Cycle 28 Approved Programs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1910.11169V1 [Astro-Ph.EP] 24 Oct 2019 Metchev Et Al.(2004) Due to the Detection of a Strong Mid- Tinuum and at HCO+ and CO Gas Emission Lines
Astronomy & Astrophysics manuscript no. PDS70_v2 c ESO 2019 October 25, 2019 VLT/SPHERE exploration of the young multiplanetary system PDS70? D. Mesa1, M. Keppler2, F. Cantalloube2, L. Rodet3, B. Charnay4, R. Gratton1, M. Langlois5; 6, A. Boccaletti4, M. Bonnefoy3, A. Vigan6, O. Flasseur7, J. Bae8, M. Benisty3; 9, G. Chauvin3; 9, J. de Boer10, S. Desidera1, T. Henning2, A.-M. Lagrange3, M. Meyer11, J. Milli12, A. Müller2, B. Pairet13, A. Zurlo14; 15; 6, S. Antoniucci16, J.-L. Baudino17, S. Brown Sevilla2, E. Cascone18, A. Cheetham19, R.U. Claudi1, P. Delorme3, V. D’Orazi1, M. Feldt2, J. Hagelberg19, M. Janson20, Q. Kral4, E. Lagadec21, C. Lazzoni1, R. Ligi22, A.-L. Maire2; 23, P. Martinez21, F. Menard3, N. Meunier3, C. Perrot4; 24; 25, S. Petrus3, C. Pinte26; 3, E.L. Rickman19, S. Rochat3, D. Rouan4, M. Samland2; 20, J.-F. Sauvage27; 6, T. Schmidt4; 28, S. Udry19, L. Weber19, F. Wildi19 (Affiliations can be found after the references) Received / accepted ABSTRACT Context. PDS 70 is a young (5.4 Myr), nearby (∼113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS 70 b, within the disk cavity. Moreover, observations in Hα with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS 70 c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging. Aims. Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system. -
Issue 59, Yir 2015
1 Director’s Message 50 Fast Turnaround Program Markus Kissler-Patig Pilot Underway Rachel Mason 3 Probing Time Delays in a Gravitationally Lensed Quasar 54 Base Facility Operations Keren Sharon Gustavo Arriagada 7 GPI Discovers the Most Jupiter-like 58 GRACES: The Beginning of a Exoplanet Ever Directly Detected Scientific Legacy Julien Rameau and Robert De Rosa André-Nicolas Chené 12 First Likely Planets in a Nearby 62 The New Cloud-based Gemini Circumbinary Disk Observatory Archive Valerie Rapson Paul Hirst 16 RCW 41: Dissecting a Very Young 65 Solar Panel System Installed at Cluster with Adaptive Optics Gemini North Benoit Neichel Alexis-Ann Acohido 21 Science Highlights 67 Gemini Legacy Image Releases Nancy A. Levenson Gemini staff contributions 30 On the Horizon 72 Journey Through the Universe Gemini staff contributions Janice Harvey 37 News for Users 75 Viaje al Universo Gemini staff contributions Maria-Antonieta García 46 Adaptive Optics at Gemini South Gaetano Sivo, Vincent Garrel, Rodrigo Carrasco, Markus Hartung, Eduardo Marin, Vanessa Montes, and Chad Trujillo ON THE COVER: GeminiFocus January 2016 A montage featuring GeminiFocus is a quarterly publication a recent Flamingos-2 of the Gemini Observatory image of the galaxy 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720, USA NGC 253’s inner region Phone: (808) 974-2500 Fax: (808) 974-2589 (as discussed in the Science Highlights Online viewing address: section, page 21; with www.gemini.edu/geminifocus an inset showing the Managing Editor: Peter Michaud stellar supercluster Science Editor: Nancy A. Levenson identified as the galaxy’s nucleus) Associate Editor: Stephen James O’Meara and cover pages Designer: Eve Furchgott/Blue Heron Multimedia from each of issue of Any opinions, findings, and conclusions or GeminiFocus in 2015. -
A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System
Space Sci Rev (2020) 216:100 https://doi.org/10.1007/s11214-020-00719-1 A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System Martin Turbet1 · Emeline Bolmont1 · Vincent Bourrier1 · Brice-Olivier Demory2 · Jérémy Leconte3 · James Owen4 · Eric T. Wolf5 Received: 14 January 2020 / Accepted: 4 July 2020 / Published online: 23 July 2020 © The Author(s) 2020 Abstract TRAPPIST-1 is a fantastic nearby (∼39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable system of po- tentially habitable planets known to exist. Since the announcement of the discovery of the TRAPPIST-1 planetary system in 2016, a growing number of techniques and approaches have been used and proposed to characterize its true nature. Here we have compiled a state- of-the-art overview of all the observational and theoretical constraints that have been ob- tained so far using these techniques and approaches. The goal is to get a better understanding of whether or not TRAPPIST-1 planets can have atmospheres, and if so, what they are made of. For this, we surveyed the literature on TRAPPIST-1 about topics as broad as irradiation environment, planet formation and migration, orbital stability, effects of tides and Transit Timing Variations, transit observations, stellar contamination, density measurements, and numerical climate and escape models. Each of these topics adds a brick to our understand- ing of the likely—or on the contrary unlikely—atmospheres of the seven known planets of the system. -
The Violent ISM in Haro 11
Stockholm University Department of Astronomy LICENTIATE THESIS The violent ISM in Haro 11 Author: Veronica Menacho Menacho Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova, 106 91 Stockholm, Sweden Supervisor: Goran¨ Ostlin¨ Co-Supervisor: Arjan Bik January 10, 2019 Abstract This thesis introduces briefly physical processes operating in the ISM around massive stars and focuses on the impact strong stellar feedback has in creating large-scale structures in a galaxy. Stellar feedback is ubiquitous in star forming galaxies and its effect on the ISM depends strongly on the energy output from the most massive stars (M≥7 M ) and the properties of the surrounding gas. Starburst galaxies are among the most active in producing large amount of massive star clusters with stellar populations up to thousands of massive stars. In the first 4 Myr of the star clusters evolution, radiative feedback of the most massive stars (M≥30 M ) are at work. Large amount of ionizing photons are released to the ambient medium while radiative pressure compress the surrounding gas. At the same time their stellar winds inject continuously mechanical energy and momentum in their surrounding. This mechanical feedback is then at later ages, until ∼ 40 Myrs, maintained by supernova explosions from the less massive stars. Strong stellar feedback tends to develop large-scale structures such as bubbles, loops, fil- aments and outflows. These are transient structures and can be seen as imprints of how the released energy is clearing or has cleared paths in the ISM. Strong stellar feedback can have devastating consequences in dwarf galaxies due to their shallow gravitational potential. -
ISPY-NACO Imaging Survey for Planets Around Young Stars Survey Description and Results from the first 2.5 Years of Observations? R
A&A 635, A162 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937000 & © R. Launhardt et al. 2020 Astrophysics ISPY-NACO Imaging Survey for Planets around Young stars Survey description and results from the first 2.5 years of observations? R. Launhardt1, Th. Henning1, A. Quirrenbach2, D. Ségransan3, H. Avenhaus4,1, R. van Boekel1, S. S. Brems2, A. C. Cheetham1,3, G. Cugno4, J. Girard5, N. Godoy8,11, G. M. Kennedy6, A.-L. Maire1,10, S. Metchev7, A. Müller1, A. Musso Barcucci1, J. Olofsson8,11, F. Pepe3, S. P. Quanz4, D. Queloz9, S. Reffert2, E. L. Rickman3, H. L. Ruh2, and M. Samland1,12 1 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 3 Observatoire Astronomique de l’Université de Genève, 51 Ch. des Maillettes, 1290 Versoix, Switzerland 4 ETH Zürich, Institute for Particle Physics and Astrophysics, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland 5 Space Telescope Science Institute, Baltimore 21218, MD, USA 6 Department of Physics & Centre for Exoplanets and Habitability, University of Warwick, Coventry, UK 7 The University of Western Ontario, Department of Physics and Astronomy, 1151 Richmond Avenue, London, ON N6A 3K7, Canada 8 Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile 9 Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK 10 STAR Institute, University of Liège, Allée du Six Août 19c, 4000 Liège, Belgium 11 Núcleo Milenio Formación Planetaria – NPF, Universidad de Valparaíso, Av. -
Annual Report 2016–2017 AAVSO
AAVSO The American Association of Variable Star Observers Annual Report 2016–2017 AAVSO Annual Report 2012 –2013 The American Association of Variable Star Observers AAVSO Annual Report 2016–2017 The American Association of Variable Star Observers 49 Bay State Road Cambridge, MA 02138-1203 USA Telephone: 617-354-0484 Fax: 617-354-0665 email: [email protected] website: https://www.aavso.org Annual Report Website: https://www.aavso.org/annual-report On the cover... At the 2017 AAVSO Annual Meeting.(clockwise from upper left) Knicole Colon, Koji Mukai, Dennis Conti, Kristine Larsen, Joey Rodriguez; Rachid El Hamri, Andy Block, Jane Glanzer, Erin Aadland, Jamin Welch, Stella Kafka; and (clockwise from upper left) Joey Rodriguez, Knicole Colon, Koji Mukai, Frans-Josef “Josch” Hambsch, Chandler Barnes. Picture credits In additon to images from the AAVSO and its archives, the editors gratefully acknowledge the following for their image contributions: Glenn Chaple, Shawn Dvorak, Mary Glennon, Bill Goff, Barbara Harris, Mario Motta, NASA, Gary Poyner, Msgr. Ronald Royer, the Mary Lea Shane Archives of the Lick Observatory, Chris Stephan, and Wheatley, et al. 2003, MNRAS, 345, 49. Table of Contents 1. About the AAVSO Vision and Mission Statement 1 About the AAVSO 1 What We Do 2 What Are Variable Stars? 3 Why Observe Variable Stars? 3 The AAVSO International Database 4 Observing Variable Stars 6 Services to Astronomy 7 Education and Outreach 9 2. The Year in Review Introduction 11 The 106th AAVSO Spring Membership Meeting, Ontario, California 11 The -
Arxiv:1704.01678V2 [Astro-Ph.GA] 28 Jul 2017 Been Notoriously Difficult, Resulting Mostly in Upper Lim- Highest Escape Fractions Measured to Date Among Low- Its (E.G
Submitted: 3 March 2017 Preprint typeset using LATEX style AASTeX6 v. 1.0 MRK 71 / NGC 2366: THE NEAREST GREEN PEA ANALOG Genoveva Micheva1, M. S. Oey1, Anne E. Jaskot2, and Bethan L. James3 (Accepted 24 July 2017) 1University of Michigan, 311 West Hall, 1085 S. University Ave, Ann Arbor, MI 48109-1107, USA 2Department of Astronomy, Smith College, Northampton, MA 01063, USA 3STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA ABSTRACT We present the remarkable discovery that the dwarf irregular galaxy NGC 2366 is an excellent analog of the Green Pea (GP) galaxies, which are characterized by extremely high ionization parameters. The similarities are driven predominantly by the giant H II region Markarian 71 (Mrk 71). We compare the system with GPs in terms of morphology, excitation properties, specific star-formation rate, kinematics, absorption of low-ionization species, reddening, and chemical abundance, and find consistencies throughout. Since extreme GPs are associated with both candidate and confirmed Lyman continuum (LyC) emitters, Mrk 71/NGC 2366 is thus also a good candidate for LyC escape. The spatially resolved data for this object show a superbubble blowout generated by mechanical feedback from one of its two super star clusters (SSCs), Knot B, while the extreme ionization properties are driven by the . 1 Myr-old, enshrouded SSC Knot A, which has ∼ 10 times higher ionizing luminosity. Very massive stars (> 100 M ) may be present in this remarkable object. Ionization-parameter mapping indicates the blowout region is optically thin in the LyC, and the general properties also suggest LyC escape in the line of sight. -
The Molecular Gas Reservoir of 6 Low-Metallicity Galaxies from the Herschel Dwarf Galaxy Survey a Ground-Based Follow-Up Survey of CO(1–0), CO(2–1), and CO(3–2)
A&A 564, A121 (2014) Astronomy DOI: 10.1051/0004-6361/201322096 & c ESO 2014 Astrophysics The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey A ground-based follow-up survey of CO(1–0), CO(2–1), and CO(3–2) D. Cormier1,S.C.Madden2, V. Lebouteiller2,S.Hony3, S. Aalto4, F. Costagliola4,5, A. Hughes3, A. Rémy-Ruyer2, N. Abel6, E. Bayet7, F. Bigiel1, J. M. Cannon8,R.J.Cumming9, M. Galametz10, F. Galliano2, S. Viti11,andR.Wu2 1 Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany e-mail: [email protected] 2 Laboratoire AIM, CEA/DSM – CNRS – Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette, France 3 Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 4 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 5 Instituto de Astrofísica de Andalucía, Glorieta de la Astronomía s/n, 18008 Granada, Spain 6 University of Cincinnati, Clermont College, Batavia OH 45103, USA 7 Sub-Dept. of Astrophysics, Dept. of Physics at University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 8 Department of Physics & Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul MN 55105, USA 9 Onsala Space Observatory, Chalmers University of Technology, 439 92 Onsala, Sweden 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK Received 17 June 2013 / Accepted 17 November 2013 ABSTRACT Context. -
Open Engagment Group A
Habitable Worlds 2021 Workshop Open Engagement – Group B Abstract Title 1st Author # 19 Obliquity Variation of Circumbinary Planets Gongjie Li Removing Stellar Activity Signals from Radial 34 Zoe de Beurs Velocity Measurements Using Neural Networks 40 Dayside land on tidally locked M-Earths Evelyn Macdonald Effect of mantle oxidation state on the magma ocean 87 Nisha Katyal atmospheric evolution Stellar Variability & Precision Radial Velocimetry: 89 Eric Ford Lessons for atmospheric characterization Is there any other habitable planets in universe 91 Md Redyan Ahmed except Earth? Stellar Energetic Particle-driven Production of Biologically Relevant Molecules in Atmospheres of 93 Guillaume Gronoff Young Earth-like Exoplanets Around Active G-K Stars 97 Stable, Closely-Spaced Three-Planet Systems Sacha Gavino Ground-Based Exoplanet Direct Imaging in the Next 98 Thayne Currie Decade: The Path to Imaging Another Earth Magma ocean differentiation regime in the earliest 101 Damanveer Grewal formed rocky bodies -Internal or External? A very early origin of isotopically distinct nitrogen 102 Damanveer Grewal in the inner Solar System protoplanets XUV-Driven Atmospheric Mass Loss of M Dwarf 103 Laura Amaral Planets due to Flaring Impact of Tides on the Potential for Exoplanets to 104 Armen Tokadjian Host Exomoons 105 Drifting into habitability Bradley Hansen 106 How to Detect a Dead Planet Sara Walker Computational study on the importance of UV light 107 in the production of molecules of prebiotic Marion Armas Vazquez importance in an astrobiological -
Stsci Newsletter: 2011 Volume 028 Issue 02
National Aeronautics and Space Administration Interacting Galaxies UGC 1810 and UGC 1813 Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) 2011 VOL 28 ISSUE 02 NEWSLETTER Space Telescope Science Institute We received a total of 1,007 proposals, after accounting for duplications Hubble Cycle 19 and withdrawals. Review process Proposal Selection Members of the international astronomical community review Hubble propos- als. Grouped in panels organized by science category, each panel has one or more “mirror” panels to enable transfer of proposals in order to avoid conflicts. In Cycle 19, the panels were divided into the categories of Planets, Stars, Stellar Rachel Somerville, [email protected], Claus Leitherer, [email protected], & Brett Populations and Interstellar Medium (ISM), Galaxies, Active Galactic Nuclei and Blacker, [email protected] the Inter-Galactic Medium (AGN/IGM), and Cosmology, for a total of 14 panels. One of these panels reviewed Regular Guest Observer, Archival, Theory, and Chronology SNAP proposals. The panel chairs also serve as members of the Time Allocation Committee hen the Cycle 19 Call for Proposals was released in December 2010, (TAC), which reviews Large and Archival Legacy proposals. In addition, there Hubble had already seen a full cycle of operation with the newly are three at-large TAC members, whose broad expertise allows them to review installed and repaired instruments calibrated and characterized. W proposals as needed, and to advise panels if the panelists feel they do not have The Advanced Camera for Surveys (ACS), Cosmic Origins Spectrograph (COS), the expertise to review a certain proposal. Fine Guidance Sensor (FGS), Space Telescope Imaging Spectrograph (STIS), and The process of selecting the panelists begins with the selection of the TAC Chair, Wide Field Camera 3 (WFC3) were all close to nominal operation and were avail- about six months prior to the proposal deadline. -
Astro2020 APC White Paper Gmagao-X: Extreme Adaptive Optics
Astro2020 APC White Paper GMagAO-X: extreme adaptive optics & coronagraphy for GMT at first light Thematic Areas: X Planetary Systems X Star and Planet Formation Corresponding Author: Name: Jared R. Males Institution: University of Arizona Email: [email protected] Co-authors: Laird M. Close (University of Arizona) Olivier Guyon (Univ. of Arizona, Subaru/NAOJ, and Japanese Astrobiology Center) Breann Sitarski (GMTO) Antonin Bouchez (GMTO) Alycia Weinberger (Department of Terrestrial Magnetism, Carnegie Institution for Science) Michael P. Fitzgerald (University of California, Los Angeles) Abstract: We describe plans for an \extreme" adaptive optics (ExAO) system for the Giant Magellan Telescope (GMT). This instrument concept, currently called \GMagAO-X", is based on using existing deformable mirror (DM) and wavefront sensor (WFS) detector technology to implement a 21,000 actuator, 2000 Hz system. Combined with state of the art coronagraphy, GMagAO-X will enable detection and characterization of exoplanets at extreme contrast ratios in groundbreaking variety. This will include young giant planets (both from thermal emission and in the H-alpha accretion signature), older giant planets in reflected light, and temperate terrestrial planets orbiting nearby late-type stars also in reflected light. GMagAO-X will also enable studies of circumstellar disks at unprecedented angular resolution in the visible and near-IR. Since it is based on existing proven technology, GMagAO-X can be available at, or shortly-after, first light of the GMT, allowing the observatory to deliver groundbreaking exoplanet science almost immediately. { 1 { 1 Introduction: A path to high-contrast AO imaging at/near GMT first light The MagAO-X extreme adaptive optics (ExAO) system for the Magellan Clay telescope is currently under construction (Males et al. -
Canopus XVII Básicamente La Escribió Él
N° 17 ENE 2020 rreevviissttaa ccaannooppuuss LA REVISTA DE COMUNICACIÓN CIENTÍFICA EDITORIAL Empezamos un nuevo año, 2020, siempre que cambia ese número, el común de las personas siente una renovación, nuevos objetivos, nuevo “aire” como comúnmente se dice. Por nuestra parte, en este enero 2020 estamos mucho mejor parados que en enero del año pasado, de hecho hace un año no hubo publicaciones, comenzamos en febrero con el número V cuando asumí la dirección editorial de este medio digital. Vale destacar algo que no mencionamos en el número pasado, hubo cambio de gestión y organigrama. El Complejo Planetario Malargüe no es más una dirección, si no que es una coordinación. Dicha coordinación, de Marcelo Salvadores depende de la dirección de Industrias y Negocios municipales, a cargo de Marilé Verón. Subiendo un escalón más está la Secretaría Rural, Tecnología Ciencia e Innovación bajo el mando de nuestro ex compañero, César Ojeda, a quien felicitamos desde nuestro pequeño espacio conformado por Agustín y yo. Como hemos ido haciendo estos últimos meses, se ha incrementado la cantidad de contenido, lo que nos lleva a agregar más páginas, digitales por suerte a esta revista. Este número supera las 70 páginas y hablamos de temáticas muy variadas. Quiero agradecer a Agustín, ya que desde el 10 de diciembre soy Coordinador Científico del Planetario, y, por temas de temporada y arreglos, el estar ocupado en esos temas, no he podido dedicarme a la escritura. Canopus XVII básicamente la escribió él. Comenzamos el año con la noticia de que ¡Argentina tiene un planeta! No es tan literal, pero sí que pudimos nombrar a uno, el concurso fue desde la UAI y canalizado desde el Nodo Nacional Argentino para la difusión de la Astronomía, donde el Planetario fue parte.