Effects of Clomiphene Citrate Plus Estradiol Or Progesterone On

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Clomiphene Citrate Plus Estradiol Or Progesterone On International Journal of Reproductive BioMedicine Volume 18, Issue no. 3, https://doi.org/10.18502/ijrm.v18i3.6718 Production and Hosting by Knowledge E Research Article Effects of clomiphene citrate plus estradiol or progesterone on endometrial ultrastructure: An RCT Robabeh Taheripanah1 M.D., Maryam Kabir-Salmani1, 2 Ph.D., Masoomeh Favayedi1 M.D., Marzieh Zamaniyan3, 4 M.D., Narges Malih5 M.D., Anahita Taheripanah6 B.Sc. 1Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 2Department of Biomaterials and Tissue Engineering, Stem Cell Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran. 3Department of Obstetrics and Gynecology, Infertility Center, Mazandaran University of Medical Sciences, Sari, Iran. 4Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran. 5Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 6Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. Corresponding Author: Marzieh Zamaniyan; Infertility Abstract Center, Imam Hospital, Amir Background: Pinopods concentrations in endometrial surface is a marker of Mazandarani Ave., Sari, Iran. implantation. Estradiol valerate (EV) was used to change the adverse effects of Postal Code: 4815659769 Clomiphene Citrate (CC) on the endometrium. Tel: (+98) 9113566650 Objective: The goal was to assess whether there is a significant difference in the Email: endometrial pinopods concentrations and other parameters after adding EV and [email protected] progesterone to higher doses of CC. Materials and Methods: In this prospective randomized clinical trial, a total of 30 Received 11 April 2018 women who did not respond to 100 mg of CC from February 2016 to June 2016 were Revised 6 October 2018 evaluated. They were divided into three groups: group I) received 150 mg of CC alone, Accepted 15 October 2019 group II) CC with EV, and group III) CC plus progesterone. On day 21 of the menstrual cycle, endometrial biopsy, a blood sampling, and a scanning by electron microscopy were performed. Production and Hosting by Results: On day 21 of the menstrual cycle, there was no significant difference in the Knowledge E pinopods concentrations (p = 0.641) and serum estrogen levels (p = 0.276) between Taheripanah et al. This groups. However, the Serum progesterone levels in group I was higher than the other article is distributed under two groups (p = 0.007) in the same day. the terms of the Creative Conclusion: Since the addition of EV and progesterone to higher dosages of CC did Commons Attribution License, not change the pinopods concentration and serum estrogen levels on day 21 of the which permits unrestricted menstrual cycle, and the serum progesterone levels was higher in CC alone group (i.e. use and redistribution group I) compared to other groups, it can be concluded that the anti-estrogenic effects provided that the original of CC just appear on the endometrium and not on the plasma levels. author and source are credited. Key words: Ovulation induction, Clomiphene, Estradiol, Progesterone, Electron Editor-in-Chief: microscopy, Endometrium. Aflatoonian Abbas M.D. Registration ID in IRCT: IRCT2015011920408N3. This articel extracted from M.D. thesis (Masoomeh Favayedi) How to cite this article: Taheripanah R, Kabir-Salmani M, Favayedi M, Zamaniyan M, Malih N, Taheripanah A. “Effects of clomiphene citrate plus estradiol or progesterone on endometrial ultrastructure: An RCT,” Int J Reprod BioMed 2020; 18: 201–208. https://doi.org/10.18502/ijrm.v18i3.6718 Page 201 International Journal of Reproductive BioMedicine Taheripanah et al. 1. Introduction apical surface of the endometrial epithelium. These organelles are some micrometers Induction of ovulation is one of the first steps wide and protrude into the uterine cavity of infertility treatment among infertile couples over the microvilli level. Electron microscopy who have polycystic ovarian syndrome, or other is the main instrument used to illustrate causes of infertility such as unexplained infertility. these organelles. Pinopod expression is Clomiphene citrate (CC) is a known and proven restricted to a short-term period of maximal first-line treatment for ovulation induction (1). Data two days in the menstrual cycle presumably confirms that ovulation rate with this method is in the implantation window. The pinopod about 80%, but pregnancy rates are about 40% expression pattern all over the menstrual cycle (2). supports their use as markers of implantation. Different factors such as unexplained infertility HOXA-10 is part of a homeobox gene that might cause the lower rate of pregnancy its expression is essential for endometrial after successful induction, but it should be receptiveness to blastocyst attachment. However, noted that anti-estrogenic effects of CC on it has a crucial role in pinopod growth (8). the endometrium can lead to disturbances in Undeniably, suppressing HOXA-10 leads to endometrium during implantation. This effect reduction in the number of pinopods. In some is dose-dependent and further increases in study, CC leads to a decrease in HOXA- dosage makes this problem more visible 10 and may cause lower pregnancy rate (3). Estrogen can cause endometrial cell (9). proliferation and also increase the cells surface Therefore, in this research, we tried to examine microvillus, change the cell volume, and increase pinopod concentration in the CC-treated group progesterone receptors; this can all support the alone compared with adding estradiol or hypothesis regarding the effect of exogenous progesterone to see whether these changes administered estrogen during ovulatory cycle on in pinopod concentrations could be reversed by pregnancy rate (4). Progesterone can cause hormonal intervention. Our hypothesis was that the uterine glands to become wider and adding estradiol valerate (EV) and progesterone more complex and it also might increase their to higher doses of CC could improve endometrial activity (5). To reduce this effect, researchers morphology such as pinopods concentration have used other drugs such as tamoxifen assessed by electron microscopy and other as ovulation-stimulating agent believing it factors affecting implantation, so that the addition might have less anti-estrogen effect on the may improve implantation compared to CC endometrium and less impact on the cervical score alone. (6). In some studies, addition of conjugated 2. Materials and Methods estrogens in the second half of the follicular phase to compensate for the anti-estrogenic 2.1. Patients effect of clomiphene has been evaluated (7), but no study was done at the cellular Thirty infertile patients were randomly divided levels and endometrial morphology. Pinopods into three groups from February to June 2016 (n are bubbles-like projections found on the = 10/each). The inclusion criteria were woman Page 202 https://doi.org/10.18502/ijrm.v18i3.6718 International Journal of Reproductive BioMedicine Clomiphene and endometrial morphology aged ≤ 35 yr and regular menses (25-34 was performed using Novak curette to take days), and unexplained infertility for at least the samples from the anterior fundal section 1 yr. All patients had normal serum levels of of the uterus. We also took blood samples thyroid-stimulating hormone, and prolactin. Also, for the measurement of serum progesterone. all participants had a history of unsuccessful Quantitative evaluation of uterine dome usage of CC 100 mg/day in prior cycles. density using scanning electron microscopy The exclusion criteria were previous in-vitro was performed as previously described (12). fertilization or intra-cytoplasmic sperm injection, In summary, biopsy samples were washed any other causes of infertility such as hyper immediately in phosphate buffered (0.1mol/l, prolactinemia, thyroid causes, endometriosis, PH 7.4) (PBS tablets, USA, MP Company) and ovulatory dysfunction, and uterine factors. The were then transferred to 2.5% Glutaraldehyde flowchart of eligible patients has been shown in (Germany, DSM company) for initial fixation. Figure 1. Then, the samples were transferred to a solution of 1% osmium tetroxide (Germany, Ridel de 2.2. Ultrastructure of pinopods Haen) as secondary fixation for at least 1 hr. Thereafter, the samples were dehydrated in In the present study, three methods of a graded series of ethanol (5, 50, 70, 90, ovulation induction in infertile patients were 99%) (Razi company, Iran), dried by machine used. For the effect of drugs on pinopods (Polaron CPD 7501 system (VG Microtech, concentration and embryo implantation the UK), and then mounted and covered by endometrium was evaluated at the mid-luteal gold in a Bio-Rad SC510 sputter coater (VG phase (time of implantation). The first group Microtech). received 150 mg of CC (Aboraihan Company, Finally, the number of uterine domes in Tehran, Iran) alone on days 5-9 of menstrual experimental and control groups were counted, cycle. The second group in addition to 150 at the same magnification in six random fields. mg of CC on days 5-9 of menstrual cycle Thus, 30 random fields in each group were received EV (Aboraihan Company, Tehran, assessed morphologically and statistically Iran) for five days from day 8 of menstrual trying to obtain samples from similar regions cycle at a dose of 4 mg daily. In the third of uterus (anterior-fundal wall
Recommended publications
  • Progesterone Shifts the Pinopodes Expression of Mouse Endometrium to Pre-Implantation Time After Ovarian Hyperstimulation
    Iranian Journal of Reproductive Medicine Vol.1, No.1 pp. 20-23, 2003. Progesterone Shifts the Pinopodes Expression of Mouse Endometrium to Pre-Implantation Time After Ovarian Hyperstimulation Mojdeh Salehnia , Ph.D. Department of Anatomy, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran. Background: The aim of this study was to determine the correlation between ultrastructural studies for pinopodes expression after ovarian hyperstimulation and progesterone injection in mice. Materials and Methods: Adult NMRI mice were superovulated using human menopasual gonadotropic (hMG) and human chorionic gonadotropic (hCG) hormones; after that, daily injection of progesterone (1 mg/mouse) was performed. Animals were sacrificed by cervical dislocation 3.5 and 4.5 days after hCG injection. Tissues of uterine horns were obtained and processed for scanning (SEM) and transmission (TEM) electron microscopy studies. The pseudopregnant control samples were studied same as experimental groups. Results: The SEM and TEM observations showed that in control groups on 3.5 days of pregnancy, there were some pinopodes. All apical cell surfaces expressed these projections on the forth day. In progestrone-injected group, well developed pinopods were expressed 3.5 days after hCG injection and they were transformed to small projections on the fourth day following hCG injection. Also, the life span of pinopods was limited to a short time. At the TEM levels, the pinopods were seen as swelling process on the apical surface, which were more pronounced on day 3.5 of hCG injection in hyperstimulated and progestrone injection. Conclusion: The progestrone may cause premature expression of pinopodes and the implantation failure after ovarian induction may be due to these timing changes.
    [Show full text]
  • Characterization of the Uterine Phenotype During the Peri-Implantation Period for LIF-Null, MF1 Strain Mice
    Developmental Biology 281 (2005) 1–21 www.elsevier.com/locate/ydbio Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice A.A Fouladi-Nashtaa,1, C.J.P. Jonesb, N. Nijjar a, L. Mohamet a, A. Smithc, I. Chambersc, S.J. Kimber a,T aFaculty of Life Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK bFaculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK cCentre for Development in Stem Cell Biology, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3QJ, UK Received for publication 9 August 2004, revised 20 January 2005, accepted 21 January 2005 Available online 9 March 2005 Abstract Leukemia inhibitory factor plays a major role in the uterus and in its absence embryos fail to implant. Our knowledge of the targets for LIF and the consequences of its absence is still very incomplete. In this study, we have examined the ultrastructure of the potential implantation site in LIF-null MF1 female mice compared to that of wild type animals. We also compared expression of proteins associated with implantation in luminal epithelium and stroma. Luminal epithelial cells (LE) of null animals failed to develop apical pinopods, had increased glycocalyx, and retained a columnar shape during the peri-implantation period. Stromal cells of LIF-null animals showed no evidence of decidual giant cell formation even by day 6 of pregnancy. A number of proteins normally expressed in decidualizing stroma did not increase in abundance in the LIF-null animals including desmin, tenascin, Cox-2, bone morphogenetic protein (BMP)-2 and -7, and Hoxa-10.
    [Show full text]
  • Can the Time from the Menstrual Day at Embryo Transfer to Expected
    Clinical Investigation / Araştırma DOI: 10.4274/tjod.34651 Turk J Obstet Gynecol 2016;13:116-22 Non-invasive prediction of implantation window in controlled hyperstimulation cycles: Can the time from the menstrual day at embryo transfer to expected menstrual cycle give a clue? Kontrollü hiperstimülasyon sikluslarda implantasyon penceresinin non-invaziv tespiti: Embriyo transferi yapılan menstürasyon günü ile beklenen menstürasyon siklusu arasındaki zaman ipucu verir mi? İlhan Şanverdi, Enis Özkaya, Tayfun Kutlu, Taylan Şenol, Munip Akalın, Eda Sayar Akalın, Yavuz Şahin, Ateş Karateke Zeynep Kamil Women and Children’s Health Training and Research Hospital, Clinic of Obstetrics and Gynecology, İstanbul, Turkey Abstract Objective: The aim of this study was to assess whether the time from the menstrual day at embryo transfer to expected menstrual cycle (TETEMC) is associated with the implantation in women with regular cycles or not. Materials and Methods: Forty women with successful implantation and forty women without implantation with regular cycles were randomly selected from prospectively collected database of assisted reproductive technology clinic of Zeynep Kamil Women And Children’s Health Training and Research Hospital. TETEMC was calculated for each case to assess relationship with the successful implantation. Results: Comparison of groups revealed significant differences with regard to TETEMC and the menstrual period (p<0.05). In ROC analyses both the TETEMC (AUC=0.824, p<0.001) and the menstrual period (AUC=0.797, p<0.001) were significant predictors for clinical pregnancy. Cut off value for the menstrual period was found to be 27.5 days with 82.6% sensitivity and 65% specificity. Cut off value for TETEMC was 11.5 days with 75% sensitivity and 63.2% specificity.
    [Show full text]
  • The Embryo-Endometrium Crosstalk During Human Implantation
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en The embryo-endometrium crosstalk during human implantation: a focus on molecular determinants and microbial environment Paula Vergaro Varela Thesis for Doctoral Degree in Cell Biology by Universitat Autònoma de Barcelona, Department of Cell Biology, Physiology and Immunology Barcelona, 2019 Supervisors: Dr. Rita Vassena and Prof. Josep Santaló Pedro All published papers were reproduced with permission from the publishers. Cover picture from iStock by Getty Images (iStockphoto LP.) A meus pais e a miña irmá, SUMMARY Implantation failure is a major cause of human infertility and currently the most limiting step in Assisted Reproductive Technologies (ART). It can be caused by both maternal and embryonic factors, as well as by defective crosstalk between them. Due to technical and ethical limitations, it is not possible to study human implantation in vivo. The knowledge about implantation has been mainly obtained from animal models which fail to represent the physiology of the human process. Additionally, a number of in vitro studies have investigated the molecular mechanisms underlying implantation, mostly focussing on either the embryo or the endometrium in a unilateral manner.
    [Show full text]
  • The Uterus and Implantation
    The uterus and implantation John Aplin University of Manchester Stages of implantation • Development to blastocyst • Hatching Stages of implantation • Development to blastocyst • Hatching • Apposition of the blastocyst Stages of implantation • Development to blastocyst • Hatching • Apposition of the blastocyst • Attachment to the epithelial surface • Penetration of the epithelial layer Stages of implantation • Development to blastocyst • Hatching • Apposition of the blastocyst • Attachment to the epithelial surface • Penetration of the epithelial layer • Invasion of stroma • Invasion and transformation of spiral arteries Implantation window maternal receptivity LH + 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ovulation menstruation estrogen progesterone + estrogen The window is maternally controlled • Unimplanted mouse embryos flushed after transfer to one recipient can implant into a second recipient in her receptive phase • Hatched human blastocysts ‘implant’ efficiently on endometrial stromal cells Mardon et al Human Reproduction 18, 283, 2003 • Control seems to be exerted by the endometrial epithelium Control of implantation The barrier hypothesis The maternal luminal epithelium is specifically non -receptive outside the window phase Endometrial histology proliferative phase proliferative phase early secretory phase late secretory phase •The Noyes criteria (Noyes, Hertig & Rock Fert Steril 1, 3-11,1950) •Histological changes quantified using morphometric methods and applied to a fertile control group in the period LH+2 to LH+ 7 show highly reproducible daily changes •Li TC, Rogers AW, Dockery P, Lenton EA, Cooke ID. A new method of histologic dating of human endometrium in the luteal phase. Fertil Steril. 1988 Jul;50(1):52-60. But … • Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, Schlaff WD, Carr BR, Steinkampf MP, Silva S, Vogel DL, Leppert PC; NICHD National Cooperative Reproductive Medicine Network.
    [Show full text]
  • Characteristics and Possible Function of Pinopodes Seen on the Surface of the Receptive Human Endometrium
    Vol. 10, No. 1, 2005 Middle East Fertility Society Journal © Copyright Middle East Fertility Society OPINION Characteristics and possible function of pinopodes seen on the surface of the receptive human endometrium Anneli C. Stavreus-Evers, Ph.D. Department of Clinical Science, Division of Obstetrics and Gynecology Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden ABSTRACT A synchronized development of embryo and endometrium is a prerequisite for a successful implantation. During the time of implantation, pinopodes appear on the endometrial surface. The precise function of these structural markers of endometrial receptivity is not known, but it is generally believed that they play a role in the implantation process. Further understanding of the function of these biomarkers and their role in embryo implantation could aid in better diagnosis and treatment of infertile couples in the future. Keywords: Implantation window, pinopodes, endometrium. INTRODUCTION The morphological appearance of pinopodes differs between species. In rat and mouse, the The endometrium is changing throughout the pinopodes arise from the cell surface on stalks, menstrual cycle in order to prepare for the which rise above the level of microvilli (6,7). In implantation of an embryo. The maturation of the the rat, pinopodes are present in approximately endometrium is dependent on interplay between 20% of the epithelial cells, whereas in human the steroid hormones estrogen and progesterone. endometrium, pinopode structure seems to involve The endometrium is only receptive for blastocyst the majority of the non-ciliated epithelial cells (4,8). implantation for a short period of time, so called Cellular organelles, such as mitochondria, have "implantation window" before and after which been found in pinopodes from several species implantation does not occur (1).
    [Show full text]
  • Manipulation of the Follicular Phase: Uterodomes and Pregnancy - Is There a Correlation? Susan M Adams, Nalini Gayer, Vera Terry and Christopher R Murphy
    BMC Pregnancy and Childbirth (2001) 1:2 http://www.biomedcentral.com/1471-2393/1/2 ResearchBMC Pregnancy article and Childbirth (2001) 1:2 Manipulation of the follicular phase: Uterodomes and pregnancy - is there a correlation? Susan M Adams, Nalini Gayer, Vera Terry and Christopher R Murphy Address: Departments of Anatomy & Histology, and Obstetrics and Gynaecology, University of Sydney, Sydney, NSW 2006, Australia\ E-mail: Susan M Adams - [email protected]; Nalini Gayer - [email protected]; Vera Terry - [email protected]; Christopher Murphy - [email protected] Published: 17 July 2001 Received: 27 February 2001 Accepted: 17 July 2001 BMC Pregnancy and Childbirth 2001, 1:2 This article is available from: http://www.biomedcentral.com/1471-2393/1/2 © 2001 Adams et al; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any non-com- mercial purpose, provided this notice is preserved along with the article's original URL. For commercial use, contact [email protected] Abstract Background: Manipulation of the follicular phase uterine epithelium in women undergoing infertility treatment, has not generally shown differing morphological effects on uterine epithelial characteristics using Scanning Electron Microscopy (SEM) and resultant pregnancy rates have remained suboptimal utilising these manipulations. The present study observed manipulation of the proliferative epithelium, with either 7 or 14 days of sequential oestrogen (E) therapy followed by progesterone (P) and assessed the appearance of pinopods (now called uterodomes) for their usefulness as potential implantation markers in seven women who subsequently became pregnant. Three endometrial biopsies per patient were taken during consecutive cycles: day 19 of a natural cycle - (group 1), days 11/12 of a second cycle after 7 days E then P - (group 2), and days 19/22 of a third cycle after 14 days E then P - (group 3).
    [Show full text]
  • Original Article Testosterone Decreases the Expression of Endometrial Pinopode and L-Selectin Ligand (MECA-79) in Adult Female Rats During Uterine Receptivity Period
    Int J Clin Exp Pathol 2014;7(5):1967-1976 www.ijcep.com /ISSN:1936-2625/IJCEP0000127 Original Article Testosterone decreases the expression of endometrial pinopode and L-selectin ligand (MECA-79) in adult female rats during uterine receptivity period Helmy Mohd Mokhtar1, Nelli Giribabu1, Sekaran Muniandy2, Naguib Salleh1 1Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia; 2Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia Received February 28, 2014; Accepted April 3, 2014; Epub April 15, 2014; Published May 1, 2014 Abstract: Pinopode, a progesterone-dependent endometrial projection which appears during uterine receptivity pe- riod, participates in blastocyst implantation. Blastocyst loosely attaches to pinopode via L-selectin ligand (MECA- 79). We hypothesized that pinopode and MECA-79 expressions were affected by testosterone. Therefore, the ef- fect of testosterone on pinopode and MECA-79 expressions during uterine receptivity period were investigated. Methods: Ovariectomized adult female rats received 8 days sex-steroid replacement intended to mimic hormonal changes in early pregnancy with day 6 to 8 represents uterine receptivity period. Testosterone (1 mg/kg/day) was injected together with flutamide or finasteride during the period of uterine receptivity. At the end of treatment, rats were sacrificed and uteri were removed. The existence of pinopodes in the endometrium was visualized by electron microscopy and uterine expression and distribution of MECA-79 protein were examined by Western blotting and im- munohistochemistry (IHC) respectively. Results: Abundant pinopodes and MECA-79 expressions were observed in rats received normal steroid replacement regime.
    [Show full text]
  • Perubahan Morfologi Pinopod Endometrium Macaca Nemestrina
    Jurnal Primatologi Indonesia, Vol 13, Nomor 1, Januari 2016, hlm. 3-9 ISSN 1410-5373 Perubahan morfologi pinopod endometrium Macaca nemestrina setelah pemberian hiperstimulasi ovarium terkendali (HOT) [Morphological changes of the endometrium pinopod Macaca nemestrina after administration of a controlled ovarian hyperstimulation (HOT)] Nurhuda1*, Rachman IA1, Sajuthi D2, Siregar NC1 dan Yusuf TL2 1 Fakultas Kedokteran Universitas Indonesia 2 Fakultas Kedokteran Hewan, Institut Pertanian Bogor *Korespondensi: [email protected] Abstract. Pinopod is a morphological marker of maturity endometrial implantation phase that can be detected by scanning electron microscope technique. In this study well be evaluated the morphological changes of the endometrium pinopod of Macaca nemestrina in middle luteal phase after administration of controlled ovarian hyperstimulation. The purpose of this study was to assess the effect of controlled ovarian hyperstimulation against pinopod morphological changes. Macaca nemestrina against ovarian stimulator injected dose of 30- 70 IU for 10-12 days. Metode is a combination of GnRH agonist (long protocole) combined with recombinant FSH began the second day after menstruation to obtain the highest peak hormone estradiol in the follicular phase. Uterine tissue sampling conducted in the middle of the luteal phase (days 8-9 after the peak secretion of the hormone estradiol). Pinopod morphological assessment is done through the technique of scanning electron microscope (SEM). The result, as many as 11 samples were analyzed by SEM showed about 18% pinopod development in the early stages, 36% and 46% maximum stage regression phase. Based on the ratio of progesterone / estradiol, pinopod maximum stage of development occurs in the value of the ratio of 0.20 to 0.49 and regression phase is between 0.25 to 7.34.
    [Show full text]
  • The Effect of Sperm Activation on Pinopod Formation in Endometrial Epithelium
    Journal of the Anatomical Society of India 65 (2016) S5–S10 Contents lists available at ScienceDirect Journal of the Anatomical Society of India jou rnal homepage: www.elsevier.com/locate/jasi Original Article The effect of sperm activation on pinopod formation in endometrial epithelium a, b c d Orhan O¨ zatik *, M. Tamer Mungan , Ilknur Dag˘ , Ahmet Musmul a Ahi Evran University, Medical Faculty, Department of Histology and Embryology, Kırs¸ ehir, Turkey b Koru Hospital, Department of Obstetrics and Gynecology, Ankara, Turkey c Eskis¸ ehir Osmangazi University Vocational Health Services College, Eskisehir, Turkey d Eskis¸ ehir Osmangazi University, Medical Faculty, Department of Biostatistics, Eskisehir, Turkey A R T I C L E I N F O A B S T R A C T Article history: Introduction: Endometrial receptivity is crucial in implantation of the developing embryo in the Received 24 June 2015 endometrium and formation of the pregnancy. In this study, possible effect of sperm and uterine Accepted 21 July 2016 endometrial contact on formation of pinopod, an important element in morphological differentiation Available online 28 July 2016 necessary for implantation, was investigated. Materials and methods: In this experimental study, 42 female Spraque–Dawley albino rats and 14 male Keywords: Spraque–Dawley albino rats (total 56 rats) were used. Vasectomy was performed in half of the male rats. Pinopod For each group, two distinct branches were formed with 21 females and 7 males: Group 1 (non- Endometrium receptivity vasectomized) and Group 2 (vasectomized). Cases were sacrificed and evaluated every day from Day 1 to Sperm Day 3. Scanning electron microscopic (SEM) images were analyzed according to different stages of Scanning electron microscopy pinopod development on different days.
    [Show full text]
  • Hypothyroidism Affects Uterine Function Via the Modulation of Prostaglandin Signaling
    animals Article Hypothyroidism Affects Uterine Function via the Modulation of Prostaglandin Signaling Ilona Kowalczyk-Zieba 1,* , Joanna Staszkiewicz-Chodor 1, Dorota Boruszewska 1, Krzysztof Lukaszuk 2,3,4, Joanna Jaworska 1 and Izabela Woclawek-Potocka 1 1 Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; [email protected] (J.S.-C.); [email protected] (D.B.); [email protected] (J.J.); [email protected] (I.W.-P.) 2 Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland; [email protected] 3 Department of Obstetrics and Gynecology, The Medical Center of Postgraduate Education, 02-091 Warsaw, Poland 4 INVICTA Fertility and Reproductive Center, 80-850 Gdansk, Poland * Correspondence: [email protected]; Tel.: +48-895393114 Simple Summary: A article proved that, in rats with PTU-induced hypothyroidism, the E2 level as well as the expression of the uterine-receptivity factors homeobox A10 and osteopontin was decreased. Additionally, we observed changes in the expression of PGE2, PGF2α, and PGI2 signaling pathway elements, and changes in the concentrations of those prostaglandins in uterine tissue. The results suggest that hypothyroidism may interfere with the prostaglandin signaling pathway, which Citation: Kowalczyk-Zieba, I.; may further result in a reduction in uterine receptivity. Staszkiewicz-Chodor, J.; Boruszewska, D.; Lukaszuk, K.; Abstract: Thyroid hormones control the functions of almost all body systems. Reproductive dysfunc- Jaworska, J.; Woclawek-Potocka, I. tions, such as abnormal sexual development, infertility, or irregularities in the reproductive cycle, Hypothyroidism Affects Uterine might be associated with thyroid disorders.
    [Show full text]
  • Hormonal Regulation of Implantation
    Obstet Gynecol Clin N Am 31 (2004) 745–766 Hormonal regulation of implantation Pinar H. Kodaman, MD, PhD, Hugh S. Taylor, MD* Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Implantation requires synchronization between the developing embryo and endometrium. The dialog between embryo and endometrium and the receptivity of the latter is under the control of the sex steroids, estrogen and progesterone, as well as other hormones, such as prolactin, calcitonin, and human chorionic gonadotropin (hCG). Although the complex process of implantation remains to be characterized fully, numerous cellular and molecular markers of endometrial receptivity—many of which are regulated hormonally—have been defined. This article addresses the endocrine-mediated aspects of implantation as they pertain to normal reproduction and assisted reproductive technology (ART). Normal implantation Following fertilization in the fallopian tube 24 to 48 hours after ovulation, the zygote migrates through the fallopian tube until it reaches the uterine cavity at the morula stage on Day 18 of an ideal 28-day cycle [1,2]. On Day 19, the blastocyst forms, sheds its zona pellucida, superficially apposes, and adheres to the endometrium [3]. Although the initial apposition is unstable, adhesion involves increased physical interactions between embryo and uterine epithe- lium [4]. This is followed by trophoblast invasion through the endometrial epi- thelium and underlying stroma, the inner third of the myometrium, and the uterine vasculature, all of which ultimately result in placentation [5]. Implanta- tion occurs only during the ‘‘window of implantation,’’ which corresponds to postovulatory Days 6 to 10 in humans [6].
    [Show full text]