Preconditioned Techniques for Large Eigenvalue Problems

Total Page:16

File Type:pdf, Size:1020Kb

Preconditioned Techniques for Large Eigenvalue Problems Preconditioned Techniques For Large Eigenvalue Problems Kesheng Wu June Abstract This research fo cuses on nding a large number of eigenvalues and eigenvectors of a sparse symmetric or Hermitian matrix for example nding eigenpairs of a matrix These eigenvalue problems are challenging b ecause the matrix size is to o large for traditional QR based algorithms and the number of desired eigenpairs is to o large for most common sparse eigenvalue algorithms In this thesis we approach this problem in two steps First we identify a sound preconditioned eigenvalue pro cedure for computing multiple eigenpairs Second we improve the basic algorithm through new preconditioning schemes and sp ectrum transformations Through careful analysis we see that b oth the Arnoldi and Davidson metho ds have an appropriate structure for computing a large number of eigenpairs with preconditioning We also study three variations of these two basic algorithms Without preconditioning these metho ds are mathematically equivalent but they dier in numerical stability and complexity However the Davidson metho d is much more successful when preconditioned Despite its success the preconditioning scheme in the Davidson metho d is seen as awed b ecause the preconditioner b ecomes illconditioned near convergence After comparison with other metho ds we nd that the eectiveness of the Davidson metho d is due to its preconditioning step b eing an inexact Newton metho d We pro ceed to explore other Newton metho ds for eigenvalue problems to develop preconditioning schemes without the same aws We found that the simplest and most eective preconditioner is to use the Conjugate Gradient metho d to approximately solve equations generated by the Newton metho ds Also a dierent strategy of enhancing the p erformance of the Davidson metho d is to alternate b etween the regular Davidson iteration and a p olynomial metho d for eigenvalue problems To use these p olynomials the user must decide which intervals of the sp ectrum the p olynomial should suppress We studied dierent schemes of selecting these intervals and found that these hybrid metho ds with p olynomials can b e eective as well Overall the Davidson metho d with the CG preconditioner was the most successful metho d the eigenvalue problems we tested Chapter Electronic Structure Simulation Before entering into the main topic of this thesis we use this chapter to introduces the context of our research which is also serve as motivation for our research In this chapter we fo cus on one application that is the main driving force b ehind this research in eigensystem solvers the electronic structure simulation pro ject at the University of Minnesota We will give some background information ab out electronic structure simulation and characteristics of the eigenvalue problems generated from the simulation The eigenvalue algorithm developed in later chapters are designed to solve the eigenvalue problem of the same characteristics as these matrices Introduction Many scientic and engineering applications give rise to eigenvalue problems that is they require the solution of the following equation Ax x nn n where A C is n n matrix C is an eigenvalue and x C is an eigenvector The particular eigenvalue problem we are interested in is generated from a materials science research pro ject The aim of the research pro ject is to understand the dynamics of microscopic particles sp ecically electronic structures of complex systems Using quantum physics it is p ossible to explain and predict certain material prop erties at a microscopic scale A key step to the simulation of electronic structure is to nd a steady state or a quasisteady state Intuitively the pro cess of nding this steady state is adjusting the electron distribution to minimize the total energy of the system The total energy is a nonlinear function of the electron distribution Finding the minimal energy and the corresp onding electron distribution can b e viewed as solving for the smallest eigenvalue and the corresp onding eigenvector of a nonlinear eigenvalue problem The SelfConsistent Field SCF iteration is the primary scheme of solving this nonlinear eigenvalue problem At each step of the SCF iteration a linear eigenvalue problem is generated This is source of our matrix eigenvalue problem The Schrodinger equation is an nonlinear eigenvalue problem At each step of the SCF iteration a matrix eigenvalue problem is generated to contrast with the overall nonlinear eigenvalue problem we will refer to this matrix eigenvalue problem as the linear eigenvalue problem in this chapter However after this chapter we will b e concentrating on this linear eigenvalue problem the eigenvalue problem will refer the linear eigenvalue problem In quantum physics the electron distribution is represented by a wavefunction The governing equation is the Schrodinger equation H E where H is the Hamiltonian op erator for the system and E the total energy is the wavefunction The Hamiltonian op erator describ es the motion and interaction of the particles of the system The wavefunction describ es where the particles are The Schrodinger equation for any nontrivial system is complex nonlinear Partial Dierential Equation PDE There are many numerical metho ds for solving a PDE One of the most common numerical approaches to solve the Schrodinger equation is to discretize it in a planewave basis which is similar to sp ectral techniques for solving partial dierential equations This discretization scheme turns the Hamiltonian into a large dense matrix that is often to o large to store in a computers main memory Usually the matrix is only used in the linear eigenvalue problem one workaround to this diculty is to use a Lanczostype eigenvalue routine which only need to access the matrix through matrixvector multiplications Because the Fast Fourier Transformation FFT can b e used to accomplish the most computation intensive op eration in the matrixvector multiplication the matrixvector multiplication is relatively inexp ensive with this alternative With the planewave basis the problem is solved in the Fourier Space A dierent approach is to solve the problem in real space by discretizing the Schrodinger equation with the nite dierence scheme For lo calized systems such as a cluster of atoms highorder nite dierence scheme has shown to b e more ecient than planewave techniques in nding solutions of same accuracy The matrices resulting from b oth nite dierence metho ds and planewave techniques are large if the number of particles in the system is large In addition the size of the matrix is also aected by the desired accuracy of the solution characteristics of the atoms involved and the physical quantities to b e computed For complex systems involving hundreds of atoms the matrix size could b e on the order of millions Complex systems may also require one to solve many more linear eigenvalue problems b efore an acceptable solution for the nonlinear system is reached If we solve the Schrodinger equation directly only the smallest eigenvalue is needed However if we try to do so the p otential function V would b e to o complex to compute In next section we will show a scheme of simplifying this V This scheme makes V tractable at the same time it requires computation of a large number of eigenvalues from the linear eigenvalue problem The number of eigenvalues required is prop ortional to the number of atoms in the system Most of the eigenvalue metho ds traditionally used for this computation are not very eective for nding a large number of eigenvalues This is an additional challenge for an eective simulation Ab Initio pseudop otential simulation The electronic structure of a condensed matter system eg cluster liquid or solid is describ ed by a quantum wavefunction which can b e obtained by solving the Schrodinger equation This equation is very complex b ecause the Hamiltonian op erator H describ es motions of all particles in the system and the interactions among all of them Complete analytical solution is only p ossible for the simplest atoms Signicant sim plication is required to compute any large system Most theories of condensed matter systems make the following three fundamental approximations to make them manageable BornOpp enheimer approximation BornOpp enheimer approximation neglects the kinetic energy of the nuclei This is a go o d approximation b ecause of two main reasons First the mass of nuclei is much larger than the mass of electrons in the system typically more times larger nuclei move very slowly compared to electrons Second we are not interested in the average motion of the whole system in other word we will solve the system in the nuclei frame of reference Because of this approximation the wave function we use only involves the electrons Thus the original electronnuclear problem now b ecomes a pure electron problem Under this circumstance the wavefunction describ es the distribution of electrons only Let r denote a p oint in space the density of electron distribution at r is dened by H r r r where the sup erscript H denotes complex conjugate Lo cal density approximation To explain the concept of Lo cal Density Approximation LDA we will rst describ e a more general theory the density functional theory The density functional theory transforms a manyelectron problem into an oneelectron problem The simplied Schrodinger equation in this case is called the KohnSham equation r V r r r tot i i i where r is the usual Laplacian op erator V r denotes
Recommended publications
  • Overview of Iterative Linear System Solver Packages
    Overview of Iterative Linear System Solver Packages Victor Eijkhout July, 1998 Abstract Description and comparison of several packages for the iterative solu- tion of linear systems of equations. 1 1 Intro duction There are several freely available packages for the iterative solution of linear systems of equations, typically derived from partial di erential equation prob- lems. In this rep ort I will give a brief description of a numberofpackages, and giveaninventory of their features and de ning characteristics. The most imp ortant features of the packages are which iterative metho ds and preconditioners supply; the most relevant de ning characteristics are the interface they present to the user's data structures, and their implementation language. 2 2 Discussion Iterative metho ds are sub ject to several design decisions that a ect ease of use of the software and the resulting p erformance. In this section I will give a global discussion of the issues involved, and how certain p oints are addressed in the packages under review. 2.1 Preconditioners A go o d preconditioner is necessary for the convergence of iterative metho ds as the problem to b e solved b ecomes more dicult. Go o d preconditioners are hard to design, and this esp ecially holds true in the case of parallel pro cessing. Here is a short inventory of the various kinds of preconditioners found in the packages reviewed. 2.1.1 Ab out incomplete factorisation preconditioners Incomplete factorisations are among the most successful preconditioners devel- op ed for single-pro cessor computers. Unfortunately, since they are implicit in nature, they cannot immediately b e used on parallel architectures.
    [Show full text]
  • Deflation by Restriction for the Inverse-Free Preconditioned Krylov Subspace Method
    NUMERICAL ALGEBRA, doi:10.3934/naco.2016.6.55 CONTROL AND OPTIMIZATION Volume 6, Number 1, March 2016 pp. 55{71 DEFLATION BY RESTRICTION FOR THE INVERSE-FREE PRECONDITIONED KRYLOV SUBSPACE METHOD Qiao Liang Department of Mathematics University of Kentucky Lexington, KY 40506-0027, USA Qiang Ye∗ Department of Mathematics University of Kentucky Lexington, KY 40506-0027, USA (Communicated by Xiaoqing Jin) Abstract. A deflation by restriction scheme is developed for the inverse-free preconditioned Krylov subspace method for computing a few extreme eigen- values of the definite symmetric generalized eigenvalue problem Ax = λBx. The convergence theory for the inverse-free preconditioned Krylov subspace method is generalized to include this deflation scheme and numerical examples are presented to demonstrate the convergence properties of the algorithm with the deflation scheme. 1. Introduction. The definite symmetric generalized eigenvalue problem for (A; B) is to find λ 2 R and x 2 Rn with x 6= 0 such that Ax = λBx (1) where A; B are n × n symmetric matrices and B is positive definite. The eigen- value problem (1), also referred to as a pencil eigenvalue problem (A; B), arises in many scientific and engineering applications, such as structural dynamics, quantum mechanics, and machine learning. The matrices involved in these applications are usually large and sparse and only a few of the eigenvalues are desired. Iterative methods such as the Lanczos algorithm and the Arnoldi algorithm are some of the most efficient numerical methods developed in the past few decades for computing a few eigenvalues of a large scale eigenvalue problem, see [1, 11, 19].
    [Show full text]
  • A Geometric Theory for Preconditioned Inverse Iteration. III: a Short and Sharp Convergence Estimate for Generalized Eigenvalue Problems
    A geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems. Andrew V. Knyazev Department of Mathematics, University of Colorado at Denver, P.O. Box 173364, Campus Box 170, Denver, CO 80217-3364 1 Klaus Neymeyr Mathematisches Institut der Universit¨atT¨ubingen,Auf der Morgenstelle 10, 72076 T¨ubingen,Germany 2 Abstract In two previous papers by Neymeyr: A geometric theory for preconditioned inverse iteration I: Extrema of the Rayleigh quotient, LAA 322: (1-3), 61-85, 2001, and A geometric theory for preconditioned inverse iteration II: Convergence estimates, LAA 322: (1-3), 87-104, 2001, a sharp, but cumbersome, convergence rate estimate was proved for a simple preconditioned eigensolver, which computes the smallest eigenvalue together with the corresponding eigenvector of a symmetric positive def- inite matrix, using a preconditioned gradient minimization of the Rayleigh quotient. In the present paper, we discover and prove a much shorter and more elegant, but still sharp in decisive quantities, convergence rate estimate of the same method that also holds for a generalized symmetric definite eigenvalue problem. The new estimate is simple enough to stimulate a search for a more straightforward proof technique that could be helpful to investigate such practically important method as the locally optimal block preconditioned conjugate gradient eigensolver. We demon- strate practical effectiveness of the latter for a model problem, where it compares favorably with two
    [Show full text]
  • 16 Preconditioning
    16 Preconditioning The general idea underlying any preconditioning procedure for iterative solvers is to modify the (ill-conditioned) system Ax = b in such a way that we obtain an equivalent system Aˆxˆ = bˆ for which the iterative method converges faster. A standard approach is to use a nonsingular matrix M, and rewrite the system as M −1Ax = M −1b. The preconditioner M needs to be chosen such that the matrix Aˆ = M −1A is better conditioned for the conjugate gradient method, or has better clustered eigenvalues for the GMRES method. 16.1 Preconditioned Conjugate Gradients We mentioned earlier that the number of iterations required for the conjugate gradient algorithm to converge is proportional to pκ(A). Thus, for poorly conditioned matrices, convergence will be very slow. Thus, clearly we will want to choose M such that κ(Aˆ) < κ(A). This should result in faster convergence. How do we find Aˆ, xˆ, and bˆ? In order to ensure symmetry and positive definiteness of Aˆ we let M −1 = LLT (44) with a nonsingular m × m matrix L. Then we can rewrite Ax = b ⇐⇒ M −1Ax = M −1b ⇐⇒ LT Ax = LT b ⇐⇒ LT AL L−1x = LT b . | {z } | {z } |{z} =Aˆ =xˆ =bˆ The symmetric positive definite matrix M is called splitting matrix or preconditioner, and it can easily be verified that Aˆ is symmetric positive definite, also. One could now formally write down the standard CG algorithm with the new “hat- ted” quantities. However, the algorithm is more efficient if the preconditioning is incorporated directly into the iteration. To see what this means we need to examine every single line in the CG algorithm.
    [Show full text]
  • Numerical Linear Algebra Solving Ax = B , an Overview Introduction
    Solving Ax = b, an overview Numerical Linear Algebra ∗ A = A no Good precond. yes flex. precond. yes GCR Improving iterative solvers: ⇒ ⇒ ⇒ yes no no ⇓ ⇓ ⇓ preconditioning, deflation, numerical yes GMRES A > 0 CG software and parallelisation ⇒ ⇓ no ⇓ ⇓ ill cond. yes SYMMLQ str indef no large im eig no Bi-CGSTAB ⇒ ⇒ ⇒ no yes yes ⇓ ⇓ ⇓ MINRES IDR no large im eig BiCGstab(ℓ) ⇐ yes Gerard Sleijpen and Martin van Gijzen a good precond itioner is available ⇓ the precond itioner is flex ible IDRstab November 29, 2017 A + A∗ is strongly indefinite A 1 has large imaginary eigenvalues November 29, 2017 2 National Master Course National Master Course Delft University of Technology Introduction Program We already saw that the performance of iterative methods can Preconditioning be improved by applying a preconditioner. Preconditioners (and • Diagonal scaling, Gauss-Seidel, SOR and SSOR deflation techniques) are a key to successful iterative methods. • Incomplete Choleski and Incomplete LU In general they are very problem dependent. • Deflation Today we will discuss some standard preconditioners and we will • Numerical software explain the idea behind deflation. • Parallelisation We will also discuss some efforts to standardise numerical • software. Shared memory versus distributed memory • Domain decomposition Finally we will discuss how to perform scientific computations on • a parallel computer. November 29, 2017 3 November 29, 2017 4 National Master Course National Master Course Preconditioning Why preconditioners? A preconditioned iterative solver solves the system − − M 1Ax = M 1b. 1 The matrix M is called the preconditioner. 0.8 The preconditioner should satisfy certain requirements: 0.6 Convergence should be (much) faster (in time) for the 0.4 • preconditioned system than for the original system.
    [Show full text]
  • A Generalized Eigenvalue Algorithm for Tridiagonal Matrix Pencils Based on a Nonautonomous Discrete Integrable System
    A generalized eigenvalue algorithm for tridiagonal matrix pencils based on a nonautonomous discrete integrable system Kazuki Maedaa, , Satoshi Tsujimotoa ∗ aDepartment of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan Abstract A generalized eigenvalue algorithm for tridiagonal matrix pencils is presented. The algorithm appears as the time evolution equation of a nonautonomous discrete integrable system associated with a polynomial sequence which has some orthogonality on the support set of the zeros of the characteristic polynomial for a tridiagonal matrix pencil. The convergence of the algorithm is discussed by using the solution to the initial value problem for the corresponding discrete integrable system. Keywords: generalized eigenvalue problem, nonautonomous discrete integrable system, RII chain, dqds algorithm, orthogonal polynomials 2010 MSC: 37K10, 37K40, 42C05, 65F15 1. Introduction Applications of discrete integrable systems to numerical algorithms are important and fascinating top- ics. Since the end of the twentieth century, a number of relationships between classical numerical algorithms and integrable systems have been studied (see the review papers [1–3]). On this basis, new algorithms based on discrete integrable systems have been developed: (i) singular value algorithms for bidiagonal matrices based on the discrete Lotka–Volterra equation [4, 5], (ii) Pade´ approximation algorithms based on the dis- crete relativistic Toda lattice [6] and the discrete Schur flow [7], (iii) eigenvalue algorithms for band matrices based on the discrete hungry Lotka–Volterra equation [8] and the nonautonomous discrete hungry Toda lattice [9], and (iv) algorithms for computing D-optimal designs based on the nonautonomous discrete Toda (nd-Toda) lattice [10] and the discrete modified KdV equation [11].
    [Show full text]
  • Preconditioned Inverse Iteration and Shift-Invert Arnoldi Method
    Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical Systems Magdeburg 3rd May 2011 joint work with Alastair Spence (Bath) 1 Introduction 2 Inexact inverse iteration 3 Inexact Shift-invert Arnoldi method 4 Inexact Shift-invert Arnoldi method with implicit restarts 5 Conclusions Outline 1 Introduction 2 Inexact inverse iteration 3 Inexact Shift-invert Arnoldi method 4 Inexact Shift-invert Arnoldi method with implicit restarts 5 Conclusions Problem and iterative methods Find a small number of eigenvalues and eigenvectors of: Ax = λx, λ ∈ C,x ∈ Cn A is large, sparse, nonsymmetric Problem and iterative methods Find a small number of eigenvalues and eigenvectors of: Ax = λx, λ ∈ C,x ∈ Cn A is large, sparse, nonsymmetric Iterative solves Power method Simultaneous iteration Arnoldi method Jacobi-Davidson method repeated application of the matrix A to a vector Generally convergence to largest/outlying eigenvector Problem and iterative methods Find a small number of eigenvalues and eigenvectors of: Ax = λx, λ ∈ C,x ∈ Cn A is large, sparse, nonsymmetric Iterative solves Power method Simultaneous iteration Arnoldi method Jacobi-Davidson method The first three of these involve repeated application of the matrix A to a vector Generally convergence to largest/outlying eigenvector Shift-invert strategy Wish to find a few eigenvalues close to a shift σ σ λλ λ λ λ 3 1 2 4 n Shift-invert strategy Wish to find a few eigenvalues close to a shift σ σ λλ λ λ λ 3 1 2 4 n Problem becomes − 1 (A − σI) 1x = x λ − σ each step of the iterative method involves repeated application of A =(A − σI)−1 to a vector Inner iterative solve: (A − σI)y = x using Krylov method for linear systems.
    [Show full text]
  • Analysis of a Fast Hankel Eigenvalue Algorithm
    Analysis of a Fast Hankel Eigenvalue Algorithm a b Franklin T Luk and Sanzheng Qiao a Department of Computer Science Rensselaer Polytechnic Institute Troy New York USA b Department of Computing and Software McMaster University Hamilton Ontario LS L Canada ABSTRACT This pap er analyzes the imp ortant steps of an O n log n algorithm for nding the eigenvalues of a complex Hankel matrix The three key steps are a Lanczostype tridiagonalization algorithm a fast FFTbased Hankel matrixvector pro duct pro cedure and a QR eigenvalue metho d based on complexorthogonal transformations In this pap er we present an error analysis of the three steps as well as results from numerical exp eriments Keywords Hankel matrix eigenvalue decomp osition Lanczos tridiagonalization Hankel matrixvector multipli cation complexorthogonal transformations error analysis INTRODUCTION The eigenvalue decomp osition of a structured matrix has imp ortant applications in signal pro cessing In this pap er nn we consider a complex Hankel matrix H C h h h h n n h h h h B C n n B C B C H B C A h h h h n n n n h h h h n n n n The authors prop osed a fast algorithm for nding the eigenvalues of H The key step is a fast Lanczos tridiago nalization algorithm which employs a fast Hankel matrixvector multiplication based on the Fast Fourier transform FFT Then the algorithm p erforms a QRlike pro cedure using the complexorthogonal transformations in the di agonalization to nd the eigenvalues In this pap er we present an error analysis and discuss
    [Show full text]
  • Introduction to Mathematical Programming
    Introduction to Mathematical Programming Ming Zhong Lecture 24 October 29, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 18 Singular Value Decomposition (SVD) Table of Contents 1 Singular Value Decomposition (SVD) Ming Zhong (JHU) AMS Fall 2018 2 / 18 Singular Value Decomposition (SVD) Matrix Decomposition n×n We have discussed several decomposition techniques (for A 2 R ), A = LU when A is non-singular (Gaussian elimination). A = LL> when A is symmetric positive definite (Cholesky). A = QR for any real square matrix (unique when A is non-singular). A = PDP−1 if A has n linearly independent eigen-vectors). A = PJP−1 for any real square matrix. We are now ready to discuss the Singular Value Decomposition (SVD), A = UΣV∗; m×n m×m n×n m×n for any A 2 C , U 2 C , V 2 C , and Σ 2 R . Ming Zhong (JHU) AMS Fall 2018 3 / 18 Singular Value Decomposition (SVD) Some Brief History Going back in time, It was originally developed by differential geometers, equivalence of bi-linear forms by independent orthogonal transformation. Eugenio Beltrami in 1873, independently Camille Jordan in 1874, for bi-linear forms. James Joseph Sylvester in 1889 did SVD for real square matrices, independently; singular values = canonical multipliers of the matrix. Autonne in 1915 did SVD via polar decomposition. Carl Eckart and Gale Young in 1936 did the proof of SVD of rectangular and complex matrices, as a generalization of the principal axis transformaton of the Hermitian matrices. Erhard Schmidt in 1907 defined SVD for integral operators. Emile´ Picard in 1910 is the first to call the numbers singular values.
    [Show full text]
  • Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2018 Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm Brendan E. Gavin University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Numerical Analysis and Computation Commons, and the Numerical Analysis and Scientific Computing Commons Recommended Citation Gavin, Brendan E., "Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm" (2018). Doctoral Dissertations. 1341. https://doi.org/10.7275/12360224 https://scholarworks.umass.edu/dissertations_2/1341 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. INEXACT AND NONLINEAR EXTENSIONS OF THE FEAST EIGENVALUE ALGORITHM A Dissertation Presented by BRENDAN GAVIN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2018 Electrical and Computer Engineering c Copyright by Brendan Gavin 2018 All Rights Reserved INEXACT AND NONLINEAR EXTENSIONS OF THE FEAST EIGENVALUE ALGORITHM A Dissertation Presented by BRENDAN GAVIN Approved as to style and content by: Eric Polizzi, Chair Zlatan Aksamija, Member
    [Show full text]
  • Preconditioning the Coarse Problem of BDDC Methods—Three-Level, Algebraic Multigrid, and Vertex-Based Preconditioners
    Electronic Transactions on Numerical Analysis. Volume 51, pp. 432–450, 2019. ETNA Kent State University and Copyright c 2019, Kent State University. Johann Radon Institute (RICAM) ISSN 1068–9613. DOI: 10.1553/etna_vol51s432 PRECONDITIONING THE COARSE PROBLEM OF BDDC METHODS— THREE-LEVEL, ALGEBRAIC MULTIGRID, AND VERTEX-BASED PRECONDITIONERS∗ AXEL KLAWONNyz, MARTIN LANSERyz, OLIVER RHEINBACHx, AND JANINE WEBERy Abstract. A comparison of three Balancing Domain Decomposition by Constraints (BDDC) methods with an approximate coarse space solver using the same software building blocks is attempted for the first time. The comparison is made for a BDDC method with an algebraic multigrid preconditioner for the coarse problem, a three-level BDDC method, and a BDDC method with a vertex-based coarse preconditioner. It is new that all methods are presented and discussed in a common framework. Condition number bounds are provided for all approaches. All methods are implemented in a common highly parallel scalable BDDC software package based on PETSc to allow for a simple and meaningful comparison. Numerical results showing the parallel scalability are presented for the equations of linear elasticity. For the first time, this includes parallel scalability tests for a vertex-based approximate BDDC method. Key words. approximate BDDC, three-level BDDC, multilevel BDDC, vertex-based BDDC AMS subject classifications. 68W10, 65N22, 65N55, 65F08, 65F10, 65Y05 1. Introduction. During the last decade, approximate variants of the BDDC (Balanc- ing Domain Decomposition by Constraints) and FETI-DP (Finite Element Tearing and Interconnecting-Dual-Primal) methods have become popular for the solution of various linear and nonlinear partial differential equations [1,8,9, 12, 14, 15, 17, 19, 21, 24, 25].
    [Show full text]
  • The Preconditioned Conjugate Gradient Method with Incomplete Factorization Preconditioners
    Computers Math. Applic. Vol. 31, No. 4/5, pp. 1-5, 1996 Pergamon Copyright©1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0898-1221/96 $15.00 4- 0.00 0898-1221 (95)00210-3 The Preconditioned Conjugate Gradient Method with Incomplete Factorization Preconditioners I. ARANY University of Miskolc, Institute of Mathematics 3515 Miskolc-Egyetemv~iros, Hungary mat arany©gold, uni-miskolc, hu Abstract--We present a modification of the ILUT algorithm due to Y. Sand for preparing in- complete factorization preconditioner for positive definite matrices being neither diagonally dominant nor M-matrices. In all tested cases, the rate of convergence of the relevant preconditioned conjugate gradient method was at a sufficient level, when linear systems arising from static problem for bar structures with 3D beam elements were solved. Keywords--Preconditioned conjugate gradient method, Incomplete factorization. 1. INTRODUCTION For solving large sparse positive definite systems of linear equations, the conjugate gradient method combined with a preconditoning technique seems to be one of the most efficient ways among the simple iterative methods. As known, for positive definite symmetric diagonally dom- inant M-matrices, the incomplete factorization technique may be efficiently used for preparing preconditioners [1]. However, for more general cases, when the matrix is neither diagonally domi- nant nor M-matrix, but it is a positive definite one, some incomplete factorization techniques [2,3] seem to be quite unusable, since usually, during the process, a diagonal element is turning to zero. We present a modification to the ILUT algorithm of Sand [2] for preparing preconditioners for the above mentioned matrices.
    [Show full text]