Magellan Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Magellan Final Report The Magellan Report on Cloud Computing for Science U.S. Department of Energy Office of Advanced Scientific Computing Research (ASCR) December, 2011 CSO 23179 The Magellan Report on Cloud Computing for Science U.S. Department of Energy Office of Science Office of Advanced Scientific Computing Research (ASCR) December, 2011 Magellan Leads Katherine Yelick, Susan Coghlan, Brent Draney, Richard Shane Canon Magellan Staff Lavanya Ramakrishnan, Adam Scovel, Iwona Sakrejda, Anping Liu, Scott Campbell, Piotr T. Zbiegiel, Tina Declerck, Paul Rich Collaborators Nicholas J. Wright Jeff Broughton Rollin Thomas Brian Toonen Richard Bradshaw Michael A. Guantonio Karan Bhatia Alex Sim Shreyas Cholia Zacharia Fadikra Henrik Nordberg Kalyan Kumaran Linda Winkler Levi J. Lester Wei Lu Ananth Kalyanraman John Shalf Devarshi Ghoshal Eric R. Pershey Michael Kocher Jared Wilkening Ed Holohann Vitali Morozov Doug Olson Harvey Wasserman Elif Dede Dennis Gannon Jan Balewski Narayan Desai Tisha Stacey CITRIS/University of STAR Collboration Krishna Muriki Madhusudhan Govindaraju California, Berkeley Linda Vu Victor Markowitz Gabriel A. West Greg Bell Yushu Yao Shucai Xiao Daniel Gunter Nicholas Dale Trebon Margie Wylie Keith Jackson William E. Allcock K. John Wu John Hules Nathan M. Mitchell David Skinner Brian Tierney Jon Bashor This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02¬06CH11357, funded through the American Recovery and Reinvestment Act of 2009. Resources and research at NERSC at Lawrence Berkeley National Laboratory were funded by the Department of Energy from the American Recovery and Reinvestment Act of 2009 under contract number DE-AC02-05CH11231. Executive Summary The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources. Cloud computing has garnered significant attention from both industry and research scientists as it has emerged as a potential model to address a broad array of computing needs and requirements such as custom software environments and increased utilization among others. Cloud services, both private and public, have demonstrated the ability to provide a scalable set of services that can be easily and cost-effectively utilized to tackle various enterprise and web workloads. These benefits are a direct result of the definition of cloud computing: on-demand self-service resources that are pooled, can be accessed via a network, and can be elastically adjusted by the user. The pooling of resources across a large user base enables economies of scale, while the ability to easily provision and elastically expand the resources provides flexible capabilities. Following the Executive Summary we summarize the key findings and recommendations of the project. Greater detail is provided in the body of the report. Here we briefly summarize some of the high-level findings from the study. • Cloud approaches provide many advantages, including customized environments that enable users to bring their own software stack and try out new computing environments without significant adminis- tration overhead, the ability to quickly surge resources to address larger problems, and the advantages that come from increased economies of scale. Virtualization is the primary strategy of providing these capabilities. Our experience working with application scientists using the cloud demonstrated the power of virtualization to enable fully customized environments and flexible resource management, and their potential value to scientists. • Cloud computing can require significant initial effort and skills in order to port applications to these new models. This is also true for some of the emerging programming models used in cloud computing. Scientists should consider this upfront investment in any economic analysis when deciding whether to move to the cloud. • Significant gaps and challenges exist in the areas of managing virtual environments, workflows, data, cyber-security, and others. Further research and development is needed to ensure that scientists can i Magellan Final Report easily and effectively harness the capabilities exposed with these new computing models. This would include tools to simplify using cloud environments, improvements to open-source clouds software stacks, providing base images that help bootstrap users while allowing them flexibility to customize these stacks, investigation of new security techniques and approaches, and enhancements to MapReduce models to better fit scientific data and workflows. In addition, there are opportunities in exploring ways to enable these capabilities in traditional HPC platforms, thus combining the flexibility of cloud models with the performance of HPC systems. • The key economic benefit of clouds comes from the consolidation of resources across a broad community, which results in higher utilization, economies of scale, and operational efficiency. Existing DOE centers already achieve many of the benefits of cloud computing since these centers consolidate computing across multiple program offices, deploy at large scales, and continuously refine and improve operational efficiency. Cost analysis shows that DOE centers are cost competitive, typically 3{7x less expensive, when compared to commercial cloud providers. Because the commercial sector constantly innovates, DOE labs and centers should continue to benchmark their computing cost against public clouds to ensure they are providing a competitive service. Cloud computing is ultimately a business model, but cloud models often provide additional capabilities and flexibility that are helpful to certain workloads. DOE labs and centers should consider adopting and integrating these features of cloud computing into their operations in order to support more diverse workloads and further enable scientific discovery, without sacrificing the productivity and effectiveness of computing platforms that have been optimized for science over decades of development and refinement. If cases emerge where this approach is not sufficient to meet the needs of the scientists, a private cloud computing strategy should be considered first, since it can provide many of the benefits of commercial clouds while avoiding many of the open challenges concerning security, data management, and performance of public clouds. ii Key Findings The goal of the Magellan project is to determine the appropriate role of cloud computing in addressing the computing needs of scientists funded by the DOE Office of Science. During the course of the Magel- lan project, we have evaluated various aspects of cloud computing infrastructure and technologies for use by scientific applications from various domains. Our evaluation methodology covered various dimensions: cloud models such as Infrastructure as a Service (IaaS) and Platform as a Service (PaaS), virtual software stacks, MapReduce and its open source implementation (Hadoop), resource provider and user perspectives. Specifically, Magellan was charged with answering the following research questions: • Are the open source cloud software stacks ready for DOE HPC science? • Can DOE cyber security requirements be met within a cloud? • Are the new cloud programming models useful for scientific computing? • Can DOE HPC applications run efficiently in the cloud? What applications are suitable for clouds? • How usable are cloud environments for scientific applications? • When is it cost effective to run DOE HPC science in a cloud? We summarize our findings here: Finding 1. Scientific applications have special requirements that require solutions that are tailored to these needs. Cloud computing has developed in the context of enterprise and web applications that have vastly dif- ferent requirements compared to scientific applications. Scientific applications often rely on access to large legacy data sets and pre-tuned application software libraries. These applications today run in HPC centers with low-latency interconnects and rely on parallel file systems. While these applications could benefit from cloud features such as customized environments and rapid elasticity, these need to be in concert with other capabilities
Recommended publications
  • Analysis of GPU-Libraries for Rapid Prototyping Database Operations
    Analysis of GPU-Libraries for Rapid Prototyping Database Operations A look into library support for database operations Harish Kumar Harihara Subramanian Bala Gurumurthy Gabriel Campero Durand David Broneske Gunter Saake University of Magdeburg Magdeburg, Germany fi[email protected] Abstract—Using GPUs for query processing is still an ongoing Usually, library operators for GPUs are either written by research in the database community due to the increasing hardware experts [12] or are available out of the box by device heterogeneity of GPUs and their capabilities (e.g., their newest vendors [13]. Overall, we found more than 40 libraries for selling point: tensor cores). Hence, many researchers develop optimal operator implementations for a specific device generation GPUs each packing a set of operators commonly used in one involving tedious operator tuning by hand. On the other hand, or more domains. The benefits of those libraries is that they are there is a growing availability of GPU libraries that provide constantly updated and tested to support newer GPU versions optimized operators for manifold applications. However, the and their predefined interfaces offer high portability as well as question arises how mature these libraries are and whether they faster development time compared to handwritten operators. are fit to replace handwritten operator implementations not only w.r.t. implementation effort and portability, but also in terms of This makes them a perfect match for many commercial performance. database systems, which can rely on GPU libraries to imple- In this paper, we investigate various general-purpose libraries ment well performing database operators. Some example for that are both portable and easy to use for arbitrary GPUs such systems are: SQreamDB using Thrust [14], BlazingDB in order to test their production readiness on the example of using cuDF [15], Brytlyt using the Torch library [16].
    [Show full text]
  • Raising the Bar for Using Gpus in Software Packet Processing Anuj Kalia and Dong Zhou, Carnegie Mellon University; Michael Kaminsky, Intel Labs; David G
    Raising the Bar for Using GPUs in Software Packet Processing Anuj Kalia and Dong Zhou, Carnegie Mellon University; Michael Kaminsky, Intel Labs; David G. Andersen, Carnegie Mellon University https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kalia This paper is included in the Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15). May 4–6, 2015 • Oakland, CA, USA ISBN 978-1-931971-218 Open Access to the Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) is sponsored by USENIX Raising the Bar for Using GPUs in Software Packet Processing Anuj Kalia, Dong Zhou, Michael Kaminsky∗, and David G. Andersen Carnegie Mellon University and ∗Intel Labs Abstract based implementations are far easier to experiment with) and in practice (software-based approaches are used for Numerous recent research efforts have explored the use low-speed applications and in cases such as forwarding of Graphics Processing Units (GPUs) as accelerators for within virtual switches [13]). software-based routing and packet handling applications, Our goal in this paper is to advance understanding of typically demonstrating throughput several times higher the advantages of GPU-assisted packet processors com- than using legacy code on the CPU alone. pared to CPU-only designs. In particular, noting that In this paper, we explore a new hypothesis about such several recent efforts have claimed that GPU-based de- designs: For many such applications, the benefits arise signs can be faster even for simple applications such as less from the GPU hardware itself as from the expression IPv4 forwarding [23, 43, 31, 50, 35, 30], we attempt to of the problem in a language such as CUDA or OpenCL identify the reasons for that speedup.
    [Show full text]
  • Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++
    Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ Christopher S. Zakian, Timothy A. K. Zakian Abhishek Kulkarni, Buddhika Chamith, and Ryan R. Newton Indiana University - Bloomington, fczakian, tzakian, adkulkar, budkahaw, [email protected] Abstract. Library and language support for scheduling non-blocking tasks has greatly improved, as have lightweight (user) threading packages. How- ever, there is a significant gap between the two developments. In previous work|and in today's software packages|lightweight thread creation incurs much larger overheads than tasking libraries, even on tasks that end up never blocking. This limitation can be removed. To that end, we describe an extension to the Intel Cilk Plus runtime system, Concurrent Cilk, where tasks are lazily promoted to threads. Concurrent Cilk removes the overhead of thread creation on threads which end up calling no blocking operations, and is the first system to do so for C/C++ with legacy support (standard calling conventions and stack representations). We demonstrate that Concurrent Cilk adds negligible overhead to existing Cilk programs, while its promoted threads remain more efficient than OS threads in terms of context-switch overhead and blocking communication. Further, it enables development of blocking data structures that create non-fork-join dependence graphs|which can expose more parallelism, and better supports data-driven computations waiting on results from remote devices. 1 Introduction Both task-parallelism [1, 11, 13, 15] and lightweight threading [20] libraries have become popular for different kinds of applications. The key difference between a task and a thread is that threads may block|for example when performing IO|and then resume again.
    [Show full text]
  • Scalable and High Performance MPI Design for Very Large
    SCALABLE AND HIGH-PERFORMANCE MPI DESIGN FOR VERY LARGE INFINIBAND CLUSTERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sayantan Sur, B. Tech ***** The Ohio State University 2007 Dissertation Committee: Approved by Prof. D. K. Panda, Adviser Prof. P. Sadayappan Adviser Prof. S. Parthasarathy Graduate Program in Computer Science and Engineering c Copyright by Sayantan Sur 2007 ABSTRACT In the past decade, rapid advances have taken place in the field of computer and network design enabling us to connect thousands of computers together to form high-performance clusters. These clusters are used to solve computationally challenging scientific problems. The Message Passing Interface (MPI) is a popular model to write applications for these clusters. There are a vast array of scientific applications which use MPI on clusters. As the applications operate on larger and more complex data, the size of the compute clusters is scaling higher and higher. Thus, in order to enable the best performance to these scientific applications, it is very critical for the design of the MPI libraries be extremely scalable and high-performance. InfiniBand is a cluster interconnect which is based on open-standards and gaining rapid acceptance. This dissertation presents novel designs based on the new features offered by InfiniBand, in order to design scalable and high-performance MPI libraries for large-scale clusters with tens-of-thousands of nodes. Methods developed in this dissertation have been applied towards reduction in overall resource consumption, increased overlap of computa- tion and communication, improved performance of collective operations and finally designing application-level benchmarks to make efficient use of modern networking technology.
    [Show full text]
  • DNA Scaffolds Enable Efficient and Tunable Functionalization of Biomaterials for Immune Cell Modulation
    ARTICLES https://doi.org/10.1038/s41565-020-00813-z DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation Xiao Huang 1,2, Jasper Z. Williams 2,3, Ryan Chang1, Zhongbo Li1, Cassandra E. Burnett4, Rogelio Hernandez-Lopez2,3, Initha Setiady1, Eric Gai1, David M. Patterson5, Wei Yu2,3, Kole T. Roybal2,4, Wendell A. Lim2,3 ✉ and Tejal A. Desai 1,2 ✉ Biomaterials can improve the safety and presentation of therapeutic agents for effective immunotherapy, and a high level of control over surface functionalization is essential for immune cell modulation. Here, we developed biocompatible immune cell-engaging particles (ICEp) that use synthetic short DNA as scaffolds for efficient and tunable protein loading. To improve the safety of chimeric antigen receptor (CAR) T cell therapies, micrometre-sized ICEp were injected intratumorally to present a priming signal for systemically administered AND-gate CAR-T cells. Locally retained ICEp presenting a high density of priming antigens activated CAR T cells, driving local tumour clearance while sparing uninjected tumours in immunodeficient mice. The ratiometric control of costimulatory ligands (anti-CD3 and anti-CD28 antibodies) and the surface presentation of a cytokine (IL-2) on ICEp were shown to substantially impact human primary T cell activation phenotypes. This modular and versatile bio- material functionalization platform can provide new opportunities for immunotherapies. mmune cell therapies have shown great potential for cancer the specific antibody27, and therefore a high and controllable den- treatment, but still face major challenges of efficacy and safety sity of surface biomolecules could allow for precise control of ligand for therapeutic applications1–3, for example, chimeric antigen binding and cell modulation.
    [Show full text]
  • A Cilk Implementation of LTE Base-Station Up- Link on the Tilepro64 Processor
    A Cilk Implementation of LTE Base-station up- link on the TILEPro64 Processor Master of Science Thesis in the Programme of Integrated Electronic System Design HAO LI Chalmers University of Technology Department of Computer Science and Engineering Goteborg,¨ Sweden, November 2011 The Author grants to Chalmers University of Technology and University of Gothen- burg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the au- thor to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for ex- ample a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. A Cilk Implementation of LTE Base-station uplink on the TILEPro64 Processor HAO LI © HAO LI, November 2011 Examiner: Sally A. McKee Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 Goteborg¨ Sweden Telephone +46 (0)31-255 1668 Supervisor: Magnus Sjalander¨ Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 Goteborg¨ Sweden Telephone +46 (0)31-772 1075 Cover: A Cilk Implementation of LTE Base-station uplink on the TILEPro64 Processor.
    [Show full text]
  • Computer Architecture: Parallel Processing Basics
    Computer Architecture: Parallel Processing Basics Onur Mutlu & Seth Copen Goldstein Carnegie Mellon University 9/9/13 Today What is Parallel Processing? Why? Kinds of Parallel Processing Multiprocessing and Multithreading Measuring success Speedup Amdhal’s Law Bottlenecks to parallelism 2 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi PDL'09 © 2007-9 Goldstein5 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi Parallel PDL'09 © 2007-9 Goldstein6 Concurrent Systems Physical Geographical Cloud Parallel Geophysical +++ ++ --- --- location Relative +++ +++ + - location Faults ++++ +++ ++++ -- Number of +++ +++ + - Processors + Network varies varies fixed fixed structure Network --- --- + + connectivity 7 Concurrent System Challenge: Programming The old joke: How long does it take to write a parallel program? One Graduate Student Year 8 Parallel Programming Again?? Increased demand (multicore) Increased scale (cloud) Improved compute/communicate Change in Application focus Irregular Recursive data structures PDL'09 © 2007-9 Goldstein9 Why Parallel Computers? Parallelism: Doing multiple things at a time Things: instructions,
    [Show full text]
  • Library for Handling Asynchronous Events in C++
    Masaryk University Faculty of Informatics Library for Handling Asynchronous Events in C++ Bachelor’s Thesis Branislav Ševc Brno, Spring 2019 Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Branislav Ševc Advisor: Mgr. Jan Mrázek i Acknowledgements I would like to thank my supervisor, Jan Mrázek, for his valuable guid- ance and highly appreciated help with avoiding death traps during the design and implementation of this project. ii Abstract The subject of this work is design, implementation and documentation of a library for the C++ programming language, which aims to sim- plify asynchronous event-driven programming. The Reactive Blocks Library (RBL) allows users to define program as a graph of intercon- nected function blocks which control message flow inside the graph. The benefits include decoupling of program’s logic and the method of execution, with emphasis on increased readability of program’s logical behavior through understanding of its reactive components. This thesis focuses on explaining the programming model, then proceeds to defend design choices and to outline the implementa- tion layers. A brief analysis of current competing solutions and their comparison with RBL, along with overhead benchmarks of RBL’s abstractions over pure C++ approach is included. iii Keywords C++ Programming Language, Inversion
    [Show full text]
  • Intel Threading Building Blocks
    Praise for Intel Threading Building Blocks “The Age of Serial Computing is over. With the advent of multi-core processors, parallel- computing technology that was once relegated to universities and research labs is now emerging as mainstream. Intel Threading Building Blocks updates and greatly expands the ‘work-stealing’ technology pioneered by the MIT Cilk system of 15 years ago, providing a modern industrial-strength C++ library for concurrent programming. “Not only does this book offer an excellent introduction to the library, it furnishes novices and experts alike with a clear and accessible discussion of the complexities of concurrency.” — Charles E. Leiserson, MIT Computer Science and Artificial Intelligence Laboratory “We used to say make it right, then make it fast. We can’t do that anymore. TBB lets us design for correctness and speed up front for Maya. This book shows you how to extract the most benefit from using TBB in your code.” — Martin Watt, Senior Software Engineer, Autodesk “TBB promises to change how parallel programming is done in C++. This book will be extremely useful to any C++ programmer. With this book, James achieves two important goals: • Presents an excellent introduction to parallel programming, illustrating the most com- mon parallel programming patterns and the forces governing their use. • Documents the Threading Building Blocks C++ library—a library that provides generic algorithms for these patterns. “TBB incorporates many of the best ideas that researchers in object-oriented parallel computing developed in the last two decades.” — Marc Snir, Head of the Computer Science Department, University of Illinois at Urbana-Champaign “This book was my first introduction to Intel Threading Building Blocks.
    [Show full text]
  • DISTRIBUTED COMPUTING ENVIRONMENT ABSTRACT The
    DISTRIBUTED COMPUTING ENVIRONMENT ABSTRACT The high volume of networked computers, workstations, LANs has prompted users to move from a simple end user computing to a complex distributed computing environment. This transition is not just networking the computers, but also involves the issues of scalability, security etc. A Distributed Computing Environment herein referred to, as DCE is essentially an integration of all the services necessary to develop, support and manage a distributed computing environment. This term paper discusses the three important issues addressed by DCE in detail, Remote Procedure Calls [IRPC], Distributed File Systems [IDFS][OSF91] and Security [Isec][OSF92]. 1 INTRODUCTION The present day computing industry depends on the efficient usage of resources. So instead of duplicating the resources at every node of computing, a remote method of accessing the resources is more efficient and saves costs. This gave rise to the field of distributed computing, where not only physical resources, but also processing power was distributed. Distributed computing was driven by the following factors. a) Desire to share data and resources b) Minimize duplication of functionality c) Increase cost efficiency d) Increase reliability and availability of resources. The Open Source Foundation’s DCE (OSF DCE) has become the De facto standard for DCE applications and has the backing of IBM, COMPAQ, HP and the likes [OSFInter92]. 1.1 Why DCE? When an organization migrates from networked computing to distributed computing a lot of factors are to be taken into consideration. For example replication of files gives rise to consistency problems, clock synchronization becomes important, and security is a bigger consideration.
    [Show full text]
  • Cost Optimization Pillar AWS Well-Architected Framework
    Cost Optimization Pillar AWS Well-Architected Framework July 2020 This paper has been archived. The latest version is now available at: https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.htmlArchived Notices Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents current AWS product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. © 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved. Archived Contents Introduction .......................................................................................................................... 1 Cost Optimization ................................................................................................................ 2 Design Principles.............................................................................................................. 2 Definition ..........................................................................................................................
    [Show full text]
  • Cost Optimization Pillar AWS Well-Architected Framework Cost Optimization Pillar AWS Well-Architected Framework
    Cost Optimization Pillar AWS Well-Architected Framework Cost Optimization Pillar AWS Well-Architected Framework Cost Optimization Pillar: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Cost Optimization Pillar AWS Well-Architected Framework Table of Contents Abstract and Introduction ................................................................................................................... 1 Abstract .................................................................................................................................... 1 Introduction .............................................................................................................................. 1 Cost Optimization .............................................................................................................................. 3 Design Principles ........................................................................................................................ 3 Definition .................................................................................................................................
    [Show full text]