University https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kalia This paper is included in the Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15). May 4–6, 2015 • Oakland, CA, USA ISBN 978-1-931971-218 Open Access to the Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) is sponsored by USENIX Raising the Bar for Using GPUs in Software Packet Processing Anuj Kalia, Dong Zhou, Michael Kaminsky∗, and David G. Andersen Carnegie Mellon University and ∗Intel Labs Abstract based implementations are far easier to experiment with) and in practice (software-based approaches are used for Numerous recent research efforts have explored the use low-speed applications and in cases such as forwarding of Graphics Processing Units (GPUs) as accelerators for within virtual switches [13]). software-based routing and packet handling applications, Our goal in this paper is to advance understanding of typically demonstrating throughput several times higher the advantages of GPU-assisted packet processors com- than using legacy code on the CPU alone. pared to CPU-only designs. In particular, noting that In this paper, we explore a new hypothesis about such several recent efforts have claimed that GPU-based de- designs: For many such applications, the benefits arise signs can be faster even for simple applications such as less from the GPU hardware itself as from the expression IPv4 forwarding [23, 43, 31, 50, 35, 30], we attempt to of the problem in a language such as CUDA or OpenCL identify the reasons for that speedup.
    [Show full text]
  • Computer Architecture: Parallel Processing Basics
    Computer Architecture: Parallel Processing Basics Onur Mutlu & Seth Copen Goldstein Carnegie Mellon University 9/9/13 Today What is Parallel Processing? Why? Kinds of Parallel Processing Multiprocessing and Multithreading Measuring success Speedup Amdhal’s Law Bottlenecks to parallelism 2 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi PDL'09 © 2007-9 Goldstein5 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi Parallel PDL'09 © 2007-9 Goldstein6 Concurrent Systems Physical Geographical Cloud Parallel Geophysical +++ ++ --- --- location Relative +++ +++ + - location Faults ++++ +++ ++++ -- Number of +++ +++ + - Processors + Network varies varies fixed fixed structure Network --- --- + + connectivity 7 Concurrent System Challenge: Programming The old joke: How long does it take to write a parallel program? One Graduate Student Year 8 Parallel Programming Again?? Increased demand (multicore) Increased scale (cloud) Improved compute/communicate Change in Application focus Irregular Recursive data structures PDL'09 © 2007-9 Goldstein9 Why Parallel Computers? Parallelism: Doing multiple things at a time Things: instructions,
    [Show full text]
  • DISTRIBUTED COMPUTING ENVIRONMENT ABSTRACT The
    DISTRIBUTED COMPUTING ENVIRONMENT ABSTRACT The high volume of networked computers, workstations, LANs has prompted users to move from a simple end user computing to a complex distributed computing environment. This transition is not just networking the computers, but also involves the issues of scalability, security etc. A Distributed Computing Environment herein referred to, as DCE is essentially an integration of all the services necessary to develop, support and manage a distributed computing environment. This term paper discusses the three important issues addressed by DCE in detail, Remote Procedure Calls [IRPC], Distributed File Systems [IDFS][OSF91] and Security [Isec][OSF92]. 1 INTRODUCTION The present day computing industry depends on the efficient usage of resources. So instead of duplicating the resources at every node of computing, a remote method of accessing the resources is more efficient and saves costs. This gave rise to the field of distributed computing, where not only physical resources, but also processing power was distributed. Distributed computing was driven by the following factors. a) Desire to share data and resources b) Minimize duplication of functionality c) Increase cost efficiency d) Increase reliability and availability of resources. The Open Source Foundation’s DCE (OSF DCE) has become the De facto standard for DCE applications and has the backing of IBM, COMPAQ, HP and the likes [OSFInter92]. 1.1 Why DCE? When an organization migrates from networked computing to distributed computing a lot of factors are to be taken into consideration. For example replication of files gives rise to consistency problems, clock synchronization becomes important, and security is a bigger consideration.
    [Show full text]
  • Cost Optimization Pillar AWS Well-Architected Framework
    Cost Optimization Pillar AWS Well-Architected Framework July 2020 This paper has been archived. The latest version is now available at: https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.htmlArchived Notices Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents current AWS product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. © 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved. Archived Contents Introduction .......................................................................................................................... 1 Cost Optimization ................................................................................................................ 2 Design Principles.............................................................................................................. 2 Definition ..........................................................................................................................
    [Show full text]
  • Cost Optimization Pillar AWS Well-Architected Framework Cost Optimization Pillar AWS Well-Architected Framework
    Cost Optimization Pillar AWS Well-Architected Framework Cost Optimization Pillar AWS Well-Architected Framework Cost Optimization Pillar: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Cost Optimization Pillar AWS Well-Architected Framework Table of Contents Abstract and Introduction ................................................................................................................... 1 Abstract .................................................................................................................................... 1 Introduction .............................................................................................................................. 1 Cost Optimization .............................................................................................................................. 3 Design Principles ........................................................................................................................ 3 Definition .................................................................................................................................
    [Show full text]
  • GPU Nodes for GROMACS Biomolecular Simulations
    Best bang for your buck: GPU nodes for GROMACS biomolecular simulations Carsten Kutzner,∗,† Szilárd Páll,‡ Martin Fechner,† Ansgar Esztermann,† Bert L. de Groot,† and Helmut Grubmüller† Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and Theoretical and Computational Biophysics, KTH Royal Institute of Technology, 17121 Stockholm, Sweden E-mail: [email protected] Abstract The molecular dynamics simulation package GROMACS runs efficiently on a wide vari- ety of hardware from commodity workstations to high performance computing clusters. Hard- ware features are well exploited with a combination of SIMD, multi-threading, and MPI-based SPMD / MPMD parallelism, while GPUs can be used as accelerators to compute interactions offloaded from the CPU. Here we evaluate which hardware produces trajectories with GRO- arXiv:1507.00898v1 [cs.DC] 3 Jul 2015 MACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked com- pute nodes with various CPU / GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Though hardware prices are naturally subject to trends and fluctuations, general ten- dencies are clearly visible. Adding any type of GPU significantly boosts a node’s simulation ∗To whom correspondence should be addressed †Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany ‡Theoretical and Computational Biophysics, KTH Royal Institute of Technology, 17121 Stockholm, Sweden 1 performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass un- noticed since these cards do not support ECC memory, unreliable GPUs can be sorted out with memory checking tools.
    [Show full text]
  • Incremental Parallelization with Migration
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Incremental Parallelization with Migration Permalink https://escholarship.org/uc/item/82w6f2w0 Author Zhang, Wenhui Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Incremental Parallelization with Migration DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Information and Computer Science by Wenhui Zhang Dissertation Committee: Professor Lubomir F. Bic, Co-Chair Professor Michael B. Dillencourt, Co-Chair Professor Amelia C. Regan 2014 Portion of Chapter 2 c 2011 IEEE Computer Society Portion of Chapter 3 c 2012 IEEE Computer Society 2005 IEEE Computer Society Portion of Chapter 4 c 2012 IEEE Computer Society 2005 IEEE Computer Society Portion of Chapter 5 c 2011 IEEE Computer Society All other materials c 2014 Wenhui Zhang DEDICATION This dissertation is dedicated to my husband, Chuanwen, who has persistently supported me and understood the challenges and sacrifices; our lovely son, who is a smart and handsome boy and who wished his mom could have spent more time with him; my father who has been always encouraged me to pursue higher and higher and my mother who has offered her love without expecting anything back. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE ix ABSTRACT OF THE DISSERTATION xi 1 Introduction 1 1.1 Research Motivation and Target Problem . 1 1.2 Dissertation Overview and Organization . 4 2 Navigational Programming 5 2.1 Overview . 5 2.2 Characteristics .
    [Show full text]
  • On I/O Performance and Cost Efficiency of Cloud Orst Age: a Client's Perspective
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 11-4-2019 On I/O Performance and Cost Efficiency of Cloud orSt age: A Client's Perspective Binbing Hou Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Computer and Systems Architecture Commons, and the Data Storage Systems Commons Recommended Citation Hou, Binbing, "On I/O Performance and Cost Efficiency of Cloud Storage: A Client's Perspective" (2019). LSU Doctoral Dissertations. 5090. https://digitalcommons.lsu.edu/gradschool_dissertations/5090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ON I/O PERFORMANCE AND COST EFFICIENCY OF CLOUD STORAGE: A CLIENT'S PERSPECTIVE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Computer Science and Engineering by Binbing Hou B.S., Wuhan University of Technology, 2011 M.S., Huazhong University of Science and Technology, 2014 December 2019 Acknowledgments At the end of the doctorate program, I would like to express my deepest gratitude to many people. It is their great help and support that make this dissertation possible. First of all, I would like to thank my advisor, Dr. Feng Chen, for his continuous support.
    [Show full text]
  • Parallelism Analysis of Prominent Desktop Applications: an 18-Year Perspective
    Parallelism Analysis of Prominent Desktop Applications: An 18-Year Perspective Siying Feng, Subhankar Pal, Yichen Yang, Ronald G. Dreslinski University of Michigan, Ann Arbor, MI, USA ffengsy, subh, yangych, [email protected] Abstract—Improvements in clock speed and exploitation of User requirements are significantly diverse. Gamers, for Instruction-Level Parallelism (ILP) hit a roadblock during mid- example, require a high-end machine with an advanced GPU 2000s. This, coupled with the demise of Dennard scaling, led and efficient cooling. On the other hand, for a user who uses to the rise of multi-core machines. Today, multi-core processors are ubiquitous and architects have moved to specialization to their system primarily to browse the web and watch videos, it work around the walls hit by single-core performance and chip is cost-inefficient to own a system with a high-end GPU. Thus, Thermal Design Power (TDP). The pressure of innovation in the it is worthwhile to analyze the characteristics of commonly aftermath of Dennard scaling is shifting to software developers, used applications tailored toward different users. who are required to write programs that make the most effective We repeat some of the experiments of an eight-year old use of underlying hardware. This work presents quantitative and qualitative analyses of how software has evolved to reap the work by Blake et al. [3], characterizing the parallelism ex- benefits of multi-core and heterogeneous computers, compared ploited by software in desktop workstations. To analyze how to state-of-the-art systems in 2000 and 2010. We study a wide a wide spectrum of commonly used desktop applications have spectrum of commonly-used applications on a state-of-the-art evolved to utilize available hardware, we use the metrics of desktop machine and analyze two important metrics, Thread- Thread Level Parallelism (TLP) and GPU utilization.
    [Show full text]
  • Efficiency Matters!
    Efficiency Matters! Eric Anderson and Joseph Tucek Hewlett-Packard Laboratories 1501 Page Mill Road, Palo Alto, CA 94304, USA ABSTRACT The gap in theoretical per node performance and what is Current data intensive scalable computing (DISC) systems, actually achieved has become glaringly large. Expending although scalable, achieve embarrassingly low rates of pro- further research effort to support such clusters (e.g., advance cessing per node. We feel that current DISC systems have energy savings, analyze their workloads, etc.) is less useful repeated a mistake of old high-performance systems: focus- if orders of magnitude of efficiency increases on the single ing on scalability without considering efficiency. This poor node are not only possible, but easy. Further, inexpensive efficiency comes with issues in reliability, energy, and cost. 12-, 16-, and 24-core dual-socket machines are around the As the gap between theoretical performance and what is ac- corner, and will exacerbate the wastefulness of current DISC tually achieved has become glaringly large, we feel there is designs. We define a variety of types of efficiency, from CPU a pressing need to rethink the design of future data inten- and IO to cost and human resources, and show that existing sive computing and carefully consider the direction of future DISC systems do not perform well according to many of research. these measures. 1. INTRODUCTION We feel there is a pressing need to rethink the design of future data intensive computers and carefully consider the Canonically instantiated by MapReduce [9], and defined in [7], 1 direction of future research because the poor efficiency of data intensive scalable computing (DISC) focuses on large existing systems is creating avoidable problems and hiding amounts of data.
    [Show full text]
  • SC20-Final-Program-V2.Pdf
    Table of Contents ACM Gordon Bell COVID Finalist Keynote ACM Gordon Bell Finalist More Than HPC Plenary ACM Student Research Competition: Panel Graduate Posters Paper ACM Student Research Competition: Research Posters Undergraduate Posters Scientific Visualization Awards Presentation & Data Analytics Showcase Birds of a Feather SCinet Booth Sessions State of the Practice Talk Doctoral Showcase Students@SC Early Career Program Test of Time Exhibitor Forum Tutorial Exhibits Virtual Student Cluster Competition Invited Talk Workshop Job Posting ACM Gordon Bell COVID Finalist (back to top) Thursday, November 19th 10:00 am - 12:00 pm Gordon Bell COVID-19 Prize Finalist Session 1 Session Description: Enabling Rapid COVID-19 Small Molecule Drug Design Through Scalable Deep Learning of Generative Models Sam Ade Jacobs (Lawrence Livermore National Laboratory), Tim Moon (Lawrence Livermore National Laboratory), Kevin McLoughlin (Lawrence Livermore National Laboratory), Derek Jones (Lawrence Livermore National Laboratory), David Hysom (Lawrence Livermore National Laboratory), Dong H. Ahn (Lawrence Livermore National Laboratory), John Gyllenhaal (Lawrence Livermore National Laboratory), Pythagoras Watson (Lawrence Livermore National Laboratory), Felice C. Lightsone (Lawrence Livermore National Laboratory), Jonathan E. Allen (Lawrence Livermore National Laboratory), Ian Karlin (Lawrence Livermore National Laboratory), Brian Van Essen (Lawrence Livermore National Laboratory) We improved the quality and reduced the time to produce machine-learned models for use in small molecule antiviral design. Our globally asynchronous multi-level parallel training approach strong scales to all of Sierra with up to 97.7% efficiency. We trained a novel, character-based Wasserstein autoencoder that produces a higher quality model trained on 1.613 billion compounds in 23 minutes while the previous state-of-the-art takes a day on 1 million compounds.
    [Show full text]
  • User Equipment Based-Computation Offloading for Real-Time Applications in the Context of Cloud and Edge Networks Farouk Messaoudi
    User equipment based-computation offloading for real-time applications in the context of Cloud and edge networks Farouk Messaoudi To cite this version: Farouk Messaoudi. User equipment based-computation offloading for real-time applications inthe context of Cloud and edge networks. Networking and Internet Architecture [cs.NI]. Université Rennes 1, 2018. English. NNT : 2018REN1S104. tel-02268196 HAL Id: tel-02268196 https://tel.archives-ouvertes.fr/tel-02268196 Submitted on 20 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2018 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Informatique Ecole doctorale MathStic Farouk MESSAOUDI Préparée à l’unité de recherche (IRISA – UMR 6074) Institut de Recherche en Informatique et Système Aléatoires Université de Rennes 1 User equipment Thèse à soutenir à Rennes le 16 avril 2018 based computation devant le jury composé de : Houda LABIOD Professeur, Telecom ParisTech / examinateur Offloading for real- Riccardo
    [Show full text]