Projections Coordinate Systems Guidance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shaded Elevation Map of Ohio
STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Ted Strickland, Governor Sean D. Logan, Director Lawrence H. Wickstrom, Chief SHADED ELEVATION MAP OF OHIO 0 10 20 30 40 miles 0 10 20 30 40 kilometers SCALE 1:2,000,000 427-500500-600600-700700-800800-900900-10001000-11001100-12001200-13001300-14001400-1500>1500 Land elevation in feet Lake Erie water depth in feet 0-6 7-12 13-18 19-24 25-30 31-36 37-42 43-48 49-54 55-60 61-66 67-84 SHADED ELEVATION MAP This map depicts the topographic relief of Ohio’s landscape using color lier impeded the southward-advancing glaciers, causing them to split into to represent elevation intervals. The colorized topography has been digi- two lobes, the Miami Lobe on the west and the Scioto Lobe on the east. tally shaded from the northwest slightly above the horizon to give the ap- Ridges of thick accumulations of glacial material, called moraines, drape pearance of a three-dimensional surface. The map is based on elevation around the outlier and are distinct features on the map. Some moraines in data from the U.S. Geological Survey’s National Elevation Dataset; the Ohio are more than 200 miles long. Two other glacial lobes, the Killbuck grid spacing for the data is 30 meters. Lake Erie water depths are derived and the Grand River Lobes, are present in the northern and northeastern from National Oceanic and Atmospheric Administration data. This digi- portions of the state. tally derived map shows details of Ohio’s topography unlike any map of 4 Eastern Continental Divide—A continental drainage divide extends the past. -
Meyers Height 1
University of Connecticut DigitalCommons@UConn Peer-reviewed Articles 12-1-2004 What Does Height Really Mean? Part I: Introduction Thomas H. Meyer University of Connecticut, [email protected] Daniel R. Roman National Geodetic Survey David B. Zilkoski National Geodetic Survey Follow this and additional works at: http://digitalcommons.uconn.edu/thmeyer_articles Recommended Citation Meyer, Thomas H.; Roman, Daniel R.; and Zilkoski, David B., "What Does Height Really Mean? Part I: Introduction" (2004). Peer- reviewed Articles. Paper 2. http://digitalcommons.uconn.edu/thmeyer_articles/2 This Article is brought to you for free and open access by DigitalCommons@UConn. It has been accepted for inclusion in Peer-reviewed Articles by an authorized administrator of DigitalCommons@UConn. For more information, please contact [email protected]. Land Information Science What does height really mean? Part I: Introduction Thomas H. Meyer, Daniel R. Roman, David B. Zilkoski ABSTRACT: This is the first paper in a four-part series considering the fundamental question, “what does the word height really mean?” National Geodetic Survey (NGS) is embarking on a height mod- ernization program in which, in the future, it will not be necessary for NGS to create new or maintain old orthometric height benchmarks. In their stead, NGS will publish measured ellipsoid heights and computed Helmert orthometric heights for survey markers. Consequently, practicing surveyors will soon be confronted with coping with these changes and the differences between these types of height. Indeed, although “height’” is a commonly used word, an exact definition of it can be difficult to find. These articles will explore the various meanings of height as used in surveying and geodesy and pres- ent a precise definition that is based on the physics of gravitational potential, along with current best practices for using survey-grade GPS equipment for height measurement. -
QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata
QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata The Property Profile Form (PPF) requests the property name, address, city, state and zip. From these address fields, ACRES interfaces with Google Maps and extracts the latitude and longitude (lat/long) for the property location. ACRES sets the remaining property geographic information to default values. The data (known collectively as “metadata”) are required by EPA Data Standards. Should an ACRES user need to be update the metadata, the Edit Fields link on the PPF provides the ability to change the information. Before the metadata were populated by ACRES, the data were entered manually. There may still be the need to do so, for example some properties do not have a specific street address (e.g. a rural property located on a state highway) or an ACRES user may have an exact lat/long that is to be used. This Quick Reference Guide covers how to find latitude and longitude, define the metadata, fill out the associated fields in a Property Work Package, and convert latitude and longitude to decimal degree format. This explains how the metadata were determined prior to September 2011 (when the Google Maps interface was added to ACRES). Definitions Below are definitions of the six data elements for latitude and longitude data that are collected in a Property Work Package. The definitions below are based on text from the EPA Data Standard. Latitude: Is the measure of the angular distance on a meridian north or south of the equator. Latitudinal lines run horizontal around the earth in parallel concentric lines from the equator to each of the poles. -
Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0. -
Core Concepts Study Guide Absolute Location – Exact Position on Earth In
Geography – Core Concepts Study Guide absolute location – exact position on Earth in terms of longitude and latitude aerial photograph - photographic image of Earth's surface taken from the air cardinal direction – north, east, south, and west compass rose - diagram of a compass showing direction degree – unit that measures angles distortion – loss of accuracy elevation - height above sea level Geographic information system (GIS) - computer-based system that stores and uses information linked to geographic locations geography – study of the human and nonhuman features of Earth hemisphere – one half of Earth human-environment interaction - how people affect their environment and how their environment affects them key - section of a map that explains the map's symbols and shading latitude – distance north or south of the Equator measured in degrees locator map - section of a map that shows a larger area than the main map longitude – distance east or west of the Prime Meridian measured in degrees movement - how people, goods, and ideas get from one place to another physical map - map that shows physical, or natural, features place – mix of human and nonhuman features at a given location political map - map that shows political units, such as countries or states projection - way to map Earth on a flat surface region - area with at least one unifying physical or human feature such as climate, landforms, population, or history relative location – location of a place relative to another place satellite image - picture of Earth's surface taken from a satellite in orbit scale – relative size scale bar – section of a map that shows how much space on the map represents a given distance on the land special-purpose map - map that shows the location or distribution of human or physical features sphere – round-shaped body What do geographers study? Geographers study human and nonhuman features of Earth. -
Standards and Guidelines for Cadastral Surveys Using GPS
Table of Contents Foreword ........................................................................................................................................ 3 Part One: Standards for Positional Accuracy ................................................................................ 4 Part Two: GPS Survey Guidelines ................................................................................................ 5 Section One: Field Data Acquisition Methods Section Two: Field Survey Operations and Procedures Cadastral Project Control Cadastral Measurements Section Three: Data Processing and Analysis Section Four: Project Documentation Appendix A: Definitions ............................................................................................................. 16 Appendix B: Computation of Accuracies ................................................................................... 18 Appendix C: References ............................................................................................................. 19 Attachment 1-2 Foreword These Standards and Guidelines provide guidance to the Government cadastral surveyor and other land surveyors in the use of Global Positioning System (GPS) technology to perform Public Land Survey System (PLSS) surveys of the Public Lands of the United States of America. Many sources were consulted during the preparation of this document. These sources included other GPS survey standards and guidelines, technical reports and manuals. Opinions and reviews were also sought from public and -
National Geographic Geography Skills Handbook
Geography Skills Handbook How Do I Study Geography? eographers have tried to understand the best way to teach and learn about geography. GIn order to do this, geographers created the Five Themes of Geography. The themes acted as a guide for teaching the basic ideas about geography to students like yourself. People who teach and study geography, though, thought that the Five Themes were too broad. In 1994, geographers created 18 national geography standards. These standards were more detailed about what should be taught and learned. The Six Essential Elements act as a bridge connecting the Five Themes with the standards. These pages show you how the Five Themes are related to the Six Essential Elements and the 18 standards. 5 Themes of Geography 1 Location Location describes where something is. Absolute location describes a place’s exact position on the Earth’s surface. Relative location expresses where a place is in relation to another place. 2 Place Place describes the physical and human characteristics that make a location unique. 3 Regions Regions are areas that share common characteristics. 4 Movement Movement explains how and why people and things move and are connected. 5 Human-Environment Interaction Human-Environment Interaction describes the relationship between people and their environment. (t to b)ThinkStock /SuperStock, (2)Janet F oster/Masterfile , (3)Mark Tomalty/Masterfile , (4)© age fotostock / SuperStock, (5)Jurgen Freund /Nature Picture Library Themes and Elements 6 18 Essential Elements Geography Standards I. The World in Spatial Terms 1 How to use maps and other tools Geographers look to see where a place is located. -
National Spatial Reference System: "Positioning Changes for 2022"
National Spatial Reference System “Positioning Changes for 2022” Civil GPS Service Interface Committee Meeting Miami, Florida September 24, 2018 Denis Riordan, PSM NOAA, National Geodetic Survey [email protected] U.S. Department of Commerce National Oceanic & Atmospheric Administration National Geodetic Survey Mission: To define, maintain & provide access to the National Spatial Reference System (NSRS) to meet our Nation’s economic, social & environmental needs National Spatial Reference System * Latitude * Scale * Longitude * Gravity * Height * Orientation & their variations in time U. S. Geometric Datums in 2022 National Spatial Reference System (NSRS) Improvements in the Horizontal Datums TIME NETWORK METHOD NETWORK SPAN ACCURACY OF REFERENCE NAD 27 1927-1986 10 meter (1 part in 100,000) TRAVERSE & TRIANGULATION - GROUND MARKS USED FOR NAD83(86) 1986-1990 1 meter REFERENCING (1 part THE in 100,000) NSRS. NAD83(199x)* 1990-2007 0.1 meter GPS B- orderBECOMES (1 part THE in MEANS 1 million) OF POSITIONING – STILL GRND MARKS. HARN A-order (1 part in 10 million) NAD83(2007) 2007 - 2011 0.01 meter 0.01 meter GPS – CORS STATIONS ARE MEANS (CORS) OF REFERENCE FOR THE NSRS. NAD83(2011) 2011 - 2022 0.01 meter 0.01 meter (CORS) NSRS Reference Basis Old Method - Ground Current Method - GNSS Stations Marks (Terrestrial) (CORS) Why Replace NAD83? • Datum based on best known information about the earth’s size and shape from the early 1980’s (45 years old), and the terrestrial survey data of the time. • NAD83 is NON-geocentric & hence inconsistent w/GNSS . • Necessary for agreement with future ubiquitous positioning of GNSS capability. Future Geometric (3-D) Reference Frame Blueprint for 2022: Part 1 – Geometric Datum • Replace NAD83 with new geometric reference frame – by 2022. -
Geographical Influences on Climate Teacher Guide
Geographical Influences on Climate Teacher Guide Lesson Overview: Students will compare the climatograms for different locations around the United States to observe patterns in temperature and precipitation. They will describe geographical features near those locations, and compare graphs to find patterns in the effect of mountains, oceans, elevation, latitude, etc. on temperature and precipitation. Then, students will research temperature and precipitation patterns at various locations around the world using the MY NASA DATA Live Access Server and other sources, and use the information to create their own climatogram. Expected time to complete lesson: One 45 minute period to compare given climatograms, one to two 45 minute periods to research another location and create their own climatogram. To lessen the time needed, you can provide students data rather than having them find it themselves (to focus on graphing and analysis), or give them the template to create a climatogram (to focus on the analysis and description), or give them the assignment for homework. See GPM Geographical Influences on Climate – Climatogram Template and Data for these options. Learning Objectives: - Students will brainstorm geographic features, consider how they might affect temperature and precipitation, and discuss the difference between weather and climate. - Students will examine data about a location and calculate averages to compare with other locations to determine the effect of geographic features on temperature and precipitation. - Students will research the climate patterns of a location and create a climatogram and description of what factors affect the climate at that location. National Standards: ESS2.D: Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. -
DOTD Standards for GPS Data Collection Accuracy
Louisiana Transportation Research Center Final Report 539 DOTD Standards for GPS Data Collection Accuracy by Joshua D. Kent Clifford Mugnier J. Anthony Cavell Larry Dunaway Louisiana State University 4101 Gourrier Avenue | Baton Rouge, Louisiana 70808 (225) 767-9131 | (225) 767-9108 fax | www.ltrc.lsu.edu TECHNICAL STANDARD PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/LA.539 4. Title and Subtitle 5. Report Date DOTD Standards for GPS Data Collection Accuracy September 2015 6. Performing Organization Code 127-15-4158 7. Author(s) 8. Performing Organization Report No. Kent, J. D., Mugnier, C., Cavell, J. A., & Dunaway, L. Louisiana State University Center for GeoInformatics 9. Performing Organization Name and Address 10. Work Unit No. Center for Geoinformatics Department of Civil and Environmental Engineering 11. Contract or Grant No. Louisiana State University LTRC Project Number: 13-6GT Baton Rouge, LA 70803 State Project Number: 30001520 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Louisiana Department of Transportation and Final Report Development 6/30/2014 P.O. Box 94245 Baton Rouge, LA 70804-9245 14. Sponsoring Agency Code 15. Supplementary Notes Conducted in Cooperation with the U.S. Department of Transportation, Federal Highway Administration 16. Abstract The Center for GeoInformatics at Louisiana State University conducted a three-part study addressing accurate, precise, and consistent positional control for the Louisiana Department of Transportation and Development. First, this study focused on Departmental standards of practice when utilizing Global Navigational Satellite Systems technology for mapping-grade applications. Second, the recent enhancements to the nationwide horizontal and vertical spatial reference framework (i.e., datums) is summarized in order to support consistent and accurate access to the National Spatial Reference System. -
Chapter 5 ANGULAR MOMENTUM and ROTATIONS
Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another. -
AEN-88: the Global Positioning System
AEN-88 The Global Positioning System Tim Stombaugh, Doug McLaren, and Ben Koostra Introduction cies. The civilian access (C/A) code is transmitted on L1 and is The Global Positioning System (GPS) is quickly becoming freely available to any user. The precise (P) code is transmitted part of the fabric of everyday life. Beyond recreational activities on L1 and L2. This code is scrambled and can be used only by such as boating and backpacking, GPS receivers are becoming a the U.S. military and other authorized users. very important tool to such industries as agriculture, transporta- tion, and surveying. Very soon, every cell phone will incorporate Using Triangulation GPS technology to aid fi rst responders in answering emergency To calculate a position, a GPS receiver uses a principle called calls. triangulation. Triangulation is a method for determining a posi- GPS is a satellite-based radio navigation system. Users any- tion based on the distance from other points or objects that have where on the surface of the earth (or in space around the earth) known locations. In the case of GPS, the location of each satellite with a GPS receiver can determine their geographic position is accurately known. A GPS receiver measures its distance from in latitude (north-south), longitude (east-west), and elevation. each satellite in view above the horizon. Latitude and longitude are usually given in units of degrees To illustrate the concept of triangulation, consider one satel- (sometimes delineated to degrees, minutes, and seconds); eleva- lite that is at a precisely known location (Figure 1). If a GPS tion is usually given in distance units above a reference such as receiver can determine its distance from that satellite, it will have mean sea level or the geoid, which is a model of the shape of the narrowed its location to somewhere on a sphere that distance earth.